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Abstract 

Sudden sensorineural hearing loss is a common and frequently occurring condition in 
otolaryngology. Existing studies have shown that sudden sensorineural hearing loss 
is closely associated with mutations in genes for inherited deafness. To identify these 
genes associated with deafness, researchers have mostly used biological experiments, 
which are accurate but time-consuming and laborious. In this paper, we proposed a 
computational method based on machine learning to predict deafness-associated 
genes. The model is based on several basic backpropagation neural networks (BPNNs), 
which were cascaded as multiple-level BPNN models. The cascaded BPNN model 
showed a stronger ability for screening deafness-associated genes than the con-
ventional BPNN. A total of 211 of 214 deafness-associated genes from the deafness 
variant database (DVD v9.0) were used as positive data, and 2110 genes extracted 
from chromosomes were used as negative data to train our model. The test achieved 
a mean AUC higher than 0.98. Furthermore, to illustrate the predictive performance of 
the model for suspected deafness-associated genes, we analyzed the remaining 17,711 
genes in the human genome and screened the 20 genes with the highest scores as 
highly suspected deafness-associated genes. Among these 20 predicted genes, three 
genes were mentioned as deafness-associated genes in the literature. The analysis 
showed that our approach has the potential to screen out highly suspected deafness-
associated genes from a large number of genes, and our predictions could be valuable 
for future research and discovery of deafness-associated genes.

Keywords:  Sudden sensorineural hearing loss, Backpropagation neural network, 
Cascaded BPNN model, Highly suspected deafness-related genes

Introduction
Sudden deafness, also known as sudden sensorineural hearing loss (SSNHL), is a kind of 
hearing impairment syndrome characterized by sudden occurrence, unknown cause and 
rapid development within seconds to days. SSNHL is generally defined as 30 decibels or 
more sensorineural hearing loss with at least three consecutive frequencies within 72 h 
[1–5]. Other definitions include hearing loss within 12 or 24 h to emphasize the concept 
of suddenness [6, 7]. It has been reported that 5 to 20 out of 100,000 people worldwide 
suffer from SSNHL every year. The disease can occur at any age, but the highest inci-
dence is among individuals aged 40–60 years [8].
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Some researchers believe that sudden deafness is associated with mutations in hered-
itary deafness genes. Chen et  al. found experimentally that the homozygous GJB2 
c.109G > A mutation may be a cause of sudden deafness involving both ears [9]. Gross 
et  al. found that the MTHFR C677T mutation is associated with an increased risk of 
SD, which appears to be independent of blood folic acid and homocysteine levels [10]. 
Uchida et  al. concluded that the T allele of MTHFR C677T could be associated with 
susceptibility to SSNHL and even implied that this mutation could be a risk factor that 
is independent of blood folic acid and homocysteine [11]. Hamidi et al. found that the 
MTHFR C677T and ApoE gene variants may be associated with sudden sensorineural 
hearing loss in an Iranian population [12]. Furuta et  al. found that interleukin-1 gene 
(IL1A) polymorphisms were closely related to SSNHL and Meniere’s disease using con-
trolled experiments and statistical analysis [13]. Yang et al. used real-time quantitative 
reverse transcription-polymerase chain reaction (qRT‒PCR) to detect that TLR2 expres-
sion was closely related to the severity of SNNHL [14]. Cao et al. conducted a systematic 
review of the causes of sudden deafness in recent years, and a large number of studies 
support the association of genetic polymorphisms with SSNHL susceptibility [15].

Many scholars have investigated the etiology, diagnosis, treatment and prognosis of 
sudden deafness [16–21]. Most studies used sudden deafness patients as the experimen-
tal group and normal hearing people as the control group. Patient DNA was extracted 
and sequenced by methods such as Sanger sequencing, second-generation sequencing, 
and third-generation genome sequencing with PCR amplification technology. Then, 
SPSS was used to analyze the correlations between gene mutation sites and sudden deaf-
ness [12–14, 22–24]. Although this experiment-based method is highly accurate, it is 
expensive, time-consuming, and laborious, especially at the sequencing step, making it 
unsuitable for universal use in the diagnosis of sudden deafness patients.

