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Abstract 

Background: Concentrations of the pathogenic microorganisms’ DNA in biologi-
cal samples are typically low. Therefore, DNA diagnostics of common infections are 
costly, rarely accurate, and challenging. Limited by failing to cover updated epidemic 
testing samples, computational services are difficult to implement in clinical applica-
tions without complex customized settings. Furthermore, the combined biomarkers 
used to maintain high conservation may not be cost effective and could cause several 
experimental errors in many clinical settings. Given the limitations of recent devel-
oped technology, 16S rRNA is too conserved to distinguish closely related species, and 
mosaic plasmids are not effective as well because of their uneven distribution across 
prokaryotic taxa.

Results: Here, we provide a computational strategy, Shine, that allows extraction of 
specific, sensitive and well-conserved biomarkers from massive microbial genomic 
datasets. Distinguished with simple concatenations with blast-based filtering, our 
method involves a de novo genome alignment-based pipeline to explore the original 
and specific repetitive biomarkers in the defined population. It can cover all members 
to detect newly discovered multicopy conserved species-specific or even subspecies-
specific target probes and primer sets. The method has been successfully applied to 
a number of clinical projects and has the overwhelming advantages of automated 
detection of all pathogenic microorganisms without the limitations of genome annota-
tion and incompletely assembled motifs. Using on our pipeline, users may select dif-
ferent configuration parameters depending on the purpose of the project for routine 
clinical detection practices on the website https:// bioin fo. lifer iver. com. cn with easy 
registration.

Conclusions: The proposed strategy is suitable for identifying shared phylogenetic 
markers while featuring low rates of false positive or false negative. This technology is 
suitable for the automatic design of minimal and efficient PCR primers and other types 
of detection probes.

Keywords: Biomarker, Specificity, Sensitivity, Conservation, Microbial genome

*Correspondence:   
c_ji@liferiver.com.cn; junbin_
shao@liferiver.com.cn

Liferiver Science and Technology 
Institute, Shanghai ZJ Bio-Tech 
Co., Ltd., Shanghai, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05195-2&domain=pdf
http://orcid.org/0000-0002-7012-0193
https://bioinfo.liferiver.com.cn


Page 2 of 16Ji and Shao  BMC Bioinformatics          (2023) 24:128 

Introduction
Rapid detection of pathogenic organisms is a crucial undertaking related to health, 
safety and wellbeing, especially for the early detection of pathogens for diagnosing and 
preventing diseases [1–3]. While the field of diagnostics is rapidly evolving, polymerase 
chain reaction (PCR) remains the gold standard for nucleic acid-based diagnostic assays, 
in part due to its reliability, flexibility and wide deployment [4]. The development of an 
emergency-use molecular laboratory-developed test (LDT) will be useful to laboratories 
for future outbreaks and will help lower barriers to establishing fast and accurate diag-
nostic testing in crisis conditions [4]. Nevertheless, the deoxyribonucleic acid (DNA) 
concentrations from pathogenic microorganisms in biological samples are mostly very 
low and close to the detection limit, so pathogen detection has become one of the most 
challenging task in clinical applications [5]. For instance, traditional PCR and real-time 
PCR often lack detection sensitivity [6, 7], and other methods, such as two-step nested 
PCR, may have better sensitivity, but they are not feasible for routine tests and present a 
high risk of contamination [8]. Consequently, these methods are relatively time consum-
ing and costly and are not very accuracy. Thus, it is necessary to explore biomarkers with 
high performance to improve the quality of reagents.

Accuracy and sensitivity are important in the quality of nucleic acid detection rea-
gents, with accuracy attributed mainly to high specificity and conservation. Due to the 
lack of shared universal phylogenetic biomarkers, small changes in the concentrations 
of single biomarkers are not sufficient for the accurate prediction of viral/bacterial com-
munity-acquired pneumonia [9]. Although automated identification of species-specific 
repetitive DNA sequences and their utilization for detecting microbial organisms by 
MultiMPrimer3 have been widely reported [10], this tool is limited by the lack of cus-
tomized settings, especially for clinical applications. For instance, when unknown micro-
organisms cause epidemic outbreaks [11], the pathogenic microorganism database may 
lead to the original probe primer design failing to cover the epidemic pathogenic micro-
organisms. To improve the predictive power of detection, biomarker combinations have 
become the primary choice in many studies [12–14]. However, this approach may not be 
cost effective and can lead to several experimental errors in clinical settings. Therefore, 
the importance of exploring minimal shared universal phylogenetic and repetitive bio-
markers with primers and probes to improve the detection sensitivity and accuracy for 
any pathogen cannot be overestimated.

