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Abstract 

Background:  As one of the fundamental problems in bioinformatics, the double 
digest problem (DDP) focuses on reordering genetic fragments in a proper sequence. 
Although many algorithms for dealing with the DDP problem were proposed during 
the past decades, it is believed that solving DDP is still very time-consuming work due 
to the strongly NP-completeness of DDP. However, none of these algorithms consider 
the privacy issue of the DDP data that contains critical business interests and is col-
lected with days or even months of gel-electrophoresis experiments. Thus, the DDP 
data owners are reluctant to deploy the task of solving DDP over cloud.

Results:  Our main motivation in this paper is to design a secure outsourcing compu-
tation framework for solving the DDP problem. We at first propose a privacy-preserving 
outsourcing framework for handling the DDP problem by using a cloud server; Then, to 
enable the cloud server to solve the DDP instances over ciphertexts, an order-preserv-
ing homomorphic index scheme (OPHI) is tailored from an order-preserving encryp-
tion scheme published at CCS 2012; And finally, our previous work on solving DDP 
problem, a quantum inspired genetic algorithm (QIGA), is merged into our outsourc-
ing framework, with the supporting of the proposed OPHI scheme. Moreover, after 
the execution of QIGA at the cloud server side, the optimal solution, i.e. two mapping 
sequences, would be transferred publicly to the data owner. Security analysis shows 
that from these sequences, none can learn any information about the original DDP 
data. Performance analysis shows that the communication cost and the computational 
workload for both the client side and the server side are reasonable. In particular, our 
experiments show that PP-DDP can find optional solutions with a high success rate 
towards typical test DDP instances and random DDP instances, and PP-DDP takes less 
running time than DDmap, SK05 and GM12, while keeping the privacy of the original 
DDP data.

Conclusion:  The proposed outsourcing framework, PP-DDP, is secure and effective for 
solving the DDP problem.
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Background
With the rapid development of human genomics technology, both life science and 
computing technology have profoundly changed. High-throughput next-generation 
sequencing (NGS) technology, single-molecule sequencing technology and other tech-
nologies have emerged in this scientific revolution [1]. The next-generation sequencer 
generated a large number of sequence fragments, which are called read segments [2]. As 
these segments are too short to carry enough valid information, it is important to reor-
der and compare these short read segments to the reference genome to obtain genetic 
information. Being a fundamental problem in NGS technology, the researches on the 
double digest problem (DDP) aim to rebuild the target DNA sequence by recombining 
these fragments together in a proper order [8]. It uses two kinds of enzymes, enzyme α 
and enzyme β to cut a long target DNA sequence into short fragments. There are three 
different cutting ways: cutting by α , cutting by β , and cutting simultaneously by α and β . 
Then, by using the gel-electrophoresis experiments for each case, three sets A, B and C 
which contain the length of these fragments can be obtained. As the foundation of NGS 
technology, the double digest problem is of great significance.

Existing algorithms for the double digest problem

In the 1970  s, Smith et  al. [3, 4] reconstructed the physical map of DNA, then more 
researchers began to follow the interest in the DDP problem and many algorithms have 
been proposed to solve the problem. Schmitt and Waterman [5] introduced equivalence 
classes on DDP solution sets, solved the DDP problem by using cassette transformations 
and posed an open problem fully characterizing equivalent physical mappings. Pevzner 
[6] generalizes the cassette transformations and characterizes equivalence classes 
of pairwise maps under these transformations. He proved that the solution of DDP is 
closely related to alternating Eulerian cycles in colored graphs. Wu and Zhang [7] pro-
posed using integer programming techniques to solve the DDP problem and increase 
the scale of problem-solving. However, it can’t hand off the errors in the experimental 
data. Later, some genetic algorithms were proposed to solve the DDP problem. How-
ever, the genetic algorithm proposed by Sur-Kolay et al. [8] could only handle errorless 
data, Ganjtabesh [9] improved Sur-Kolay’s algorithm, and extended it to erroneous data. 
In 2019, Wang et al. [10] modeled the DDP problem by using vectors and developed a 
MATLAB package with six genetic operators for solving the DDP problem. To improve 
the efficiency of the genetic algorithm, a quantum genetic algorithm combining quan-
tum computing and the genetic algorithm has been proposed to solve the DDP problem 
by Suo et al. [11]. Among these algorithms, quantum inspired genetic algorithm outper-
form the others.

However, in the NGS technology, it is practically impossible for personal computers 
to support a sequencer measuring millions of short DNA sequence fragments. Thus, it 
is interesting to design a outsource framework for solving the DDP problem by using the 
capability of the cloud platforms. However, outsourcing the task of solving DDP to third 
party cloud servers might put sensitive genetic data at severe risk. To prevent privacy 
leaking, the lengths of the DNA fragments produced in the gel-electrophoresis experi-
ments of DDP have to be protected as they are unique and unalterable. Meanwhile, the 
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personal genetic information conveyed by them is of commercial value. Therefore, a pri-
vacy-preserving outsourcing framework for solving DDP is expected.