Currently, machine learning-based classification algorithms have been utilized to pre-
dict and identify disease genes. The gene sequences are obtained by finding the genes 
corresponding to the diseases in the database, and the corresponding gene features are 
extracted by using the disease similarity network, gene-phenotype similarity network 
and gene expression data, etc. The extracted features are used to train the classifier and 
to predict and classify the genes [25–27]. Azadi et al. used a graph-based correlation-
redundancy gene selection approach for cancer diagnosis [28]. Saberi et  al. combined 
matrix decomposition and minimum redundancy based bi-regular unsupervised feature 
selection was applied to gene selection [29]. Building on traditional machine learning 
models, cascading basic models have been used to explore diseases. For example, Guo 
et al. proposed a BCD forest model, a boosting cascade deep forest model for the clas-
sification of cancer subtypes based on gene expression data [30]. Su et al. used a deep 
forest model to predict anticancer drug response [31]. In the past few years, researchers 
have begun to use machine learning algorithms to detect and identify hearing loss in 
sudden deafness. For example, Bing et al. used machine learning models to predict hear-
ing outcomes in sudden sensorineural hearing loss [32], and Deepak et al. proposed a 
Jaya algorithm based on mutation and limit learning machines for sensorineural hearing 
loss detection [33]. The focus of these studies has been mainly on studying hearing loss 
in deaf patients without further studies on the genes associated with sudden neurologi-
cal hearing loss. Here, we proposed a machine learning approach to identify candidate 
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highly suspicious deafness genes. Three basic BPNN models were cascaded to constitute 
a cascaded BPNN model, which has a stronger ability for screening deafness-associated 
genes than the conventional BPNN model. Since there is no database to collect data 
on genes related to sudden deafness, a large number of studies have shown that sud-
den deafness is closely related to hereditary deafness genes. In this paper, we compiled 
research reports on sudden deafness from the Web of Science and Engineering Village 
and searched genetic deafness gene databases such as the Deafness Variation Database 
v9.0 (DVD).

In this study, 211 of 214 deafness-related genes in DVD [34] were used as positive 
data, and 2,110 genes extracted from chromosomes were used as negative data to train 
our model. A total of 80 features were used to describe the deafness-associated genes, 
including sequence-based features, protein-based features, Hurst index, and informa-
tion-theoretic features. To test the effectiveness of the model, 45 determined deaf genes 
were collected from the literature, and three genes from the Fifteen Deafness-Related 
Gene Mutations Detection Kit were classified separately. The average AUC of the experi-
mental results was above 0.94, which indicates the potential of our model to assist in 
screening highly suspected deafness-related genes from a large number of genes.

Moreover, to illustrate the predictive performance of the model on suspected deafness-
related genes, we analyzed and scored the remaining 17,711 genes (the approximately 
20,035 genes in the human genome minus the genes used in the previous experiment). 
The top 20 scored genes were labeled highly suspected deafness-related genes. We found 
that three of the top 20 genes mentioned in the literature were deafness-related genes 
(the top 100 scored genes are listed in Additional file 1: Table A.1). The results show the 
potential of our cascaded classification model for screening highly suspected deafness-
related genes from a large number of genes. We proposed that this model could be used 
to screen highly suspected deafness-related genes and provide valuable guidance for the 
clinical diagnosis and treatment of sudden deafness.

Materials and methods
All analyses were performed on an Intel I7-7770 (3.6 GHz) computer with 16 GB mem-
ory, and the whole process described in the paper was implemented in a 64-bit Python 
3.7 platform.

Figure 1 illustrates the overview of the proposed method for the prediction of highly 
suspected deafness-related genes.

Deafness gene collection and preprocessing

The deafness-related gene data were obtained from DVD and the National Center of 
Biotechnology Information (NCBI). A total of 211 deafness-related genes were down-
loaded from the DVD database. All genes from the human genome were downloaded 
from NCBI. The corresponding gene coding sequences (CDSs) and protein sequences 
were also obtained from NCBI. The data from NCBI were cleaned to remove duplicates.

A gene may have multiple gene CDSs, and each gene CDS corresponds to a protein 
sequence. Each sample represents a combination of the features of a gene CDS and the 
features of the corresponding protein sequence. Therefore, the number of samples is 
equal to the number of gene CDSs.
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Positive data

The positive data consisted of 571 gene CDSs and 571 protein sequences of the 211 
deafness-related genes from the DVD (see Table 1).

