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Abstract

As new drug targets, human microbes are proven to be closely related to human
health. Effective computational methods for inferring potential microbe-drug associa-
tions can provide a useful complement to conventional experimental methods and
will facilitate drug research and development. However, it is still a challenging work

to predict potential interactions for new microbes or new drugs, since the number of
known microbe-drug associations is very limited at present. In this manuscript, we first
constructed two heterogeneous microbe-drug networks based on multiple measures
of similarity of microbes and drugs, and known microbe-drug associations or known
microbe-disease-drug associations, respectively. And then, we established two feature
matrices for microbes and drugs through concatenating various attributes of microbes
and drugs. Thereafter, after taking these two feature matrices and two heterogeneous
microbe-drug networks as inputs of a two-layer graph attention network, we obtained
low dimensional feature representations for microbes and drugs separately. Finally,
through integrating low dimensional feature representations with two feature matrices
to form the inputs of a convolutional neural network respectively, a novel computa-
tional model named GACNNMDA was designed to predict possible scores of microbe-
drug pairs. Experimental results show that the predictive performance of GACNNMDA
is superior to existing advanced methods. Furthermore, case studies on well-known
microbes and drugs demonstrate the effectiveness of GACNNMDA as well. Source
codes and supplementary materials are available at: https://github.com/tyqGitHub/
TYQ/tree/master/GACNNMDA

Keywords: Microbe-drug associations, Graph attention network, Convolutional neural
network, Computational model, Prediction model

Background

Researches show that Microorganisms play an integral and often unique role in human
beings [1]. The microbiota and its metabolites are essential to the regulation of the host
metabolism and immunity [2]. Microbes have a great impact on human health in many
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ways, including resistance to the invasion of opportunistic pathogens [3], promotion of
the synthesis of sugar metabolism and synthesis of the necessary vitamins to boost T-cell
responses [4], etc. In recent years, different aspects of the microbiome and its poten-
tial role in human health, including the early life and specific diseases, have been widely
reported. For instance, Sprockett et al. explored how priority effects might influence
microbial communities in the gastrointestinal tract during early childhood [5]. Xime-
nez et al. discussed the development of microbiota during the early times of life, from
pregnancy to delivery to the early years after birth [6]. And in addition, it has been dem-
onstrated that the intestinal microbiota plays a key role in cardiometabolic disorders,
inflammatory bowel diseases, neuropsychiatric diseases and cancer separately [7—12].
Moreover, bacteria and viruses have been proven to be able to cause infectious diseases
such as COVID-19 as well [13].

Simultaneously, studies show that when using drugs to treat diseases, not only the
administration of drugs can affect the microbiome, but also microbial metabolism can
significantly affect the clinical response of drugs [14, 15]. For example, penicillin is an
important antibiotic with high efficiency and has treated pneumonia, meningitis, endo-
carditis, diphtheria, anthrax and so on. However, the widespread use of antibiotics has
led to the development of resistance in human microbes such as staphylococcus aureus
and Escherichia coli. As a result, there is an urgent need to uncover potential associa-
tions between microbes and drugs for drug development. Considering that traditional
bio-experiments are quite expensive and time-consuming, it is meaningful to develop cal-
culation models to infer possible associations between microbes and drugs, because these
models can be used to guide the experimental designs of wet-lab experiments efficiently.

With the development of bioinformatical technologies, in recent years, several well-
known public microbe-drug association databases such as MDAD [16], aBiofilm [17] and
Drugvirus [18] have been constructed successively. Based on these databases, research-
ers around the world have proposed a large number of prediction methods that can be
utilized to identify latent associations between microbe-drug pairs. For example, though
introducing the KATZ metric to detect possible associations between microbe-drug
pairs, Zhu et al. designed a prediction model named HMDAKATZ [19]. By integrating
the metapath2vec scheme with a bipartite network recommendation algorithm, Long
et al. proposed a computational approach called HNERMDA to infer microbe-drug asso-
ciations [20]. Additionally, in 2021, Zhu et al. introduced a novel Laplacian Regularized
Least Square based prediction method called LRLSMDA, which can discover latent asso-
ciations between microbe-drug pairs effectively [21]. In the literature [22], through com-
bining the graph convolutional network (GCN) with the conditional random field (CRF),
Long et al. conceived a calculative model named GCNMDA to predict possible microbe-
drug associations. In the literature [23], Long et al. constructed a framework of graph
attention networks called EGATMDA for latent microbe—drug association prediction.
Furthermore, In 2022, Deng et al. designed a multi-modal variational graph embedding
model named Graph2MDA for prediction of possible microbe—drug associations [24].