Privacy‑preserving outsourcing frameworks

There is a lot of research on secure outsourcing computation. The most widely used 
methods for privacy protection include homomorphic encryption, secure multi-party 
computation, cryptographic hash function and so on [12]. In 2016, Wang et al. [13] pro-
posed the HEALER framework, homomorphic computing is used to safely assess genetic 
associations with rare variants of the phenotype without the involvement of the data 
owner, and a compression technique is proposed to reduce genome data size and com-
munication cost. Ghasemi et al. [14] presented a data outsourcing model. The privacy 
of the genomic database is guaranteed by encrypting each record of the linear opera-
tion using the Paillier encryption scheme. But it only encrypts a small fraction of the 
DNA sequences in the entire dataset, so it lacks privacy. In 2020, Liu et al. [15] proposed 
LightCom, a framework for outsourcing to the cloud. Users only need to use one server 
to realize the safe storage and processing of data. Specifically for LightCom, a security 
framework is proposed, under which the server is fully equipped with multiple trusted 
processing units, under which side-channel attacks may occur. In 2021, Kim et al. [16] 
developed secure genotype imputation using homomorphic encryption, guaranteeing 
the security of genotype data when imputation is performed in a semi-honest environ-
ment. HE-based methods have comparable or lower time and memory requirements 
than non-secure methods. However, none of the above methods support both additive 
homomorphism and order-preserving properties.

Homomorphic encryptions and order‑preserving encryptions

There are many types of research on fully homomorphic encryption (FHE) and order-
preserving encryption (OPE) schemes [17–19], most homomorphic encryption schemes 
do not satisfy the order-preserving property. In 2012, Liu et al. [20] proposed an order-
preserving index scheme using simple linear functions and random noise to protect 
plaintexts. This scheme supports database range queries. But when there are duplicates 
in plaintexts, it might become vulnerable. Based on this work, a nonlinear order-pre-
serving index scheme was proposed [21] and security has been improved. However, the 
scheme does not support additive homomorphism. An order-preserving encryption 
scheme together with trapdoor information was proposed by Liu et al. [22], which sup-
ports the server to perform k-means clustering directly over the encrypted data. In 2016, 
Liu et  al. [23] propose a new simple OPE model that hides data distribution and fre-
quency using message space expansion and nonlinear space split. The state encryption 
scheme greatly improves the efficiency of the algorithm and reduces the storage space of 
the key and ciphertext, but it could leak some plaintext information. We expect to design 
a privacy protection scheme that satisfies both additive homomorphism and order-pre-
serving characteristics and saves computing cost.

Motivations and contributions

Our main motivation in this paper is to design a secure outsourcing computation frame-
work for solving the DDP problem. Considering that the DDP data is collected with days 
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or even months of biological experiments and contains critical business interests, the 
privacy of DDP data should be protected securely. Otherwise, the DDP data owners are 
reluctant to deploy the task of solving DDP over cloud. Therefore, we need to first design 
a proper encryption algorithm to keep the privacy of DDP data. To solve the DDP prob-
lem, even for the cloud server, addition and sorting are two basic operations, thus our 
encryption scheme should support additive homomorphism and order-preserving. Fur-
thermore, as aforementioned, among existing DDP algorithms, the QIGA outperforms 
others. Therefore, our previous QIGA algorithm is integrated into the proposed out-
sourcing framework. The difference of QIGA in this paper lies in that: The cloud server 
has to run QIGA on encrypted DDP data, while in our previous work, the DDP data 
owner runs QIGA on plaintexts of DDP data. By doing so, the original DDP instances 
need not be disclosed. Last but not least, the output of the cloud servers is mapping 
sequences that need not be encrypted. In the whole process, both the DDP data owner 
nor the cloud server need not decrypt the encrypted DDP instances. Thus, the involved 
order-preserving homomorphic encryption scheme is tailored into an order-preserving 
homomorphic index (OPHI) scheme by removing the decryption algorithm. In sum-
mary, our main technique contributions include three aspects:

•	 We first propose a privacy-preserving outsourcing framework for handling the DDP 
problem by using a cloud server;

•	 Then, to enable the cloud server to solve the DDP instances over ciphertexts, an 
order-preserving homomorphic index scheme  is tailored from an order-preserving 
encryption scheme published at CCS 2012;

•	 Finally, our previous work on solving the DDP problem, a quantum inspired genetic 
algorithm (QIGA), is merged into our outsourcing framework, with the support of 
the proposed OPHI scheme.

Results
We propose a security outsourcing computation framework PP-DDP for solving the 
double digest problem. Firstly, the data owner uses the proposed OPHI scheme to pro-
tect the privacy of the DDP instances, and then sends the encrypted data to the cloud 
server, which uses the QIGA algorithm to implement DDP calculation based on cipher-
texts. Therefore, we carry out experimental analysis from three aspects: performance of 
OPHI scheme, performance of PP-DDP framework, and effects of privacy-preserving 
operations on the performance.