Traditional method is to select 16S ribosomal RNA (16S rRNA) sequences [15] and 
specific plasmid [16] from known literatures as the PCR designing templates for patho-
genic microorganisms. Thereof, 16S rRNA gene sequence analysis can be routinely used 
for the identification of mycobacteria and facilitate the exploration of novel pathogens 
and non-cultured bacteria [17–20]. However, few studies have reported consensus def-
initions of genera or species based on 16S rRNA gene sequence data. Several studies 
have highlighted that rRNA and other marker genes cannot be directly used to fully pre-
dict the functional potential of the bacterial community [21]. The main reason for this 
is that not all rRNA genes are species-specific, because the sequences of them are too 
conserved to be distinguishable, especially between closely related species. The mecha-
nisms and selective pressures causing the formation of mosaic plasmids do not occur 
evenly across all species, and plasmids may provide different levels of potential variation 
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to different species that are abundant and unevenly distributed across prokaryotic taxa 
[22]. Finally, many clinical laboratories have to validate the quality of assays by other 
primers and probes since plasmid PCR testing has obviously high risks of generating 
false positive or false negative results.

Here, we propose a new strategy, Shine, which is essential for performing compara-
tive genomics in routine tests and rapid detection of pathogenic organisms for improved 
performance. It learns from previous tools which have involved reconstructing the evo-
lutionary histories of species and inferring the selective forces shaping the evolution of 
genes and species by comparative analysis of molecular sequence data, such as those 
using Molecular Evolutionary Genetics Analysis (MEGA5) [23] or Phylogenetic Analysis 
by Maximum Likelihood (PAML4) [24]. We hypothesized that the more comprehensive 
the genomic data are, the more effective detection biomarkers. To explore specific, sen-
sitive and conserved biomarkers from massive microbial genomic data within popula-
tions, we aimed to develop a computational strategy to improve the quality of nucleic 
acid detection reagents, which has been validated in several clinical projects.

Results
Illustration of our strategy

We developed a general de novo genome alignment-based pipeline to explore the origi-
nal and specific multicopy biomarkers in the defined populations to cover all the mem-
bers. Either repetitive regions or specific regions were preferred, and raw data were 
divided by two selection methods, i.e., prioritizing multicopy regions for large genomes 
and prioritizing specific regions for small genomes. Then, the data were processed in 
the other modules separately. That is, by the first method, the data are processed into 
the next module to search for specific regions. If the second method is used, the data 
are pushed into the next module to search for multicopy regions. Finally, we focused on 
searching for consensus sequences and designing the best primer and probe sets. Cor-
respondingly, it was necessary to perform a double-check validation in every module, as 
shown in Fig. 1.

One of the important details was common block deletions used to search the specific 
regions, and each genome of the target strains was compared with every genome of the 
control strains for N calculations, distinguished with a blast-based filtering method. 
Common block deletions lasted for X generations with multiple threads to search 
specific regions or subspecific regions for M target strains, as illustrated in Fig.  2. To 
accelerate the comparison, in a preferred embodiment, the first-round divided frag-
ments T1-Tn were each compared with the whole-genome sequences of the remain-
ing comparison strains by group iterations, as shown in Fig.  2: (1) upon dividing the 
target comparison strains into M groups, each group included a plurality of the same 
comparison strains; (2) simultaneously comparing the first-round divided fragment  T1 
with the whole-genome sequences of comparison strain 1 in the first group one to one 
and removing fragments for which the similarity exceeded the preset value, the plural-
ity of residual fragments was obtained as the first-round candidate sequence library of 
the first-round divided fragment  T1; (3) simultaneously comparing the previous-round 
candidate sequence library of the first-round divided fragment  T1 with whole-genome 
sequences of comparison strain 2 in the next group one to one and removing fragments 
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for which the similarity exceeded the preset value, the plurality of residual fragments 
was obtained as the next-round candidate sequence library of the first-round divided 
fragment  T2; (4) operations from the second-round candidate sequence library were 
repeated until the N-round candidate sequence library was obtained as the candidate 
specific sequence library of the N-round divided fragments Tn; 5) the collection of all 

Fig. 1 Schematic map of Shine. This new strategy was used to explore specific, sensitive and conserved 
biomarkers to cover all members of defined populations. The total pipeline was divided into two directions, 
i.e., to search specific regions preferentially or to search sensitive regions preferentially. At last, searching for 
consensus sequences for specific and repeated regions was to be available for the best sets of primers and 
probes

Fig. 2 Illustration of the submodule preferentially searching for the specific regions. (1) the microbial target 
fragments were compared with the whole-genome sequences of one or more comparison strains one to 
one to obtain several residual fragments as the first-round cut fragments T1-Tn; (2) then compared with 
whole-genome sequences of the remaining comparison strains, to obtain the collection of residual cut 
fragments as the candidate specific regions of the microbial target fragments; and (3) the specific regions 
were then verified and obtained to determine
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the candidate specific sequence libraries of the N-round divided fragments were the 
candidate specific regions. Further validation comprised two parts of scoring and filter-
ing the potential specific regions: blast against all organisms and comparison of genomic 
sequences with those of control strains so that we could identify the specific regions 
with stringent quality standards.