Inspired by above methods, through combining the graph attention network (GAT)
with a convolutional neural network (CNN)-based classifier, we proposed a novel com-
putational model called GACNNMDA to discover potential microbe-drug associations
in this manuscript. In GACNNMDA, through combining multiple measures of similarity
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of microbes and drugs, with known microbe-drug associations or known microbe-dis-
ease-drug associations respectively, we constructed two heterogeneous microbe-drug
networks first. And then, by leveraging multiple types of microbe and drug features, we
established two feature matrices for microbes and drugs simultaneously. Thereafter, after
inputting these two feature matrices and two heterogeneous microbe-drug networks into
a two-layer graph attention network (GAT), we obtained low dimensional feature repre-
sentations for microbes and drugs respectively. Finally, we designed a convolutional neu-
ral network (CNN)-based classifier to predict possible scores of microbe-drug pairs, by
integrating low dimensional feature representations and two feature matrices to form the
inputs. Moreover, in order to verify the predictive performance of GACNNMDA, we per-
formed intensive comparison experiments and case studies. Experimental results demon-
strated that GACNNMDA outperformed existing representative competitive methods,
and can achieve satisfactory performances in latent microbe-drug association prediction.

Data sources

Firstly, we will download known microbe-drug associations from the database MDAD
(http://www.chengroup.cumt.edu.cn/MDADY/), which includes 2470 clinically or experi-
mentally verified microbe-drug associations between 1373 drugs and 173 microbes.

Secondly, we will download known associations among microbes, drugs and diseases
from the dataset collected by Wang et al. [25], which consists of 70,315 known drug-
disease associations and 15,633 known microbe-disease associations. After removing
those associations associated with diseases that have no known association with any
drug or microbe included in MDAD, we obtained 1121 different drug-disease associa-
tions between 233 drugs and 109 diseases, and 402 different microbe-disease associa-
tions between 73 microbes and 109 diseases respectively.

Finally, from the dataset constructed by Deng et al. [24], we collected 5586 known
drug-drug interactions covering 1228 drugs in MDAD, and 138 microbe-microbe inter-
actions covering 123 microbes in MDAD, separately. Details of these aforementioned
data were shown in the following Table 1.

For convenience, all these newly downloaded datasets of diseases, drugs, microbes, druf-
disease associations, drug-drug interactions, microbe-drug associations, microbe-disease
associations and microbe-microbe interactions will be kept in Additional files 1-8 separately.

Methods
As shown in Fig. 1, GACNNMDA mainly consists of three parts:

Table 1 Details of our downloaded data

Type Microbes Drugs Diseases Associations
Microbe-drug associations 173 1373 - 2470
Microbe-disease associations 73 - 109 402
Drug-disease associations - 233 109 121
Drug-drug interactions - 1228 - 5586

Microbe-microbe interactions 123 - - 138
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Fig. 1 Flowchart of the GACNNMDA

Part 1: In this part, through adopting multiple measures of similarity, two heteroge-
nous networks HN; and HN, will be constructed based on downloaded known microbe-
drug associations, drug-drug interactions and microbe-microbe interactions.

Part 2: In this part, two feature matrices will be obtained for microbes and drugs by
leveraging various attributes of microbes and drugs first, and then, through taking these
two feature matrices and two heterogeneous networks as inputs, a two-layer graph
attention network will be further designed to learn low dimensional feature representa-
tions for microbes and drugs.

Part 3: In this part, a CNN-based classifier will be introduced to calculate possible
scores of drug-microbe associations, in which, those newly learned low dimensional fea-

ture representations will be integrated with those two feature matrices to form its inputs.

Construction of two heterogeneous networks

For convenience, let n, and #,, represent the numbers of those newly downloaded drugs
and microbes separately. Firstly, based on those newly downloaded known microbe-drug
associations, we can obtain a microbe-drug adjacency matrix A! € R *"n as follows: for
any given drug r; and microbe m;, if there is a known association between them, then
there is A! (i,j) = 1, otherwise there is A® (i,j) =0.