Performance of OPHI scheme

In the PP-DDP framework, privacy protection mainly depends on the order-preserving 
homomorphic index scheme. OPHI scheme mainly has four functional modules: key 
generation, encryption, additive homomorphism and permutation operators. We test 
these four functional modules and each module run 1000 times to obtain the average 
running time. From Table 1, we can see that the average running time of each module is 
within 4µs , the computing cost of these four modules reached microseconds and have 
good performance with little impact on DDP calculation.
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Performance of PP‑DDP framework

In order to verify the effectiveness and evaluate the performance of PP-DDP for the 
DDP problem, we selected eight typical instances in [6, 8], and randomly generated 
six sets of random instances to test PP-DDP respectively, then evaluated the perfor-
mance of PP-DDP by average running time and average success rate. We randomly 
generated another six groups of random instances, and ran PP-DDP and QIGA at the 
same time for comparison experiments. In these experiments, we set the number of 
sub-ciphertext is m = 3 , the population size is N = 50 , the maximum evolutionary 
generation is 10000, the crossover probability is pc = 0.85 , and the mutation prob-
ability is 0.45–0.55. Running each instance 100 times to get the average running time 
and the average success rate. The goal of these experiments is to evaluate the feasibil-
ity of using PP-DDP to solve the DDP problem and the influence of privacy protection 
of the input instances on experimental results.

We evaluated the effectiveness of PP-DDP by test the eight typical instances in [6, 
8], the corresponding average running time and success rate are listed in Table  2. 
Instance 6 is an invalid instance which doesn’t satisfy m

i=i ai =
n
i=i bi =

k
i=i ci . 

The success rate of the other seven instances is 100% , and all the average running 
times are within 0.088 s. PP-DDP efficiently solves these typical instances. Then, we 
generated six sets of random instances with the length of the input set C ranging from 
10 to 80. The experimental results are in Figs. 1 and 2. It can be seen from Fig. 1 that 
the running time increases as the length of the set C increases, and in Fig. 2, the suc-
cess rate decreases as the length of the set C increases. So, the length of the set C 
influences the experiment results, the larger the length of the set C is, the longer the 

Table 1  Module test of order-preserving homomorphic index scheme

Function module Running 
time ( µs)

Key generation KeyGen(n) 2.27

Encryption algorithm Enck(m) 2.42

Additive homomorphism 1.3

Permutation operator 3.8

Table 2  PP-DDP’s running result of typical instances

No. Running time (ms) Evolution generations Success 
rate 
(%)

1 8.87 3.27 100

2 87.88 39.02 100

3 2.43 1.19 100

4 34.42 13.34 100

5 1.95 1 100

6 – – –

7 6.12 2.27 100

8 1.94 1.07 100
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running time and the lower the success rate. In Fig. 2, all success rates are above 88% , 
the PP-DDP is effective for these random instances.

Therefore, the proposed PP-DDP framework is effective for the DDP problem.

Effects of privacy‑preserving operations on the performance

In sequel, let us give a simple analysis on the effects of privacy-preserving operations on 
the performance of the whole framework. We assess the effects based on the experimen-
tal results. PP-DDP and QIGA are compared by testing random instances. The differ-
ence between PP-DDP and QIGA is that PP-DDP provides privacy protection for input 
instances while QIGA does not. Figure  3 shows that the average running time of PP-
DDP is slightly more than that of QIGA. We calculated the proportion of the time used 
by the privacy protection module to the total running time.
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Fig. 1  PP-DDP’s average running time of random instances. The length of the input set C ranges from 10 to 
80. Running each instance 100 times

10 20 30 40 50 60 70 80

The length of the input set C

0.88

0.9

0.92

0.94

0.96

0.98

1

S
uc

ce
ss

 ra
te
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80. Running each instance 100 times
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As shown in Table 3, when the number of input instance fragments is small, there will 
be 60–100% of the time cost to protect data privacy, when the input instance fragments 
are large, no more than 13% of the time will be consumed. This is because, when the 
number of fragments is small, its own DDP experiment is microsecond, so the micro-
second level of privacy protection module in the overall time accounted for a large 
proportion. When the number of fragments increases, the time required for the DDP 
experiment increases, but the time of the privacy protection module increases slowly, 
so the proportion in the overall time becomes smaller. Thus, the greater the number 
of the input DDP fragments, the less effects of privacy-preserving operations on the 
performance.

We can also see from Fig. 4 that the success rates of PP-DDP and QIGA are both above 
90% . The difference between the success rate of PP-DDP and QIGA is very small, about 
1%. Thus, the privacy protection module has little effect on the success rate of solving 
the DDP problem.

In brief, PP-DDP spent no more than 13% of computational cost to achieve privacy-
preserving on the DDP data at large volumes, and the privacy protection module has 
almost no effect on the success rate.

Discussion
Security analysis

In this section, we analyze the security of the PP-DDP framework in detail and prove 
that the framework can effectively resist the attacks proposed in Adversary model 
section.

•	 The honest but curious (semi-honest) cloud server: In this work, a secure outsourc-
ing computation framework PP-DDP was proposed to solve the DDP problem. In 
the first stage of this framework, the input plaintext DDP data is encrypted through 
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Fig. 3  Comparison of the average running time of PP-DDP and QIGA for random instances. Running each 
random instance 100 times
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the order-preserving homomorphic index scheme. The proposed order-preserving 
homomorphic index scheme is a symmetric encryption scheme. As the plaintexts, 
keys and encryption mechanism are not disclosed to the cloud servers, who can only 
obtain ciphertexts and the output mapping sequences. It is required that the cloud 
servers cannot decrypt the ciphertexts from the existing public parameters, so the 
scheme should satisfy one-wayness security.

