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Abstract 

Background:  Acute oral toxicity of drug candidates can lead to drug development 
failure; thus, predicting the acute oral toxicity of small compounds is important for 
successful drug development. However, evaluation of the acute oral toxicity of small 
compounds considered in the early stages of drug discovery is limited because of cost 
and time. Here, we developed a computational framework, PredAOT, that predicts the 
acute oral toxicity of small compounds in mice and rats.

Methods:  PredAOT is based on multiple random forest models for the accurate pre‑
diction of acute oral toxicity. A total of 6226 and 6238 compounds evaluated in mice 
and rats, respectively, were used to train the models.

Results:  PredAOT has the advantage of predicting acute oral toxicity in mice and rats 
simultaneously, and its prediction performance is similar to or better than that of exist‑
ing tools.

Conclusion:  PredAOT will be a useful tool for the quick and accurate prediction of the 
acute oral toxicity of small compounds in mice and rats during drug development.

Keywords:  Acute oral toxicity, Machine learning, Random forest, Drug discovery

Background
After evaluating the effectiveness of drugs in the process of discovery and development 
of new drugs, preclinical tests were performed to evaluate their toxicity in animals prior 
to clinical trials [1]. Preclinical toxicity testing can predict toxic responses in humans, 
determine safe doses in clinical trials, and monitor toxicity-related symptoms and target 
organs in patients [2]. After having confirmed the safety of drugs by evaluating various 
toxicities, such as acute toxicity, nephrotoxicity, cardiotoxicity, reproductive toxicity, and 
genotoxicity, clinical trials can be performed.

Acute toxicity is defined as deleterious toxicological effects of a chemical from single 
or multiple exposures over a short duration (usually < 24 h) [3]. Studies on acute toxic-
ity have examined various routes of exposure (e.g., oral, dermal, and inhalation) using 
rodents, such as mice and rats, to assess lethal doses. During the drug development 
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process, acute toxicity is generally evaluated using acute oral toxicity (AOT) tests that 
assess acute toxic reactions and the lethal dose 50 (LD50) after a single oral administra-
tion to rodents [4, 5]. The LD50 is defined as the dose of the test substance that can kill 
50% of animals within 24 h of exposure.

AOT tests in animals are conducted after confirming the efficacy of a drug [5]. There-
fore, if drug development fails owing to AOT at this stage, economic loss of develop-
ment costs incurs. However, as dozens to thousands of compounds are considered drug 
candidates in the early stages of development, performing AOT tests on all compounds 
is limited by time and cost issues. Therefore, it is important to evaluate the AOT of such 
compounds in the early stages of drug development.

To address these issues, various prediction models have been developed based on the 
results of AOT tests of thousands of compounds [6–8]. In addition, various software 
programs that predict the AOT of small compounds based on machine learning mod-
els are currently available [7–10]. However, several aspects need to be improved for the 
development of an AOT prediction model. First, it is necessary to develop a computa-
tional framework that can predict the AOT in both mice and rats. AOT evaluation of 
small compounds is still being performed using either mice or rats. Second, it is neces-
sary to further improve the prediction performance of models. One strategy to improve 
the performance of a model is to build it so that it can properly consider the distribution 
of the data. For example, using data composed of skewed LD50 values for model training 
may reduce prediction performance [11].

In the present study, we propose a new computational framework, PredAOT, that 
predicts the AOT for a given compound in mice and rats. PredAOT is based on mul-
tiple random forest models for AOT prediction. For the development of PredAOT, we 
used a total of 6,226 and 6,238 compounds whose AOT was evaluated in mice and rats, 
respectively. Moreover, we compared the prediction performance of PredAOT with that 
of other existing tools. PredAOT is a useful tool for predicting the acute oral toxicity of 
small compounds during drug development.

Results and discussion
Development of the PredAOT framework

To develop a computational framework (i.e., PredAOT) for accurate prediction of AOT, 
we first collected data on the AOT of compounds (i.e., LD50) reported for mice and rats. 
The AOT data for mice for 6226 compounds were obtained from the OCHEM database 
[7]. The AOT data for rats for 6238 compounds were obtained from the literature [6].

According to the GHS Classification, the AOT level of compounds can be divided 
into five categories [12] (Table 1). For example, compounds in Category 1 are toxic, 
while Category 5 compounds are less likely to be toxic. Additionally, we found that 
the distribution of LD50 values for the compounds was skewed towards catego-
ries 4 and 5 in both mice and rats. This data imbalance can adversely affect model 
training, such as overfitting. To address this issue, we decided to classify the AOT 
of compounds into two categories (i.e., “toxic” and “less or non-toxic”) instead of 
five categories (Table  2); compounds with LD50 ≤ 300  mg/kg and compounds with 
LD50 > 300 mg/kg. Notably, although a compound is classified as less or non-toxic, it 
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does not necessarily have to involve no AOT at all. During the model development, 
LD50 values were transformed to log10 transformed LD50 values.