Secondly, based on those newly downloaded known microbe-drug, microbe-disease
and drug-disease associations, we can obtain another microbe-drug adjacency matrix
A% € R as follows: for any given drug r, microbe m; and disease d, if there is a
known association between r; and d}, and a known association between 12, and dj, simul-
taneously, then there is A2 (i,j) = 1, otherwise there is A2 (i,j) =Al (i,j).

Finally, based on above matrices A! and A2, we can construct two heterogeneous net-
works HN; and HN, respectively according to the methods proposed in the following
“Calculation of the Gaussian interaction profile (GIP) kernel similarity for microbes
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and drugs” to “Calculation of the Gaussian interaction profile (GIP) kernel similarity for
microbes and drugs” sections.

Let AY(r;) and A (m]) denote the i-th row and the j-th column of A" (v=1,2) respec-
tively, and ||e|| represent the Frobenius norm, then for any two given drugs r; and rj, we
can calculate the GIP kernel similarity between them as follows:

S;’g (r,-, rj) = exp(—y1| ‘Av(ri) — A"(rj) | ’2) (1)

1 &
rl= 1/(nZ \IA”O»HZ) @
"i=1

According to above equations, it is easy to see that we can obtain a new GIP kernel
similarity matrix Sy, € R"*".
Similarly, for any two given microbes m; and m;, we can calculate the GIP kernel simi-

larity between them as follows:

S;’ng (mi, mj) = exp(—yZ‘ |Av(mi) - A" (m/) | ‘2) (3)

1 &
r2=1 (n > ||AV<Mi>||2) (4)
m =

According to above equations, it is obvious that we can obtain a new GIP kernel simi-
larity matrix S, € R™*"m.

Calculation of the Hamming interaction profile (HIP) similarity for microbes and drugs

Based on the assumption that two nodes will have lower similarity when their interac-
tion profiles are more different. Let |+| denote the number of elements in the profile,
then for any two given drugs r; and r;, we can calculate the HIP similarity between them

as follows:

At = A1)
|AY ()]

Su(rirj) =1— (5)
where |A(r;)! = A(r;)| denotes the number of different elements between the profiles A
(ri)and A (rj).

Similarly, for any two given microbes m1; and m;, we can calculate the HIP similarity
between them as follows:

|AY (my)! = AY (m))|

6
|AY (my)| ©

Sy (mis ) =1 —

where ‘A(m,-)! =A (m,) | denotes the number of different elements between the profiles
A(mj)and A (m,)

According to above equations, it is obvious that we can obtain two new HIP similarity
matrices S, € R"*"rand S} , € R"»*"m separately.
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Integrated similarity

14
Based on S,g,

drugs r; and r;, we can calculate an integrated similarity between them as follows:

S}, and newly downloaded known drug-drug interactions, for any two given

, ( ) 1: if there is a known association between r; and r;
S Vi, ri) = sV _— s i
r \Fir T ve (7itj)+Sy, (1) .
—E—5 = ¢ otherwise

(7)

In the same way, based on S, S’ and newly downloaded known microbe-microbe

mg’ “m
interactions, for any two given microbes 12, and m;, we can calculate an integrated similarity

between them as follows:

1: if there is a known association between m; and mj

" _ :
Sm (miy m/) = { S;’ng(mi,WIf)+anh(mi,m,) . Otherwise
) :

(8)

Hence, based on above newly obtained matrices, we can obtain two new matrices
]—[1 c R(”r"t‘nm)*(nr"l‘nm) and H2 c R(nr+nm)*("r+nm) as fOHOWSZ

Sl Al
Hl = [(Alr)T Sl}n:| (9)
s? A?

Obviously, according to above two matrices H! and H?, we can easily construct two het-
erogeneous networks HN; and HN, respectively.

Low dimensional feature representations learning for microbes and drugs based

on the graph attention network

Construction of two feature matrices

In this section, for any two given drugs r; and r;, we would first adopt SIMCOMP2 [26]
to calculate the structural similarity between them, as a result, we can obtain a new drug
structural similarity matrix S,.. And at the same time, for any two given microbes 1, and
m,, we would adopt the method proposed by Kamneva et al. [27] to calculate the functional

j
similarity between them, as a result, we can obtain a new microbe functional similarity

matrix S,r as well.

v

Moreover, we would further implement a random walk with restart (RWR) on S} and S},

v
rr?

to obtain the topological attributes S
RWR was defined as follows:

S} of drugs and microbes separately, where the

P =015 Mpl +09xe; (11)

Ootherwise

&ij = { Lifi = (12)
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Here, pf denotes the probabilities that node i reaches other nodes at the time slot /. M
is the transition probability matrix and e;eR'*" represents the initial probability vector of
node i.