	 The proof of one-wayness is as follows: from the OPHI scheme, 
0 < kim < ci < ki(m+ p) , so the ciphertext space will expand ki times after encryp-
tion, and the probability of obtaining the correct plaintext through exhaustive search 
is 1

kM
< 1

217
 , and there are m+ n+ k plaintexts in the DDP problem, where m, n, k 

are the lengths of the input sets A, B, C respectively, m+ n+ k ≥ 7 , so the probabil-
ity of the adversary getting the solution of the DDP problem is ( 1

kM
)m+n+k < 1

2110
 , 

which is apparently negligible. Therefore, the OPHI scheme satisfies one-wayness.
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Fig. 4  Comparison of the average success rate of PP-DDP and QIGA for random instances. Running each 
random instance 100 times

Table 3  Time cost of encryption

The total length of the input sets A, B and C The percent of 
time cost (%)

19 68.83

21 65.58

23 80.42

39 99.87

57 86.28

71 8.28

93 3.46

103 12.87

127 3.53
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	 In the PP-DDP framework, the cloud servers will honestly implement the require-
ments of the data owners and send a pair of mapping sequences of the DDP cal-
culation to the data owners. The mapping sequences are only the arrangement of 
the index and can’t reflect any information in the plaintexts. The mapping sequences 
don’t need to be encrypted during the sending process, and can be completely dis-
closed. Therefore, the cloud servers can’t recover the plaintexts from the mapping 
sequences.

•	 The lazy cloud server: The cloud servers return a pair of mapping sequences to the 
data owners. If the mapping sequences are generated randomly, the correct probabil-
ity is only 1

Am
mA

n
n
 , the data owners can verify whether the result is correct through 

simple calculation, as shown in Modeling the DDP problem section. Once the result 
is wrong, the data owners will not use the result and ask the cloud servers to recalcu-
late until the correct result is obtained.

•	 The malicious competitors of the DDP data owner: The original DDP data has com-
mercial value which was obtained by gel-electrophoresis experiments cost a lot of 
time and money. Malicious competitors want to get the original DDP data. However, 
only encrypted DDP data and DDP solution are transmitted over the public channel. 
So its security analysis is the same as “The honest but curious (semi-honest) cloud 
server”.

•	 We also analyze the security of the OPHI scheme through experiments. Quantile-
Quantile plot (QQ plot) is a graphical method that compares two probability distri-
butions by drawing quantiles. If the two distributions being compared are similar, 
the QQ graph is approximately located on the line y = x . In the order-preserving 
homomorphic index scheme, ci = ki ×m+ ri , where m is an integer in the plain-
text space, and k and r are random numbers. We conduct two sets of experiments to 
verify whether the ciphertexts are consistent with the uniform distribution or normal 
distribution.

	 In Fig. 5a, we randomly generate 50, 000 keys k and noise r satisfying the uniform 
random distribution. Compared with a uniform random distribution. The points of 
the generated ciphertexts in the QQ plot are close to the line y = x with a little devi-
ation, therefore, when key k and noise r are subject to the uniform distribution, the 
ciphertexts generated by this scheme are close to the uniform random distribution, 
but a certain amount of information will be leaked.

	 In Fig. 5b, we randomly generate 50, 000 keys k and noise r are subject to the normal 
random distribution. While comparing the generated ciphertexts with the normal 
random distribution, in Fig.  5b, the points coincide with the line y = x , indicating 
that when both the keys and noise subject to the normal random distribution, the 
distribution of ciphertexts is indistinguishable from the normal distribution. There-
fore, in Order-preserving homomorphic index scheme section, the generated key k 
and noise r both satisfy the normal distribution.

Complexity analysis

The OPHI scheme is proposed to protect the privacy of the DDP instances. In this 
scheme, the plaintext is encrypted into a ciphertext vector that contains n sub-cipher-
texts. For given a DDP instance (A, B, C), let L = |A| + |B| + |C| , i.e. the total number 
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of elements in three sets A,  B,  C, then the time complexity of privacy-preserving 
operations, i.e. the execution of OPHI scheme, is O(n · L).

Upon receiving these encrypted DDP instance from the DDP data owner, the cloud 
server executes QIGA based on ciphertexts. QIGA mainly contains five steps, the 
complexity of each step is given below:

•	 Step 1: Initialize the population with the complexity of O(N · L) , where N is the 
population size.

•	 Step 2: Measure every individual, the total complexity is O(N · L log L).
•	 Step 3: Evaluation of each individual with the total complexity of O(g · L · N ) . 

Where g is the maximum evolution generation.
•	 Step 4: The quantum selection operator is used to determine whether the termina-

tion condition is satisfied, the complexity is O(g · N ).
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•	 Step 5: Update the population. Perform quantum rotation gate, quantum crossover 
and quantum mutation operations sequentially, the total complexity is O(g · L · N ) . 
(Note that in practice, the running time would be observably less since all these 
genetic operators are performed according to the setting probability. In the sense of 
complexity, we neglect these constants of course.)

Thus, the total complexity of QIGA by classical simulation is

While in the future quantum computation era, when fully fledged quantum computers 
are available, our quantum inspired genetic algorithm should be adapted to a real quan-
tum settings, i.e. quantum genetic algorithm with the quantum complexity O(g · L log L) , 
since at that time all N chromosomes would be represented by a single chromosome in a 
quantum superposition state.