Negative data

It is difficult to determine the nondeafness-related genes (negative set), as there is 
no database or article that clearly indicates which gene locus mutations are com-
pletely unrelated to deafness. There are 20,035 genes in the human genome. Given 
the three deafness-related genes in the Detection Kit used as test data (see descrip-
tion of test bench 2) and the 211 genes used as positive data, there were 17,711 
genes left. According to the proportion of the 211 deafness-related genes in corre-
sponding human chromosomes, we randomly extracted 2110 genes from the 19,883 
genes. These 2110 genes were not among the deafness-related genes mentioned in 
the literature extracted from Web of Science, EI and other databases. In this study, 
we used these 2110 genes as nondeafness-related genes. Their gene CDSs and pro-
tein sequences were downloaded, and duplicate sequences were removed. Then, we 
obtained 4945 gene CDSs and 4945 protein sequences as negative data. In each exper-
iment, 571 samples were randomly selected from the 4945 samples to make a nega-
tive set. The ratio of the data in the positive set to the data in the negative set was 1:1 
(Table 1).

Fig. 1  Overview of our approach

Table 1  Description of the experimental dataset

Data set Number of genes Number of gene 
CDSs

Number of protein 
sequences

Number 
of 
samples

Positive(P) 211 570 570 570

Negative(N) 210 570 570 570

Test bench 1 45 100 100 100

Test bench 2 3 3 3 3

Test bench 3 17,711 26,436 26,436 26,436
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There are two reasons why we constructed the negative set using this strategy. First, 
the number of potential undiscovered deafness-related genes is far less than the num-
ber of nondeafness-related genes, and the potential deafness-related genes have only 
a small chance of being selected as nondeafness-related genes [35]. Second, each cas-
caded basic BPNN model was subjected to 50 experimental cycles to improve the 
stability and accuracy of the model and reduce the possibility of selecting potential 
deafness-associated genes as nondeafness-associated genes in the experiment.

Test bench dataset

To demonstrate the accuracy and validity of the model, we designed and analyzed three 
test bench datasets for evaluation.

Test bench dataset 1 contained 45 deafness-related genes, including 100 gene CDSs 
and protein sequences. Test bench dataset 1 was used as a test dataset for evaluation 
classification with the trained model.

Test bench dataset 2 contained three genes from the Fifteen Deafness-Related Gene 
Mutations Detection Kit (Microarray), which is widely used in China (registration 
number 20173401343 in the China National Medical Products Administration). The 
kit was used for the detection of 15 mutation sites. There is one more mitochondrial 
12S rRNA listed in the detection kit for clinical diagnosis. However, its gene CDS and 
protein sequence were not obtained; therefore, we removed it. Then, three genes (i.e., 
SLC26A4, GJB2, and GJB3) were used to construct test bench dataset 2 as a dataset 
closely related to clinical diagnosis for evaluation classification with the trained model. 
(Such as Table 1).

Test bench dataset 3 contains the remaining 17,711 genes—those remaining in the 
human genome after excluding those already involved in the experiment; we consid-
ered them unidentified genes and evaluated the top 20 highly suspected deafness-related 
genes. The top 100 scored genes are listed in Additional file 1: Table A.1.

To improve the universality of the model and avoid overfitting, in the experiment, the 
dataset was divided into a training set, a validation set and a test set in a 6:2:2 ratio. The 
training set (ratio of positive and negative data 1:1) was used to train the model, the vali-
dation set was used to adjust the parameters of the model, and the test set was extracted 
separately before the model training to test the performance of the model.

Feature extraction

In studies of the computational prediction of disease genes, researchers have proposed 
a variety of related features, including high-throughput experimental features, protein‒
protein interaction data, or gene-expression data [36–42]. However, many of these fea-
tures are based on experimental data, which are not easy to obtain. The experimental 
data-based features of new genomes are also generally absent, resulting in a limited 
scope of computational prediction applications. To address this issue, we focused on 
sequence-based features. The feature set we selected included 80 features: 2 inherent 
features, 13 codon bias features, 22 amino acid use frequency features, 12 amino acid 
physicochemical property features, 3 transmembrane helix-like features, the Hurst index 
and 26-dimensional information entropy features. These features were calculated by bio-
informatics tools and Python 3.7, as shown in Table 2.
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Table 2  Description of the features used in the experiment

Type Feature Feature description Tools

Inherent feature CDS size Gene coding sequence length Python 3.7

Protein size Amino acid length

CodonW T3s, C3s, Relative synonymous codon usage 
of

CodonW [43]