Different from the usual weighted addition of various attribute vectors of nodes to
form the feature matrix, we spliced various attributes together to retain more original
features. The feature matrices X" € R +"m*ki for two heterogeneous networks were

defined as follows:

E) = [Sy; A”; S AY] (13)

Ery= [(A")75 S0p5 (A1) T3S}, (14)
14

yv — [ 55 } (15)

where k; denotes the dimension of the feature matrices X".

The structure of the graph attention network
Encoder: Firstly, for any given node i in H” (v = 1, 2), the coefficient of similarity between
it and its neighbors would be calculated as follows:

ej = LeakyRelu(a[W"X"(i); wrxY (j)}),j € ! (16)

x x>0

ux otherwise (17)

LeakyRelu(x) = {
Here, XV (i) denotes the ith row of X" and a represents a feature mapping operation.
WY is a trainable weight matrix parameter and ®; is the set of neighbor nodes of node i
in HY,  is the hypermeter.
Subsequently, the attention score 4; between node i and node j would be calculated

based on e;; according to the following formula:

exp (ei]'>

/1“ = =
T Y oy, explei)

(18)
Finally, the features would be weighted and summed according to the calculated atten-

tion score to obtain the new feature representation of node i as follows:

X'(0) =Relu| > JyW'X"(j) (19)
jedv;

x x>0
0 otherwise

Relu(x) = {
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After obtaining new feature representations of all nodes in H?, it is easy to see that we can
. . R}
construct a feature representation matrix Y = R‘f € RUwHnmks,
m

Where ky denotes the dimension of the feature representation matrix Y.
Decoder: The decoder runs an inner product based on newly learned feature representa-

tion matrix Y" as follows:

vV = sigmoid (y" - (v*)") 21)

Sigmoid (x) = : 22

igmoid (x) = ppe: (22)
Optimization

Considering the reconstructed matrix should be as similar as possible to the original
matrix, we adopted the MSE loss function to compute the mean of the sum of squares of
the differences between Y and H" as follows:

My 4N,

_ 1 Vi ppvon |2
Loss = —— ; ||[Y" () — HY (]| (23)

where YV (i) and H" (i) denote the i-th row of Y and H" respectively. During training,
we used the Adam optimizer to optimize the loss function.

Construction of the CNN-based classifier

In this section, we treated the microbe-drug association prediction as a binary classification
problem and designed a classifier based on the convolutional neural network to calculate
possible scores of potential drug-microbe associations. For the input of the classifier, we
first constructed two new feature matrices N, and N,,, for drugs and microbes separately as

follows:
Ny = [R}; F] (24)
N, =[R},; F,,] (25)

And then, let k3 denote the dimension of the new feature matrix, then for any given drug
Vo

NC (l<) } € R?**3 would be fed into the

N, ()

classifier to calculate the score between i and j. Here,N} (i) and N}, () denote the i-th and

the j-th row of N} and N, respectively.

r; and microbe 1, the feature matrix F” (i, j) =

In the convolutional layer, we adopted zero padding to enlarge the edges and set the
size of the convolution kernel to 3 x 3. The convolutional operation in the i-th layer were
defined as follows:

F; = Relu(Fi_1 ® G; + b;) (26)
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where ® represents the operation of convolution, G; is the weight matrix, and b; is the off-
set vector. It is worth mentioning that we added the BatchNorm2d [28] to normalize data to
enhance performance stability before Relu.

After inputs having gone through two convolution layers, it would be flattened into a vec-
tor. And then, a full-connected layer and a softmax layer would be used to obtain scores
of two associative categories, based on which, we would adopt scores of the second cat-
egory as predicted scores of potential microbe-drug associations in GACNNMDA. Obvi-
ously, based on H Land H?, we can obtain two score matrices Scorel and Score? respectively.
Hence, a final score matrix Score € R"*"m can be calculated as follows:

Score! (i,j) + Score? (i,j)

5 (27)

Score(i,j) =

Moreover, in the classifier, we utilized the cross-entropy as loss function and Adam opti-
mizer to minimize the loss function. Here, the loss function L” (v=1, 2) was defined as
follows:

IV — _ 1 Zal.vjlogs}’j + (1 - aivj)log(l - s;) (28)

My * My

where a}} and s}’j represent the ij-th entry of A and Score” respectively.