Last but not the least important is that in the sense of asymptotically, the prvivacy-
preserving operations have no effects on the complexity of the whole system, since the 
complexity term O(n · L) would be absorbed totally by the term O(g · L · N · log L) con-
sidering that n ≪ N  holds in general.

Comparison with other algorithms for the DDP problem

The proposed PP-DDP framework compare with the other four algorithms (SK05 
[6], GM12 [7], DDmap [8] and QIGA [11]) for solving the DDP problem. Running 
instance 1,  3,  4,  5,  7,  8 in [6, 8] 100 times. It can be seen from Fig.  6 that the line of 
SK05 is at the top, SK05 asks for a running time much longer than the other four algo-
rithms, which performs the poorest. There is only a slightly difference among the other 
four algorithms, and the comparison of their running time is as follow: QIGA<PP-
DDP<DDmap<GM12<SK05, QIGA requires the shortest running time, PP-DDP is the 
second, yet PP-DDP protects the privacy of the DDP data during the whole process and 
the third party cannot obtain the DDP data-related information. However, data privacy-
preserving is not taken into account in QIGA. Malicious third parties may steal these 
data to obtain genetic information. In summary, PP-DDP improves data security and 
protects genetic information at the expense of a very small running time difference.

Comparison with other privacy‑preserving techniques

In the proposed PP-DDP outsourcing computation framework, the privacy-preserving 
technology of data owner must satisfy both additive homomorphism and order-preserv-
ing property. Most of the existing privacy-preserving mechanisms are not suitable for 
our scenario. Our core motivation is to design a secure outsourcing computation frame-
work to solve the DDP problem. As far as we know, this is the first secure outsourc-
ing computation framework for the DDP problem. Furthermore, considering that the 
most complex workload in the DDP scenario is the QIGA rather than the OPHI process. 
Therefore, we only compare PP-DDP with existing algorithms for solving DDP problems 
in the aspect of computational overhead.

O(N · L)+O(N · L log L)+O(g · L · N )+O(g · N )

+ O(g · L · N ) = O(g · L · N · log L).
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In terms of functions, we compare PP-DDP with existing privacy-preserving tech-
nologies, including secure multi-party computation (SMPC), differential privacy (DP), 
homomorphic encryption (HE), and order-preserving encryption (OPE). We present 
comparisons among our PP-DDP proposal and these technologies from the follow-
ing aspects: additive homomorphism, order-preserving, computational cost, and DDP 
applicability. The results are given in Table 4. We can see that none of the existing tech-
niques is applicable to the DDP problem.

Conclusion
To solve the double digest problem (DDP) effectively by resorting the power of cloud 
computation and meanwhile protecting the business interests of the DDP data owner, 
a privacy-preserving outsourcing framework is proposed in this work. This frame-
work mainly consists of two parts, OPHI and QIGA. The former is executed by the 
DDP data owner, while the latter is deployed on the cloud server. OPHI encrypts the 
input instances and supports additive homomorphism and order-preserving proper-
ties, while QIGA finds the optimal solutions, i.e. mapping sequences, for the encrypted 
DDP instances. Our experiments show that on one hand, for both the public test DDP 
instances and the random DDP instances, the success rate of our proposal is above 
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Fig. 6  Comparison of the average running time of PP-DDP and the other four algorithms for instances in 
[6, 8]. DDmap is the best performance operator in [8], SK05 is the genetic operator in [6] and GM12 is the 
genetic operator in [7], QIGA is the operator in [9]

Table 4  Function comparison of privacy protection technologies

Privacy-preserving technologies SMPC DP HE OPE PP-DDP

Additive homomorphism Yes No Yes No Yes

Order-preserving No No No Yes Yes

Computational cost High Low High Low Low

DDP applicability No No No No Yes
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88% , on the other hand, the proposed framework takes no more than 13% of computa-
tional cost to achieve privacy-preserving functionality on the DDP data, and has almost 
no impact on the success rate. In the future of the quantum computation era, it is also 
interesting to replace the QIGA part with a fully-fledged quantum genetic algorithm, for 
obtaining an even high success rate in solving even large DDP instances.

Methods
Overview of system

In this section, we briefly discuss the system model, adversary model, and design 
objective.

System model

In this work, a secure outsourcing computation framework for the DDP problem has 
been proposed, named PP-DDP. As shown in Fig. 7, this system includes 2 entities, data 
owners and the cloud servers.

•	 Data owner (DO): The data owner has the ability to store and simple computing data. 
It has a large amount of DDP data obtained through electrophoresis experiments. 
However, due to its limited computing resources, the calculation of the DDP data 
should be outsourced to cloud servers. The data owner uses the order-preserving 
homomorphic index scheme to encrypt the DDP data that he owns, and then sends 
the encrypted ciphertext DDP data to the cloud servers.

•	 Cloud server (CS): It is a service provider that provides cloud computation services, 
allowing paying customers to use powerful computing resources for data computing, 
helping customers reduce costs. However, it must be “honest but curious”, i.e. it will 
honestly execute certain algorithms, but is interested in the user’s private data.