A3s, G3s T, C, A, and G at the 3rd position

CAI Codon adaptation index

CBI Codon bias index

Fop Frequency of optimal codons

Nc Effective number of codons

GC3s GC of silent 3rd codon posit

GC GC content of gene

L_sym Number of synonymous codons

Gravy Hydrophobicity of protein

Aromo Aromaticity of protein

Amino acid usage frequency Amino acid A,R,D,C,Q,E,G,H,I,N,L,K,M,F,P,S,T,W,Y,V Python 3.7

Rare_aa_ratio Frequency of rare amino acids

Close_aa_ratio Number of codons 3rd stop codon 
mutation

Physicochemical properties 
of amino acids

M_weight Molecular weight Pepstats [44]

I_Point Isoelectric point

Tiny (A + C + G + S + T)

Small (A + B + C + D + G + N + P + S + 
T + V)

Aliphatic (A + I + L + V)

Aromatic (F + H + W + Y)

Nonpolar (A + C + F + G + I + L + M + P + V 
+ W + Y)

Polar (D + E + H + K + N + Q + R + S + 
T + Z)

Charged (B + D + E + H + K + R + Z)

Basic (H + K + R)

Acidic (B + D + E + Z)

A_R Weight Average Residue Weight

Transmembrane helix ExpAA Exp number of AAs in TMHs TMHMM3 [45]

First60 Exp number, first 60 AAs

PredHel Total prob of N-in

Hurst Hurst Hurstindex R package [46]

Information Entropy Shannon Entropy quantifies the average information 
content of the gene sequence from 
the distribution of symbols

Python 3.7

Mutual Information measures the information shared 
by two random variables

Python 3.7

Kullback–Leibler divergence measure the similarity of two prob-
ability distributions

Python 3.7

Cross Entropy measure the difference information 
between two probability distribu-
tions

Python 3.7



Page 7 of 17Liu et al. BMC Bioinformatics           (2023) 24:56 	

Shannon entropy

Shannon entropy is widely used in gene expression analysis in bioinformatics. There 
are differences in the conservation and correlation between different regions and sites 
in the DNA sequence, resulting in different information entropy values. In this work, 
we used Shannon entropy to analyze sequence regions and sites. We first digitized the 
DNA sequence according to the method that the four nucleotides, A, G, C, and T, were 
assigned the digital numbers 0, 1, 2, and 3, respectively, and then we used the calculation 
formula of Shannon entropy [47]. Finally, we obtained 3-dimensional Shannon entropy.

Mutual information

Mutual information can be regarded as the amount of information provided by one ran-
dom variable about the other. In this work, mutual information is used to measure the 
information between consecutive bases and is defined as Formula (1):

where M is the set of nucleotides {A,G,C ,T } for each base pair 
(

x, y
)

,P x, y  is the joint 
probability, and P(x) and P

(

y
)

 are the marginal probabilities. These probabilities are esti-
mated based on the relative frequency in the corresponding gene sequence. 
P
(

x, y
)

log2
P(x,y)

P(x)P(y)
 is calculated and used as a feature. Therefore, a total of 17 MI-related 

features were calculated.

Kullback‒Leibler divergence

Kullback‒Leibler divergence [48], also known as relative entropy, measures the differ-
ence between two probability distributions in the same event space and is defined as 
Formula (2):

where p(xi)andq(xi) are the probability distributions. The frequencies of nucleotides, 
dinucleotides, and trinucleotides in a given gene region sequence were compared with 
the corresponding frequencies in each gene sequence.

Cross entropy

Cross entropy measures the difference information between a probability distribution 
p(x) and the other probability distribution q(x) . It is calculated as Formula (3):

The frequencies of nucleotides, dinucleotides, and trinucleotides in a given gene region 
sequence were obtained from the corresponding frequencies in each gene sequence.

(1)I(X ,Y ) =
∑

x ∫M

∑

y∈M

P
(

x, y
)

log2
P
(

x, y
)

P(x)P
(

y
)

(2)DKL =
∑

i

p(xi) log
p(xi)

q(xi)

(3)CE(p, q) = −
∑

i

p(xi) log (q(xi))
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Feature normalization

Due to the absence of some feature data of the source sequence, such as the Nc index 
values of some sequence misses, missing value processing methods (such as mean 
interpolation and homogeneous mean interpolation) were applied to complete the 
missing values. Moreover, each feature data usually has different dimensions and 
orders of magnitude. To ensure the reliability of the prediction results, the raw index 
data needed to be standardized.