The other key aspect was the search for repetitive regions with different copy num-
bers in every target strain and extracting potential repeats for validation by remapping 
and statistically summarizing the mean copy numbers and variations for each repeat, 
while the rest were discarded, as shown in Fig. 3. Here, each repeat was filtered into the 
classified summation so that we could obtain the minimal accurate sets of repetitive 
sequences from the whole genome. When identifying multicopy regions in microbial 
target fragments, the motifs are connected together before searching for candidate mul-
ticopy regions, in which the microbial target fragments often have multiple incomplete 
motifs.

To be conservative, the maximum possible values of the strain coverage rate were 
achieved with the fewest consensus sequences. All the logic modules were verified mul-
tiple times. As demonstrated in Additional file 1: Tables S1–S10, the distribution of each 
cluster is summarized by the count numbers in parentheses for all the copy numbers out 
of the parentheses. The obvious choice was to pick the target cluster sequences as the 
design templates based on the percentage of strains and weighted averages of copy num-
bers, as detailed in the “Materials and Methods”. The templates of the primary-screened 
species-specific consensus sequence were designed, and the best sets of primers and 
probes were identified.

Finally, operational tasks could be submitted by providing the names of the target 
strains and the comparison strains or by uploading sequence files locally on the website 

Fig. 3 Illustration of the submodule preferentially searching for multicopy regions. (1) for searching 
candidate multicopy regions, internal alignments were performed on the microbial target fragments; (2) for 
verifying and obtaining the multicopy regions, including by determining the positions of each candidate 
multicopy region on the microorganism target fragments, obtaining the numbers of other candidate 
multicopy regions covering the positions of each base of the to-be-verified candidate multicopy regions, and 
calculating the median values of the copy numbers of the to-be-verified candidate multicopy regions
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https:// bioin fo. lifer iver. com. cn with easy registration. Users may select different configu-
ration parameters depending on the purpose of the project. The configuration param-
eters mainly include the name of the workflow, target species, comparison species, 
uploaded local FASTA files, target fragment length, species specificity, repeated region 
similarity, target fragment strain distribution, host sequence filtering, priority scheme 
(prioritizing multicopy regions vs. prioritizing specific regions), calculation of target 
strain and alarm threshold similarities, and primer probe design parameters.

Application and practice on a series of clinical projects

The most striking finding of this method was the contribution of specific, sensitive, and 
conservative biomarkers for each species or subspecies, especially those available for 
microbial genomes. First, the obvious advantage of our strategy was that it was capa-
ble of detecting species-specific or even subspecies-specific target fragments that con-
tained forward primers, reverse primers and probes separately in several projects, such 
as those for human coronavirus HKU1 (HKU1), human coronavirus OC43 (OC43), 
human coronavirus NL63 (NL63), human coronavirus 229E (229E), Middle East respira-
tory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus 
(SARS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nota-
bly, if there were no hits with the above biomarker genes or probes and no annotation, 
the sets were defined de novo, as presented in Table 1, and were obviously distinguished 
from other species or subspecies.

Compared with the previous method, our strategy was highly accurate and sensitive, 
and undiscovered multicopy regions could be identified, as demonstrated in Additional 
file  1: Table  S1. For instance, IS6110 was identified by Shine as an insertion element 
that was found exclusively within members of the Mycobacterium tuberculosis complex 
(MTBC). Subsequently, IS6110 has become an important biomarker for the identifica-
tion of MTBC species [25, 26]. Comparison with known 16 s rRNA genes, i.e., IS1081 
and PGRS of MTBC, IS1663 of Bordetella pertussis (BP), IS1001 of BP and Bordetella 
parapertussis (BPP), RepMP 4/5/1 of Mycoplasma pneumonia (MP), and cagA of Helico-
bacter pylori (HP) showed results that were all consistent with those of our study. Inter-
estingly, IS1002 was present in both BP and BPP strains isolated from humans detected 
by Shine, inconsistent with the reported copy numbers in a recent study [27], in which 
only 47.2% of strains in BP and BPP had an IS1002-specific region, with 0.52 being the 
effective copy number in heterozygous taxa. When IS1002 was selected as the design 
template, false negative results were obtained that indicated that IS1002 could not cover 
all the BP and BPP strains. In addition, we identified several cases with false negative 
results; for example, the conservation of IS481 of BP and BPP was only 93.2%, with an 
effective copy number of 1.2. It was also clear that GBSil of Streptococcus agalactiae 
could not be used as the core template to cover all S. agalactiae strains, since the conser-
vation of GBSil was only 28.6%.