We then used the datasets to train a binary classification model, called “AOT clas-
sifier,” that predicts AOT as toxic (i.e., LD50 ≤ 300  mg/kg) or less or non-toxic (i.e., 
LD50 > 300 mg/kg) for a given compound. In addition, as shown in Fig. 1, toxic and less 
or non-toxic datasets were used to train two regression models called “toxic regres-
sor” and “less or non-toxic regressor”, respectively. In particular, the “toxic regressor” 
was trained with the toxic dataset (i.e., LD50 ≤ 300 mg/kg) and the “less or non-toxic 
regressor” was trained with the less or non-toxic dataset (i.e., LD50 > 300 mg/kg).

To summarize the AOT prediction process in the PredAOT, “AOT classifier” 
first predicts AOT as “toxic” or “less or non-toxic” for a given compound. Thereaf-
ter, if a compound is predicted as toxic, the “toxic regressor” predicts the LD50 of 
the compound; otherwise, the “less or non-toxic regressor” predicts the LD50 of the 

Table 1  Number of compounds in datasets for each acute oral toxicity category

Toxicity category LD50 (mg/kg) Hazard statement Mouse Rat

Category 1 < 5 Fatal 67 173

Category 2 5–50 Fatal 282 490

Category 3 50–300 Toxic 1183 1103

Category 4 300–2000 Harmful 3413 2560

Category 5 2000–5000 May be harmful 1281 1912

Table 2  Number of compounds in the “less or non-toxic” and “toxic” datasets

Less or non-toxic Toxic

Mouse 4,694 1,532

Rat 4,472 1,766

Fig. 1  Overall scheme of PredAOT. PredAOT uses the chemical structure as an input. Thereafter, the 
molecular fingerprint (i.e., ECFP4) is used as an input feature for models in PredAOT. PredAOT is composed 
of one classification model (i.e., “AOT classifier”) and two regression models (i.e., “toxic regressor” and “less 
or non-toxic regressor”). The AOT classifier is used for prediction as “toxic” (LD50 ≤ 300 mg/kg) or “less or 
non-toxic” (LD50 > 300 mg/kg) for a given compound. If a compound is predicted to be toxic, PredAOT 
predicts the LD50 of the compound using the toxic regressor trained with compounds with LD50 ≤ 300 mg/
kg. If a compound is predicted to be less or non-toxic, PredAOT predicts the LD50 of the compound using the 
less or non-toxic regressor trained with compounds with LD50 > 300 mg/kg. All these procedures are equally 
applied to the AOT prediction process in mice and rats
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compound. All procedures were equally applied to the AOT prediction process in 
mice and rats.

Optimization and evaluation of AOT prediction models

To build an optimal AOT prediction model, we constructed and evaluated six different 
machine learning models: a message passing neural network (MPNN) based on graph 
neural networks, MPNN with molecular fingerprints, MPNN with molecular descrip-
tors, random forest (RF), support vector machine (SVM), and artificial neural network 
(ANN) models based on molecular fingerprints (see Materials and Methods). The train-
ing dataset was used for model training to determine the model with the best prediction 
performance. A test dataset was used to assess the performance of the final model.

First, we optimized the binary classification model (i.e., “AOT classifier”) used to pre-
dict the AOT of a given compound in mice and rats. To this end, we evaluated various 
hyperparameters using a grid search technique with fivefold cross-validation, and used 
accuracy as the model performance metric. RF showed the highest accuracy for mice 
(0.8672) and rats (0.8377; Fig. 2). To further improve the prediction performance of the 
RF model, we applied an oversampling approach to manage imbalanced data (Table 2). 
Specifically, we used the synthetic minority oversampling technique (SMOTE), which is 
a popular algorithm used to generate artificial data [13]. In doing so, RF with SMOTE 
showed better prediction performance than RF without SMOTE: accuracies of 0.9586 
and 0.9335 in mice and rats, respectively (Fig. 3). In addition, we evaluated the predic-
tion performance using the test dataset. The RF model with SMOTE showed an area 
under the receiver operating characteristic (AUROC) of 0.7778, Matthew’s correlation 
coefficient (MCC) of 0.5514, positive predictive value (PPV) of 0.6627, and negative pre-
dictive value (NPV) of 0.8845 in mice, and an AUROC of 0.7442, MCC of 0.4929, PPV of 
0.6435, and NPV of 0.8539 in rats (Table 3). Based on these results, we used RF models 
with SMOTE in both mice and rats in the PredAOT framework.