Original DDP data Encrypted DDP data

Mapping sequences

OPHI

Solution of DDP

Permutation 
operator

QIGA

privacy protecting public transferring

cloud  com
puting

public transferringsolution extracting

Data owners Cloud servers

Fig. 7  The flowchart of PP-DDP. Step 1: privacy protecting. Step 2: public transferring. Step 3: cloud 
computing. Step 4: public transferring. Step 5: solution extracting. OPHI is the order-preserving homomorphic 
index scheme, and QIGA is the quantum inspired genetic algorithm
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Based on the system model, we define the order-preserving homomorphic index scheme 
as follows:

Define 1  Order-preserving homomorphic index scheme (OPHI) is an encryption 
scheme that satisfies the order-preserving and homomorphic properties, it doesn’t 
require data decryption. This scheme consists of the following two algorithms:

•	 KeyGen(n) →
−→
K  is a key generation algorithm run by the data owner. It outputs a 

n-dimensional key vector 
−→
K .

•	 Enc(
−→
K ,m) →

−→c  is a encryption algorithm. It takes 
−→
K  and a plaintext m, and out-

puts the n-dimensional ciphertext vector −→c .

Adversary model

For our proposed PP-DDP framework, we consider the following three adversary 
models:

•	 The honest but curious (semi-honest) cloud server that might want to recover the 
original DDP data. We limit cloud servers attack to passive attacks. It is assumed that 
the cloud servers honestly perform certain computations on encrypted data and send 
complete and correct results. Yet cloud servers are curious and may try to obtain 
information about plaintext DDP data from ciphertext data and mapping sequences.

•	 The lazy cloud server that might return random results. The cloud server may only 
charge users, but don’t perform specific computations. They may randomly generate 
a pair of mapping sequences and send them to the data owners.

•	 The competitors of the DDP data owner that want to learn both the original DDP 
data and the DDP solution. DDP data has commercial value, for commercial pur-
poses, competitors may steal data from public channels. The data on public chan-
nels include the encrypted DDP data by the data owners and the mapping sequences 
returned by the cloud servers.

Design objective

In order to realize the secure outsourcing computation of the DDP problem, the core is 
that the cloud servers cannot infer the DDP data which has commercial value, we have 
the following design goals:

•	 Data confidentiality: The cloud servers shouldn’t be able to recover any useful infor-
mation from any encrypted data, ensuring that the cloud servers can’t access sensi-
tive data.

•	 Index privacy: The proposed index results, the two mapping sequences can’t reveal 
information about the original plaintexts.

•	 Efficiency: Since real-time results may not be required for DDP experiments, com-
putation time in the cloud is tolerable to a certain extent. However, the computation 
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of the data owners must be limited because their computing resources are usually 
limited.

Modeling the DDP problem

The double digest problem is a problem in constructing physical maps of DNA 
sequences. Digest experiment can be described as below: An enzyme cuts a DNA 
sequence at specific positions. Different enzymes cut DNA sequences at different 
restriction cleavage sites. Now two kinds of enzymes α and β are used to cut the same 
DNA sequence in three ways: firstly, using enzymes α ; secondly, using enzymes β ; 
thirdly, using them simultaneously. Then, we can obtain three multisets A, B, C of the 
length of DNA fragments, we call them DDP instances. In this work, we first encrypt the 
DDP instances, and then, use the quantum inspired genetic algorithm to reorder these 
encrypted DNA fragments to find the optimal mapping sequences µ and ν . The math-
ematical description of the DDP problem is as follows:
A = {a1, a2, · · · , ap} , B = {b1, b2, · · · , bq} , and C = {c1, c2, · · · , ct} are input 

DDP instances in ascending order, they satisfy 
∑p

i=i ai =
∑q

i=i bi =
∑t

i=i ci , The 
encrypted instances become Ac = {(a11, a12, · · · , a1j), · · · , (ap1, ap2, · · · , apj)} , 
Bc = {(b11, b12, · · · , b1j), · · · , (bq1, bq2, · · · , bqj)}   , 
Cc = {(c11, c12, · · · , c1j), · · · , (ct1, ct2, · · · , ctj)} , where p,  q and t are lengths of the sets 
A, B and C, respectively. There have two mapping sequences µ and ν which are the per-
mutations of the indices [1, 2, · · · , p] and [1, 2, · · · , q] respectively. After mapping by µ 
and ν , 

−→
Acµ = [A1,A2, · · · ,Ap] , 

−→
Bcν = [B1,B2, · · · ,Bq] can be obtained.

Define 2 
−−−→
AS(A) is accumulative summation of A and step   difference of A denote as 

−−−→
SD(A),

Accumulative summation and step difference of 
−→
Acµ and 

−→
Bcν yields 

−−→
Cµ,ν = [C1,C2, · · · ,Ct ] . Rewrite 

−−→
Cµ,ν in increasing order 

−−→
C ′
µ,ν = [C ′

1,C
′
2, · · · ,C

′
t ].

The objective of the DDP problem is to find two optimal mapping sequences µ and ν 
which satisfy the condition of C ′

µ,ν = Cc , considering the existence of the partial cleavage 
error, the optimization goal is updated to min

∑

|C ′
µ,ν − Cc|.