Results

Comparison with state-of-the-art methods

Considering that there are few computational methods and codes available for microbial-
drug association prediction, we compared GACNNMDA with four existing microbe-drug
association prediction methods such as HMDAKATZ [19], GCNMDA [22], EGATMDA
[23] and Graph2MDA [24], and two methods for link prediction problems in the bioinfor-
matics field such as LAGCN [29] and NTSHMDA [30]. Among them, LAGCN [29] is a
graph convolutional network with attention mechanism based method designed to infer
unknown drug-disease associations. NTSHMDA [30] is a model based on random walk
with restart for predicting microbe-disease associations.

During experiments, we settled with original parameters for all these competitive meth-
ods and ran them on the well-known public database MDAD for a fair comparison. In addi-
tion, we adopted the framework of fivefold cross validation (CV) to evaluate these methods,
in which, 20% of known associations and 20% of unknown associations would be randomly
selected as the testing set, and the remaining 80% of known associations and unknown
associations as the training set [31]. And then, we selected the AUC, AUPR, Accuracy and
F1-Score as the metrics of performance evaluation. Experimental results were shown in
Table 2. Due to the incomplete code proposed by Deng et al. [24], we directly referenced
the results in Graph2MDA.. As a result, the ROC and PR curves were drawn in Figs. 2 and 3
separately, in which, those evaluation metrics are calculated as follows:

TP

TPR = —
TP + FN

(29)
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Table 2 The AUCs, AUPRs, accuracy and F1-scores achieved by compared methods based on MDAD

under fivefold CV

Methods AUC AUPR Accuracy F1-score
HMDAKATZ 0.871240.0010 0.2327 £0.0068 09774 0.3546
GCNMDA 0.9427 +0.0002 0.91334+0.0031 0.9905 0.6672
EGATMDA 0.9585+0.0053 0.9268+0.0142 0.9081 0.6871
Graph2MDA 0.9567 £0.0039 0.9380+0.0098 0.9934 0.7091
LAGCN 0.853340.0070 0.3571£0.0051 0.9413 0.0423
NTSHMDA 0.8483 £0.0020 0.1892+£0.0056 0.9896 0.1838
GACNNMDA 0.9777 £0.0109 0.7015£0.0366 0.9945 0.7091

Bold values indicate the best

results achieved by all these competitive methods
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Fig. 3 The PR curves of six competitive methods

Page 10 of 16



Ma et al. BMC Bioinformatics (2023) 24:35 Page 11 of 16

FPR = FP 30
- TN +FP (30)
Precisi TP 31

recision = —————
TN + FP (31)
Recall TP 32

ecall = ———
TP + FN (32)
TP + TN

Accuracy = * (33)

TP + TN + FP + FN

F1 ) Precision * Recall (34)
— score = 2 %
Precision + Recall

Here, TP and TN represent the numbers of positive and negative samples pre-
dicted correctly, respectively. FN and FP denote the numbers of positive and nega-
tive samples that are incorrectly identified, separately.

As shown in Table 2, it is obvious that GACNNMDA can achieve the highest AUC
value of 0.9777 +0.0109, which is 2.57% higher than the second highest AUC value
of 0.9585+0.0053 obtained by EGATMDA. For evaluation metrics of accuracy and
f1-score, GACNNMDA can also achieve the highest values of 0.9945 and 0.7091
respectively. Although in terms of AUPR value, GACNNMDA can only outperform
half of all these competitive methods, we can say that GACNNMDA is an effective
tool for potential microbe-drug association prediction.

Hyperparameter sensitivity analysis

Considering that there are several hyperparameters in GACNNMDA, including the
learning rate of GAT, the dropout of GAT and the learning rate of CNN, therefore, in
this section, we would perform a fivefold CV on the MDAD dataset for 10 times and
observe the average AUC value to tune the values of these parameters.