Fig. 2  Cross-validation prediction performances of the MPNN, MPNN with MF, MPNN with MD, RF, SVM, and 
ANN models for the AOT classifier using mouse (A) and rat (B) datasets. Each performance metric value was 
calculated by five-fold cross-validation. MPNN, message passing neural network; MF, molecular fingerprint; 
MD, molecular descriptor; RF, random forest; SVM, support vector machine; ANN, artificial neural network
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As shown in Fig. 1, the AOT of the compound was first predicted to be “toxic” or “less 
or non-toxic” using an AOT classifier in mice and rats. The LD50 value (mg/kg) was sub-
sequently quantitatively predicted using one of the regression models (i.e., “toxic regres-
sor” or “less or non-toxic regressor”) according to the prediction result of the AOT 
classifier. Here, we optimized both regressors (i.e., “toxic regressor” or “less or non-toxic 
regressor”). The prediction performance of these regressors was evaluated through five-
fold cross-validation using the training dataset. The root-mean-square error (RMSE) was 
used as the performance metric for the regression models. Consequently, RF showed the 
lowest RMSE, i.e., the best performance, in the "toxic regressor” and “less or non-toxic 
regressor” in both mice and rats. The RF model for both regressors showed an RMSE 
of 0.2999 and 0.3767 in mice, respectively (Figs. 4A, 5A) and 0.3919 and 0.4984 in rats, 
respectively (Figs.  4B, 5B). Thereafter, we evaluated the prediction performance using 
the test dataset. In mice, the toxic regressor showed an RMSE of 0.3806 and an R2 of 
0.3557 on the test dataset (Table 4), whereas the less or non-toxic regressor showed an 
RMSE of 0.2923 and an R2 of 0.3881. In rats, the toxic regressor showed an RMSE of 
0.5323 and an R2 of 0.3065 on the test dataset, whereas the less or non-toxic regressor 
showed an RMSE of 0.3863 and an R2 of 0.2702.

Prediction performance of PredAOT compared with other prediction models

We compared the prediction performance of PredAOT with that of other existing 
tools. First, we compared the prediction performance of PredAOT in mice. There-
after, we compared the prediction performance of PredAOT with OCHEM Predic-
tor using our test dataset [7]. The OCHEM Predictor predicted the LD50 (mg/kg) 
result in the same manner as PredAOT, such that predicted values could be directly 

Fig. 3  Cross-validation prediction performances of RF models with and without SMOTE using mouse (A) and 
rat (B) datasets. MPNN, message passing neural network; RF, random forest; SVM, support vector machine; 
ANN, artificial neural network

Table 3  Prediction performance of classification models in PredAOT on the test dataset

AUROC, area under receiver operating characteristic; MCC, Matthew’s correlation coefficient; PPV, positive predictive value; 
NPV, negative predictive value

AUROC MCC PPV NPV

Mouse 0.7778 0.5514 0.6627 0.8845

Rat 0.7442 0.4929 0.6435 0.8539
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Fig. 4  Cross-validation prediction performances of the MPNN, MPNN with MF, MPNN with MD, RF, SVM, and 
ANN models for toxic regressors using mouse (A) and rat (B) toxic datasets (i.e., LD50 ≤ 300 mg/kg). MPNN, 
message passing neural network; MF, molecular fingerprint; MD, molecular descriptor; RF, random forest; SVM, 
support vector machine; ANN, artificial neural network

Fig. 5  Cross-validation prediction performances of the MPNN, MPNN with MF, MPNN with MD, RF, SVM 
and ANN models for the non-toxic regressor using mouse (A) and rat (B) less or non-toxic datasets (i.e., 
LD50 > 300 mg/kg). MPNN, message passing neural network; MF, molecular fingerprint; MD, molecular 
descriptor; RF, random forest; SVM, support vector machine; ANN, artificial neural network

Table 4  Prediction performance of regression models in PredAOT on the test dataset. RMSE and R2 
values are calculated using log10 transformed LD50 values

RMSE, root mean squared error; R2, R-squared

Regression model RMSE R2

Mouse Less or non-toxic 0.2923 0.3881

Toxic 0.3806 0.3557

Rat Less or non-toxic 0.3863 0.2702

Toxic 0.5323 0.3065
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compared. We compared the prediction performance for each toxicity group in 
Table 1. PredAOT yields relatively low RMSE values (i.e., improved performance) in 
groups with relatively little training data (e.g., Categories 1 and 2) (Table 5). Notably, 
the performance comparison indicates that the test dataset may have been used as 
training data in OCHEM Predictor.

Second, we compared the prediction performance of PredAOT in rats with that of 
BESTox and aiQSAR using our test dataset [9, 10]. The prediction results of BESTox 
and aiQSAR were not directly comparable with the prediction results of PredAOT ​​
because the unit for LD50 was not mg/kg. Therefore, we compared the prediction 
results using two correlation coefficients: Pearson’s correlation coefficient (Pearson’s 
r) and Spearman’s rank correlation coefficient (Spearman’s r). PredAOT showed the 
highest Pearson’s r of 0.7984 and Spearman’s r of 0.7340 compared to BESTox and 
aiQSAR (Table 6).