All the feature vectors of instances were normalized according to the min–max for-
mulation presented by Eq. (4):

where x∗ ∈ [0, 1] , and xmin and xmax , the minimum and maximum values of the features, 
respectively, denote the normalized value of x∗.

Evaluation metrics

In this study, we used accuracy, recall, precision, F-measure (F1), and G-mean to eval-
uate the predictive classification capabilities of the model. The ROC curve and AUC 
values were used to quantify the performance of the evaluation model [49].

The performance index formulas are as follows:

where TP, FP, TN, and FN are the numbers of true positives, false positives, true nega-
tives, and false negatives, respectively.

Cascaded BPNN model

A BPNN is a multilayer network consisting of an input layer, a hidden layer and an 
output layer. Among various classification algorithms, artificial neural networks 
(ANNs) have been proven to be effective algorithms that can be adapted to various 
research scenarios [50]. Among many ANN implementations, the backpropagation 
neural network (BPNN) is the most widely used because of its excellent function 

(4)x∗ =
x − xmin

xmax − xmin

(5)Accuracy =
TP + TN

TP + FP + TN + FN

(6)Precision =
TP

TP + FP

(7)Recall =
TP

TP + FN

(8)F −measure =
2× Recall × Precision

Recall + Precision

(9)G −mean =

√

Recall × (1−
FP

FP + TN
)



Page 9 of 17Liu et al. BMC Bioinformatics           (2023) 24:56 	

approximation capability. In the classification phase, BPNN only performs feedfor-
ward to achieve the final classification result. Although it is difficult to determine the 
optimal number of hidden layers and neurons for the classification task, a three-layer 
BPNN proves to be sufficient to fit the mathematical equations that approximate the 
mapping relationship between inputs and outputs. To make the classification results 
more accurate, we proposed a multilevel cascaded BPNN model.

We designed a three-level cascaded BPNN model to filter our data from coarse to 
fine. The model was first trained by inputting our extracted positive and negative 
sample features, while the parameters were tuned using the validation set. Then, our 
collated test dataset was fed into the first basic BPNN for prediction, during which 
our model was cycled 50 times, outputting the genes that were predicted positive 
each time. The more times a gene is predicted to be associated with a deafness gene, 
the more likely it is to be a candidate gene associated with deafness. If the gene is 
predicted in all 50 cycles of the experiment, then it is considered a highly suspicious 
deafness gene and is transferred to the next basic BPNN model for the experiment. A 
grid search method was used to find the optimal parameters, and finally, our candi-
date suspected deafness genes were obtained after a three-level BPNN screening. The 
contour diagram of the model is shown in Fig. 2:

Fig. 2  Cascaded BPNN model to predict deafness gene flow
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A BPNN requires a set of predefined parameters to optimize the accuracy and general-
ization of the model. In this study, this experiment was implemented in Python 3.7. The 
BPNN package from the Scikit-Learn library in Python was called to build the model, 
and the parameters in the model were adjusted based on the experimental results.

Based on our validation experimental choices, we used a three-layer BPNN for cascad-
ing, and each level of the BPNN used a three-layer neural network model, i.e., one input 
layer, one hidden layer, and one output layer. According to the grid search method, we 
performed parameter search for the number of hidden layer neurons, activation func-
tion and learning rate. The number of hidden layer neurons ranged from 0 to 100 with 
a step size of 1, the learning rate was set as 0.001 to 0.1 with a step size of 0.001 and the 
activation functions were selected as Relu, Tanh and Logistic, respectively. The param-
eters of each level are shown in Table 3.

In the experiments, the dataset was divided into a training set, a validation set and a 
test set at a ratio of 6:2:2. According to Table 1, there were a total of 1140 samples (570 
positive samples + 570 negative samples). The training and validation sets, including 912 
samples, were randomly assigned in a ratio of 6:2 for model training and tuning. Then, 
the test set, consisting of 228 samples, was used to verify the validity of the model. After 
50 replications, the mean values of six performance evaluation metrics, namely, accu-
racy, precision, recall, F1, G-mean and AUC, were calculated as shown in Table 4.