For convenience, let Ir1, dp and [r2 denote the learning rate of GAT, the dropout of
GAT and the learning rate of CNN respectively. During the tuning process, we first
tested the values of /rl in the range of {0.0001, 0.001, 0.01, 0.05, 0.1} and illustrated
experimental results in Fig. 4a. As shown in Fig. 4a, GACNNMDA achieved the best
performance when /rl was set to 0.001. And then, we limited the values of dp in
the range of {0.2, 0.4, 0.5, 0.7} and illustrated experimental results in Fig. 4b. From
observing Fig. 4b, it is easy to see that the most suitable value of dp is 0.4. Finally, we
restricted the values of [r2 in {0.0001, 0.001, 0.01, 0.05, 0.1} and showed experimen-
tal results in Fig. 4c. As illustrated in Fig. 4c, when [r2 was set to 0.001, the perfor-
mance of GACNNMDA would be the best.
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Fig. 4 Analysis of the impact of hyperparameters on performance of GACNNMDA. The subfigures from (a)
to () show the AUC values of related values of the learning rate of GAT, the dropout of GAT and the learning
rate of CNN, respectively

Case studies

In order to further demonstrate the prediction performance of GACNNMDA, case
studies on two popular drugs and two microbes will be done in this section. And in
experiments of case studies, the top 20 microbes or drugs inferred by GACNNMDA
based on the database of MDAD will be selected out for investigation first, and then,
we will search published PubMed literatures to verify whether these predicted candi-
dates having been reported by existing references.

The first drug that we chose for case studies is Ciprofloxacin, which is a fluori-
nated quinolone antibiotic, and a large number of studies have shown that it is asso-
ciated with a wide range of human microbes [32]. For instance, Paul et al. found that
Amphotericin-B and 5% ciprofloxacin can effectively hindered the growth of Pseu-
domonas aeruginosa and Candida albicans [33]. Staphylococcus aureus, Staphylococ-
cus epidermidis, Bacillius subtilius, Escherichia coli and Mycobacterium tuberculosis
are susceptible to Ciprofloxacin [34]. The second drug that we chose for case stud-
ies is Moxifloxacin, which is a fluoroquinolone antibiotic [35], and has been proven
to be associated with antibiotic-resistant bacteria (ARB) [36] and Listeria monocy-
togenes [37]. And as a result, we illustrated the top 20 predicted ciprofloxacin-asso-
ciated and moxifloxacin-associated microbes in Tables 3 and 4 respectively. From
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Table 3 The top 20 candidate Ciprofloxacin-associated microbes

Microbe Evidence Microbe Evidence
Staphylococcus aureus PMID: 32488138 Streptococcus sanguinis PMID: 21507381
Mycobacterium tuberculosis PMID: 30020039 Enterococcus faecalis PMID: 27790716
Escherichia coli PMID: 26607324 Eggerthella lenta Unconfirmed
Bacillus subtilis PMID: 33218776 Salmonella enterica PMID: 6933017
Haemophilus influenzae PMID: 27292570 Human herpesvirus 5 Unconfirmed
Stenotrophomonas maltophilia PMID: 14982788 Propionibacterium acnes PMID: 25445201
Pseudomonas aeruginosa PMID: 33875431 Klebsiella pneumoniae PMID: 27257956
Morganella morganii PMID: 29942700 Staphylococcus cohnii PMID: 19780489
Providencia stuartii PMID: 1337751 Serratia marcescens PMID: 2071875
Proteus vulgaris PMID: 34638966 Staphylococcus epidermis PMID: 10632381

The top 10 predicted microbes are included in the first column, while the top 11-20 predicted microbes are included in the
third column records

Table 4 The top 20 candidate Moxifloxacin-associated microbes

Microbe Evidence Microbe Evidence
Bacillus subtilis PMID: 30036828 Staphylococcus Aureus PMID: 31689174
Haemophilus influenzae PMID: 11856249 Enterococcus faecium PMID: 10629010
Stenotrophomonas maltophilia PMID: 27257956 Human herpesvirus 5 Unconfirmed
Candida albicans PMID: 21108571 Proteus vulgaris Unconfirmed
Mycobacterium avium PMID: 21353489 Bacillus cereus PMID: 21834669
Pseudomonas aeruginosa PMID: 31691651 Streptococcus pneumoniae PMID: 31542319
Campylobacter jejuni PMID: 16027651 Serratia marcescens PMID: 34439014
Staphylococcus aureus PMID: 31689174 Streptococcus mutans PMID: 29160117
Neisseria gonorrhoeae PMID: 26603424 Klebsiella pneumoniae PMID: 33406110
Escherichia coli PMID: 31542319 Bacteroides PMID: 18385145

The top 10 predicted microbes are included in the first column, while the top 11-20 predicted microbes are included in the
third column records

observing Tables 3 and 4, it is easy to see that there are 18 and 17 out of top 20 pre-
dicted microbes having been validated by existing literatures separately.