Although we did not compare LD50 values directly, PredAOT performed compara-
bly or better than existing tools. PredAOT does not outperform other existing tools; 
however, it can be a useful tool for predicting AOT. In addition, it has the advantage 
of being able to predict AOT in mice and rats simultaneously.

Conclusions
In the present study, we developed a computational framework called PredAOT, 
which predicts the AOT of a given compound in mice and rats. PredAOT first clas-
sifies the given compound as “toxic” or “less or non-toxic”, and then further quali-
tatively predicts the LD50 value using a regression model. PredAOT is trained with 
information on the AOT of 6,226 and 6,238 compounds in mice and rats, respectively. 
PredAOT has the advantage of predicting AOT in mice and rats simultaneously, and 
its prediction performance is similar to or better than that of existing tools. The web 

Table 5  Comparison of RMSE values predicted by PredAOT with OCHEM Predictor on the mouse 
test dataset

RMSE, root mean squared error

Toxicity category OCHEM Predictor PredAOT

Category 1 193.11 82.13

Category 2 273.24 294.64

Category 3 805.42 289.55

Category 4 513.90 533.00

Category 5 1645.57 1645.25

Table 6  Comparative performance evaluation of PredAOT with BESTox and aiQSAR on the rat test 
dataset

Pearson’s r Spearman’s r

BESTox 0.7170 0.6978

aiQSAR − 0.8989 − 0.8918

PredAOT 0.7984 0.7639
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server for implementing PredAOT is available at https://​preda​ot.​netli​fy.​app/ (Fig. 6). 
PredAOT will be a useful tool for the quick and accurate prediction of the AOT of 
small compounds in mice and rats for successful drug development.

Methods
Data preparation

Information on acute oral toxicity (AOT) of 6,226 compounds determined in mice was 
obtained from the OCHEM database [7], and information on AOT of 6,238 compounds 
determined in rats was obtained from the literature [6]. We defined compounds with 
lethal dose 50 (LD50) values ≤ 300  mg/kg as “toxic” and compounds with LD50 val-
ues > 300 mg/kg as “less or non-toxic”. The dataset was divided into training (80%) and 
test (20%) datasets. The training dataset was used for hyperparameter optimization, and 
the test dataset was used for model evaluation (Fig. 1). During the model training and 
evaluation, we used log10 transformed LD50 values.

Preparation of molecular features

The structures of the compounds were presented in the simplified molecular-input 
line-entry system (SMILES) format [14]. To train message-passing neural networks 

Fig. 6  User interface of the PredAOT web server

https://predaot.netlify.app/
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(MPNNs), we used the Chemprop Python package [15]. The RDKit Python package was 
used to calculate the molecular fingerprint. Extended connectivity fingerprints with a 
maximum diameter parameter of 4 (ECFP4) were used [16].

Optimization of machine learning algorithms

In this study, we tested six different machine learning (ML) algorithms, including 
MPNN, MPNN with molecular fingerprints, MPNN with molecular descriptors, ran-
dom forest (RF), support vector machine (SVM), and artificial neural network (ANN) 
models, to build both classification and regression models for predicting AOT in mice 
and rats. Here, the RF, SVM, and ANN models were trained using molecular fingerprints 
as input features. MPNN learns directly from a molecular graph to predict molecular 
properties [15]. ANN is an ML algorithm inspired by the biological neuronal network 
of the human brain [17]. The ANN structure consisted of an input layer, hidden layer(s), 
and an output layer. The ANN learns non-linear relationships from the data. RF is an 
ensemble learning algorithm that constructs multiple decision trees [18]. The ANN 
algorithm was implemented using the Keras package (version 2.2.5) with TensorFlow 
backend (version 2.0.0) [19]. The RF and SVM algorithms were implemented using the 
scikit-learn Python package [20].

To build the optimal model with the best prediction performance, hyperparame-
ter optimization was performed. For the classification model, we selected the optimal 
hyperparameter that showed the highest accuracy (ACC) using the grid-search cross-
validation method. In addition, for the regression model, we selected the optimal hyper-
parameter that showed the lowest root mean square error (RMSE) using the grid search 
cross-validation method.

Five metrics were used to evaluate the performance of the classification model: ACC, 
area under the receiver operating characteristic (AUROC), Matthew’s correlation coef-
ficient (MCC), positive predictive value (PPV), and negative predictive value (NPV). In 
addition, to evaluate the regression model performance, two performance metrics were 
used: the RMSE and R-squared value (R2).
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