Results
Comparison of cascaded BPNN with other methods

In this section, we compare our proposed cascaded algorithm with the more common 
currently used machine learning algorithms, including XGboost, GBM, lightGBM, and 
RF, trained and tested on the same training and test sets, and Figs.  3 and 4 show the 
ROC and AUPR curves obtained by each method.

We repeated the experiment 50 times. The larger the area under the curve, i.e., the 
higher the curve, the better the prediction performance of the corresponding algorithm. 
Figures 3 and 4 show the prediction performance of each classifier. From the figures, we 
can see that our proposed cascaded BPNN model had better AUC scores and a larger 

Table 3  Main parameter settings for the cascaded BPNN model of each layer

Layers Number of 
hidden layer 
neurons

The 
activation 
function

Learning rate Number of 
iterations

Momentum Running time (s)

1 21 Relu 0.048 5000 0.8 1127.11

2 20 Tanh 0.048 5000 0.8 823.12

3 37 Logistic 0.098 5000 0.9 811.05

Table 4  Average of the performance evaluation metrics of the cascaded BP network classifier for 50 
cycles

Model Evaluation metrics

Accuracy AUC​ Precision Recall F1 G-mean

Cascaded BPNN 0.9463 0.9855 0.9781 0.9354 0.9559 0.9567
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area under the curve than the other four machine learning models, and our cascaded 
model did not differ much from the other four models in terms of AUPR, showing the 
effectiveness of our cascaded model.

Analysis of the prediction results

Finally, we used our cascaded model to analyze three test benchmark datasets (see 
Table  1). The tested genes were screened and ranked according to the corresponding 
number and score of genes predicted to be suspected deafness-related.

Fig. 3  ROC curves for the different methods

Fig. 4  AUPR curves for the different methods
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For test bench 1, we analyzed the data after 50 repeated runs using BPNN and the 
other four classifiers used previously. The results obtained are shown in Table 5.

A gene may contain more than one gene CDS or protein sequence. A gene was iden-
tified as a candidate gene associated with deafness if both its CDS and corresponding 
protein sequence were predicted to be positive in 50 replicate experiments for each base 
classifier.

As shown in Table  4, the above predicted genes contained candidate deafness-asso-
ciated sequences and so were identified as candidate deafness-associated genes by five 
classifiers, where our proposed cascaded BPNN model was able to identify the most 
deafness-associated genes among the five classifiers.

We identified five predicted highly suspected deafness-associated genes, namely, 
COL1A1, GJC3, RRM2B, SALL4 and SALL1, in the available databases, including 
Ensemble [51] and OMIM [52], indicating that they were correctly identified as deaf-
ness-associated genes. Their corresponding annotations suggest that they are associ-
ated with deafness-related disorders. Site-specific mutations in COL1A1, GJC3, RRM2B, 
SALL4, and SALL1 cause otosclerosis ([MIM:120150]), delayed hearing sensitivity 
([MIM:611925]), sensorineural deafness ([MIM: 604712]), hearing loss ([MIM:607343]) 
and ear dysplasia ([MIM:602218]), among other deafness-related disorders. These dis-
orders can lead to deafness or sensorineural deafness. These results suggest that our 
method is able to identify highly suspicious deafness-associated genes. The results for 
test bench 2 are shown in Table 6.

SLC26A4, GJB2, and GJB3 have gene CDSs and protein sequence fragments. They 
were identified as candidate deafness-associated genes by BPNN and four other classi-
fiers, as shown in Table 5. Since these 3 genes are quite familiar and have been widely 
validated in the field of deafness research, the model correctly identified them as deaf-
ness-associated genes. These results demonstrated the ability of the proposed model to 
identify highly suspected deafness-associated genes.

Table 5  Prediction results for 45 genes in the literature

Model Samples Number of genes 
predicted to be 
positive

Cascaded BPNN 45 38

XGboost 45 36

lightGBM 45 36

GBM 45 34

RF 45 30

Table 6  Results of the predicted deafness genes for the three kit genes

Model CDS number (times) Protein sequence number 
(times)

Corresponding 
gene

cascaded BPNN CCDS5746.1(50) NP_000432(50) SLC26A4

CCDS9290.1(48) NP_003995(48) GJB2

CCDS384.1(48) NP_076872(48) GJB3
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Test bench 3 was used to further explore our model. The remaining 17,711 genes 
were screened and analyzed by the trained cascaded model. After three levels of 
screening, a total of 5013, 3577 and 1519 genes were screened from the first to the 
third levels, respectively. Among the 1519 genes finally screened, the suspected 
deafness-related genes were ranked according to the gene prediction scores. The 100 
genes with the highest combined model prediction scores were considered highly sus-
pected deafness-associated genes (see Additional file 1: Table A.1). We analyzed only 
the top 20 highly suspected deafness-associated genes (see Table 7).