Besides, the first microbe that we chose for case studies is HIV-1 (Human Immu-
nodeficiency Virus type 1), which is the cause of the acquired immunodeficiency
syndrome (AIDS). There are many drugs associated with HIV-1. For example, Viani
et al. found that long-term zalcitabine for treating HIV-1 phenotypes in children
is useful [38]. Chong et al. proved that combination of delavirdine, zidovudine and
didanosine can inhibit the growth of the HIV-1 [39]. The second microbe that we
chose for case studies is mycobacterium tuberculosis, which is the cause of the pul-
monary tuberculosis [40]. And as a result, we showed the top 20 predicted HIV-
1-associated and mycobacterium tuberculosis-associated drugs in Tables 5 and 6
respectively. From observing Tables 5 and 6, it is obvious that there are 18 and 15
out of top 20 predicted drugs having been verified by existing literatures. Hence, we
can draw a conclusion that GACNNMDA can achieve satisfactory prediction perfor-
mance in both case studies of microbes and drugs.
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Table 5 The top 20 candidate Human immunodeficiency virus type 1-associated drugs

Drug Evidence Drug Evidence
Zalcitabine PMID: 9498433 Cala+B20nolide A PMID: 8930168
Abacavir PMID: 11797183 Tenofovir PMID: 33336698
Fosamprenavir PMID: 19515730 Bevirimat PMID: 19024627
Didanosine PMID: 9107385 Dolutegravir PMID: 31865558
Indinavir PMID: 8970946 Peptide 1037 Unconfirmed
Delavirdine PMID: 9107385 Vancomycin Unconfirmed
Tipranavir PMID: 17360759 Nevirapine PMID: 20384494
Stavudine PMID: 8568296 Enfuvirtide PMID: 14523775
Atazanavir PMID: 15585441 Lopinavir PMID: 20836579
Zidovudine PMID: 2012453 Trimethoprim-sulfamethoxazole PMID: 9142796

The top 10 predicted drugs are included in the first column, while the top 11-20 predicted drugs are included in the third

column records

Table 6 The top 20 candidate Mycobacterium tuberculosis-associated drugs

Drug Evidence Drug Evidence
Ciprofloxacin PMID: 16270765 Meropenem PMID: 22906310
Aminosalicylic acid PMID: 26033719 Polysorbate 80 Unconfirmed
SQ109 PMID: 22258923 Pyrogallol PMID: 13411428
Colistin PMID: 26183185 Pefloxacin PMID: 1909062
Ethambutol PMID: 27806932 Zinc oxide PMID: 33845951
Tobramycin PMID: 19723387 Desipramine PMID: 7649718
Pyrazinamide PMID: 26521205 Saquinavir PMID: 33841429
Telithromycin unconfirmed Gatifloxacin PMID: 17267339
Capreomycin PMID: 29311078 Undecanoic acid Unconfirmed
Trans-2-nonenal Unconfirmed Piperacillin-Tazobactam Unconfirmed

The top 10 predicted drugs are included in the first column, while the top 11-20 predicted drugs are included in the third

column records

Conclusion and discussion

In this paper, we presented a novel calculation method named GACNNMDA, an inte-

grated framework of GAT-based autoencoder and CNN-based classifier, for prediction

of potential microbe-drug associations. The main contributions of our model include the

following three points.

1. We introduced known microbe-disease-drug associations into the predictive model

and made up for the sparsity of known microbe-drug associations to some extent.

2. For the inputs of GAT and CNN, we spliced multiple attributes of microbes and

drugs together to form two feature matrices, which can retain more original features

of microbes and drugs. Hence, more useful information can be learned by the GAT

and the CNN.

3. Compared with existing state-of-the-art methods for predicting potential microbe-

drug associations, our model can achieve better performance.

However, there is still room to improve our prediction model. In the feature,

we can leverage more biological information, such as microbe sequences [24] and

Page 14 of 16



Ma et al. BMC Bioinformatics (2023) 24:35 Page 150f 16

side-effect-based drug similarity [41]. Additionally, for those attributes of microbes and
drugs used in GACNNMDA, we can make an assessment of their importance to better
use each kind of attribute and further improve the performance of our model. Finally, we
can design a new activation to improve the training speed of GAT and CNN such as Li
et al. [42].
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