Outsourcing computation framework for the double digest problem

This work proposes an outsourcing computation framework for the double digest 
problem, which aims to solve the DDP problem under the premise of protecting the 
privacy of genetic data. The advancement of cloud computing technology makes 
large scale computation more affordable than before, as the data owners can out-
source their massive computing tasks to cloud servers to save cost. Similarly, due 
to the large scale of data and high complexity of calculation in the double digest 

−−−→
AS(A) =

�

1
�

i=1

ai,

2
�

i=1

ai, · · · ,

p
�

i=1
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�

,
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experiments, we chose to use the PP-DDP outsourcing computation framework. In 
this framework, the first step is to protect the privacy of the length of the DNA frag-
ments obtained in the double digest experiments, which uses the order-preserving 
homomorphic index scheme to encrypt the data to protect the privacy. The attacker 
can only compare the length of these fragments, but cannot obtain the specific value. 
Then send the encrypted DDP data to the cloud servers. The cloud servers process 
the encrypted data and use the quantum inspired genetic algorithm to obtain the 
solution to the DDP problem. It is unnecessary to decrypt the data in the model, the 
output is mapping sequences. The attacker can not get the DDP data even if the out-
put result is obtained.

In the PP-DDP framework, the whole business logic is divided into 5 stages (Fig. 7):

•	 The first stage is to protect the privacy of the DDP instances, by using the pro-
posed order-preserving homomorphic index (OPHI) scheme. That is the original 
DDP data is encrypted.

•	 The second stage is to transfer these encrypted DDP instances from the data 
owners to the cloud server. The adversary, even the cloud server, cannot break 
the privacy of these DDP instances.

•	 The third stage is the most complex process of the whole work, i.e. our quantum 
inspired genetic algorithm (QIGA). This is purely a cloud computing process, 
handled by the cloud server. Since the DDP instances are encrypted, this process 
is finished based on ciphertexts, owing to the capability of the proposed OPHI 
scheme that supports additive homomorphism and order-preserving property 
over ciphertexts.

•	 In the fourth stage, the cloud server transfers the “solution” to the data owner via 
a public channel. Note that the adversary can learn nothing from this publicly 
transferred “solution”, since without knowing the original DDP data, this “solu-
tion” is merely mapping sequences based on encrypted DDP instances.

•	 In the fifth stage, the data owner extracts the real solution by combing the map-
ping sequences with the original DDP instances.

Remark 1

(Why combine order-preserving encryption with homomorphic encryption) Quantum 
inspired genetic algorithms have shown obvious advantages in solving DDP problems, 
so in step 3 of the outsourcing computation framework, quantum inspired genetic algo-
rithms are used for DDP computation. In Security analysis section, we can see accumula-
tive summation and step difference operator contain additive operation and subtraction 
operation, from 

−−→
Cµ,ν to 

−−→
C ′
µ,ν , there have sorting operation, so the encryption scheme in step 

1 must satisfy both additive homomorphism and order-preserving properties. Therefore, 
it’s necessary to combine order-preserving encryption with homomorphic encryption to 
propose an order-preserving homomorphic index scheme for the DDP problem.
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Order‑preserving homomorphic index scheme

Homomorphic encryption is an encryption method that the algebraic opera-
tion on the plaintext during encryption is equivalent to another operation per-
formed on the ciphertext. The encryption function of two plaintext a and b satisfy 
Dec(Enc(a)⊙ Enc(b)) = a⊕ b , where Enc is the encryption operation, Dec is the 
decryption operation, ⊙ and ⊕ respectively correspond to the operations in the plain-
text and ciphertext fields. In recent years, cloud computing has attracted lots of atten-
tion, one of the problems encountered in practical applications is how to guarantee data 
security, which can be solved by homomorphic encryption with the feature mentioned 
above.

In this work, the encryption scheme must satisfy both additive homomorphism and 
order-preserving properties. There have been already several schemes for homomorphic 
encryption and order-preserving encryption. In 1978, Rivest et al. [24] firstly came up 
with the concept of homomorphic encryption. In the beginning, the proposed schemes 
were all partial homomorphic encryption (PHE) schemes, that is, they supported either 
homomorphic addition or multiplication. Typical PHE schemes include the schemes of 
ElGamal [25], Paillier [26], etc. Until 2009, Gentry [17] put forward the first fully homo-
morphic encryption (FHE) scheme based on the ideal lattice. After that, many research-
ers have improved Gentry’s scheme, for example [27–29]. In addition, there have been 
some FHE schemes based on integer and LWE [30, 31].

Order-preserving encryption (OPE) was first proposed by Agrawal et al. [32] in 2004, 
but they did not provide formal security proof. In 2009, Boldyreva et al. [33] put forward 
an order-preserving encryption scheme based on search trees and gave formal security 
proof. In 2013, Popa RA et al. [34] proposed an ideal security mutable order-preserv-
ing encoding (mOPE) model. Despite these advances, most OPE schemes don’t support 
homomorphic operators and they are deterministic schemes, which can neither reach 
semantic security nor resist frequent attacks. Thus, they cannot solve the DDP problem. 
In 2012, Liu et al. [20] came up with an order preserving indexing scheme, using sim-
ple linear functions and random noise to protect plaintexts. Based on this work, they 
proposed a nonlinear indexing scheme to address the vulnerability of linear indexing 
[21]. In 2014, Liu et al. [22] proposed an identity that does not require a noise reduction 
mechanism. The state encryption scheme greatly improves the efficiency of the algo-
rithm and reduces the storage space of the key and ciphertext, but it could leak some 
plaintext information. Liu’s scheme is a probabilistic scheme, which is one-way security 
and does meet our requirements. So we choose Liu’s scheme.