To gain insight into the accuracy of our estimator, despite the lack of an explicit 
classification of the unlabeled set, we downloaded a list of genes and diseases asso-
ciated with hearing loss according to the text mining tools DISEASES [55] and Dis-
GeNET [56]. We refer to these genes as deafness-associated genes (DAGs). The genes 
screened in the third screening were compared with deafness-associated genes, and 
more than 100 of the more than 1500 genes we screened could be found in the deaf-
ness-associated genes.

Three of the potential deafness-associated genes are reported in the available litera-
ture and databases. The third-ranked gene, GLRB, encodes a GlyRβ subunit associated 
with efferent olivocochlear innervation. The fifth-ranked gene, ANO3, is associated with 
impaired anoctamin function, which can lead to a wide range of disorders, such as hear-
ing loss, bleeding disorders, ataxia and dystonia, persistent borrelia and mycobacterial 
infections, skeletal syndromes, such as jaw stem dysplasia and limb girdle muscular dys-
trophy, and cancer. The eighteenth-ranked gene, GRIA2, had significantly higher level 
content after 30 days of hearing loss. The other 17 highly suspected deafness-associated 
genes screened with our analytical model require further molecular biology studies.

Table 7  Top 20 genes predicted by our cascaded BPNN model

Gene names References

FSIP2

SLC25A31

GLRB Buerbank et al. [53]

MEDAG

ANO3 Kunzelmann et al. [54]

NUP153

CENPS-CORT

CD302

YME1L1

COG3

NUP153

TMEM242

GAS7

CNN1

TTLL9

SGTA​

RABL2A

GRIA2 Balaram et al. 30

CPPED1

YBX3
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The top 100 scored genes are listed in Additional file 1: Table A.1. A total of 20 of 
the genes have been reported in the literature and databases.

Discussion
Computational prediction of deafness-associated genes is an important task for the 
diagnosis, treatment and prognosis of sudden deafness. A model for predicting highly 
suspected deafness-associated genes was constructed using a cascaded BPNN model 
based on a machine learning approach. In this paper, multiple sequence-based fea-
tures are used. In the data processing step, we divide the dataset into a training set, 
a validation set and a test set. The training set is used to train the cascaded BPNN 
model, and the validation set is used to verify its parameters. In the predictions of the 
validation set, the average AUC of the cascaded BPNN model was 0.98 at each level, 
which was comparable to or better than the other four machine learning classifiers. 
In addition, three test sets were designed to further evaluate the accuracy and valid-
ity of the model, which included deafness-related genes collected in the literature, 
three genes from fifteen deafness-related gene mutation detection kits widely used in 
China, and the remaining 17,711 genes in the human genome.

In test bench 1, 40 of the 45 genes were highly suspected to be associated with deaf-
ness (Table 5). In test bench 2, all three genes recognized by the medical community 
to be associated with deafness were correctly predicted by the model (Table 6). Both 
test benches included genes with known labels, and the prediction results showed 
that the model proposed in this paper has good performance. In test bench 3, the data 
included the remaining 17,711 genes in the human genome, and three of the top 20 
genes predicted by the model were found in related studies in the literature (Table 7). 
The related articles demonstrated that the identified genes are genes associated with 
deafness. Based on our results, the other 17 highly suspected deafness-associated 
genes need further molecular biology studies for identification. In addition, 23 other 
genes reported as deafness-associated genes in the literature and databases were 
among the top 100 scored genes of our results (Additional file 1: Table A.1).

The results of the analysis show the ability of our proposed model to help us to 
screen out highly suspected deafness-associated genes. By reducing the scope of data 
screening, this computational approach can save time and costs for biologists in deaf-
ness gene screening experiments. Moreover, it can provide necessary guidance for the 
clinical diagnosis and treatment of sudden deafness and help us further explore the 
associations of gene mutation loci with sudden deafness. In the follow-up research, 
the screened highly suspicious deafness-related genes by our experiment will be stud-
ied in clinical stage, to verify and search the association of these genes with sudden 
deafness by gene sequencing and other techniques.
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