Based on the scheme of Liu et al. [20, 21], we propose an order-preserving homomor-
phic index scheme.

Order-preserving homomorphic index scheme (OPHI) needs to meet the following 
conditions:

•	 OPHI is an encryption scheme, it can protect data privacy;
•	 OPHI supports additive homomorphism operation, Enc(m1)+ Enc(m2) = Enc

(m1 +m2);
•	 OPHI supports order-preserving index, for any plaintext m1 and m2 , when m1 > m2 , 

there are Enc(m1) > Enc(m2) , iff c1j > c2j , j = 1, 2, · · · , n− 1.
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The basic idea of OPHI is the plaintext m becomes a ciphertext vector containing n 
sub-ciphertexts after encryption. Enck(m) = [c1, · · · , cn] . The encryption process can 
be presented as:

•	 Key generation algorithm KeyGen(n):

	 Generate a key vector containing n real numbers 
−→
K = [k1, · · · , kn] , which subjects 

to the normal distribution and the following restrictions, 

•	 Encryption algorithm Enck(m):
	 Given plaintext m ∈ M and key 

−→
K  , it generates a noise vector containing n− 1 

random numbers and satisfies the normal distribution, −→r = [r1, · · · , rn−1] , let 
R = r1 + r2 + · · · + rn−1 and 0 < R < kip , p is the minimized difference between 
any two plaintexts, p = min|m1 −m2| . The sub-ciphertexts are 

•	 Homomorphism: This scheme is a homomorphic index scheme, which satisfies 
additive homomorphism, the detailed proof process is presented as below:

	 For plaintext m1 and m2 , the corresponding ciphertexts are 

 when 1 ≤ j ≤ n− 1 , 

 when j = n , R = r1 + · · · + rn−1 , 

 Therefore, this is an additive homomorphism index scheme.
•	 Order-preserving: The proof of order-preserving property is as follows:
	 when 0 < j ≤ n− 1 , 

{

k1 + k2 + . . .+ kn−1 �= 0

0 < ki ≤ 210

ci =

{

ki ×m+ ri (1 ≤ i ≤ n− 1)
kn × (r1 + · · · + rn−1) (i = n)

C1 =Enck(m1) = [c11, · · · , c1j , · · · , c1n]

C2 =Enck(m2) = [c21, · · · , c2j , · · · , c2n]

Enck(m1j)+ Enck(m2j) = kim1 + r1 + kim2 + r2

= ki(m1 +m2)+ r3

= Enck(m1j +m2j)

Enck(m1n)+ Enck(m2n) = knR1 + knR2

= knR3

= Enck(m1n +m2n)

c1j − c2j = (kim1 + r1)− (kim2 + r2)

= ki(m1 −m2)+ (r1 − r2)
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 since 0 < R < ki ×min|m1 −m2| , then 0 < ri < ki ×min|m1 −m2| , there-
fore −ki ×min|m1 −m2| < r1 − r2 < ki ×min|m1 −m2| , when m1 > m2 , 
m1 −m2 > 0 , we deduce that c1i − c2i > 0 , thus this scheme satisfies the order-pre-
serving character. When j = n , sub-ciphertext cin has nothing to do with plaintext.

In conclusion, this is an order-preserving homomorphic index scheme.

Quantum inspired genetic algorithm

Genetic algorithm (GA) is designed and proposed according to the evolutionary laws 
of organisms in nature. It is a calculation model of the biological evolution process that 
simulates the natural selection and genetic mechanism of Darwin’s biological evolution 
theory to search for the optimal solutions. Quantum computing has the ability of paral-
lel computing. In order to improve the capability of classical genetic algorithms to solve 
the DDP problem, researchers combined genetic algorithms and quantum computing 
to propose quantum inspired genetic algorithms (QIGA). When solving more complex 
combinatorial optimization problems, researchers can usually obtain the optimization 
results in a shorter time with quantum inspired genetic algorithms, compared with some 
conventional optimization algorithms.

In 2020, Suo et al. [11] proposed a quantum inspired genetic algorithm to deal with the 
DDP problem, and QIGA slightly accelerates to solve the problem. In this work, we 
firstly use the order-preserving homomorphic index scheme to encrypt the DDP 
instances and then use the quantum inspired genetic algorithm in [10] to calculate the 

Fig. 8  The flowchart of QIGA. The input instances are the ciphertexts encrypted by the order-preserving 
homomorphic index scheme, after calculating the fitness value, if not satisfied with the stop condition, the 
quantum crossover and quantum mutation operators will be performed and generated new offsprings. 
Otherwise, output the optimal results
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encrypted instance to find the optimal mapping sequences. The difference between the 
proposed quantum inspired genetic algorithm and the QIGA in [11] is that the fitness 
function is different. In this work, the fitness function is f (µ, ν) = 1

1+|C ′
µ,ν⊕Cc|

 . C ′
µ,ν is the 

reordered sequence C ′ obtained through the PP-DDP framework, and Cc is the encrypted 
sequence obtained through the order-preserving homomorphic index scheme. The opti-
mal fitness value is 1, and the closer the fitness value is to 1, the closer the solution to the 
optimal solution. The algorithm flow chart is described in Fig. 8.
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