Besides, we demonstrated the distribution of copy numbers of de novo biomarkers 
by the weighted average copy numbers and a series of sequences of newly discovered 
species- or subspecies-specific multicopy regions as potential design templates to avoid 
false positive results for any sequenced pathogenic organisms. It was clear that the per-
formance of our strategy in reducing the false positive rate for the sample sets of newly 

https://bioinfo.liferiver.com.cn
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discovered species- or subspecies-specific multicopy regions shown in Additional file 1: 
Table S2, such as M. tuberculosis, BP, BPP, MP, S. agalactiae, HP, Legionella pneumoph-
ila, and Candida auris. This should be a very competitive strategy to identify newly dis-
covered biomarkers.

Advantages of quantitative systematic and automated detection

Since 16S rRNA genes are not limited to whole-genome sequences that are not always 
multicopy, some rRNA genes in closely related species could not be distinguished from 
each other. Also, it is likely that not all plasmids have specificity and universality and are 
unevenly distributed across prokaryotic taxa. However, our method is highly accurate 
and sensitive and could be capable of detecting newly discovered multicopy universal 
species-specific and even subspecies-specific target fragments, covering all identified 
epidemic pathogenic microorganisms. 16 s rRNA genes such as IS481, RepMP 2/3, and 
GBSil could not cover all pathogenic target microbial genomes to avoid producing false 
negative results and lowering the quality of the nucleic acid detection reagents presented 
in Additional file 1: Table S1. Furthermore, we tried to explore a series of newly discov-
ered specific, sensitive and conserved biomarkers from the database to improve the per-
formance of clinical kits and reduce the false positive rates in Additional file 1: Table S2. 
Overall, our study was suitable for identifying shared universal phylogenetic biomarkers 
with few false positive or false negative errors and automating the design of minimal 
primers and probes to detect pathogens in the community with cost-effective predic-
tive power. In particular, this method was more comprehensive than limited selection 
of plasmids or 16S rRNA genes as template regions, as repetitive, specific and universal 
target fragments could be found even in incompletely assembled motifs in any case.

The detection device developed based on our strategy, Shine, was designed with quan-
titative PCR primers and probes for systematic and automated detection of pathogenic 
microorganisms in biological samples. Additionally, our strategy was more flexible with 
customized settings, which allowed the identification of the most conserved biomark-
ers, primers and probes via continuous updating of massive microbial genomic data-
sets. Users may submit the latest sequence dataset through a user-friendly interface. The 
sequence update coverage rate modules may reintegrate the latest sequence dataset into 
the database to calculate the coverage rates by recomparing the sequences of the origi-
nal probes and primers to the updated sequences. This result could reflect whether the 
sequence of the original probes and primers could cover the newer strains.

The availability of genome annotation is not a limiting factor, and accurate detection 
with specific settings may cover all pathogenic microorganisms, including bacteria, 
viruses, fungi, amoebas, cryptosporidia, flagellates, microsporidia, piroplasma, plas-
modia, toxoplasma, trichomonas and kinetoplastids. This method is also available for 
whole-genome sequencing data generated by new technologies such as third-generation 
sequencing.

Discussion
To explore specific, sensitive and conserved biomarkers from massive microbial genomic 
data within populations to improve detection sensitivity and accuracy, several clinical 
projects have been carried out by using devices based on Shine. Unfortunately, it should 
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be noted that this study examined only limited public genomic data, and we are still 
looking forward to promoting collaboration with more organizations for open sharing of 
data and with respect for all rights and interests [28]. Assuming that the more compre-
hensive genomic data are, the more effective the detection biomarkers. The importance 
of identifying specific regions in microbial target fragments cannot be overestimated. 
The biodiversity and evolution of vertebrate RNA viruses has expanded dramatically 
since the beginning of the millennium, and it has been reported that more expensive and 
better sampling worldwide and more powerful approaches for virus characterization are 
needed to help us find these divergent viruses, such as chuviruses and jingmenviruses 
[29], which will help fill the gaps in the knowledge of RNA virus evolution [30]. With 
the development of methods for detecting more than 100 different nucleic acid targets 
simultaneously, FilmArray made the system well suited for the molecular detection of 
infectious agents, and the automated identification of pathogens from their correspond-
ing target amplicons could be accomplished by analysis of the DNA melting curve of 
the amplicon [31]. Additionally, several studies have reported multiplex real-time PCR 
assays for detecting four microorganisms relevant to community-acquired pneumo-
nia (CAP) infections [32] in Asia; CAP is one of the most common infectious diseases 
and a significant cause of mortality and morbidity globally. The availability of tests with 
improved diagnostic capabilities will potentially lead to the ability to make informed 
choices regarding antibiotic usage and appropriate management of patients to achieve 
better treatment outcomes and financial savings [32].

Herein, we generated a more significant biomarker dataset, which was validated by 
several clinical experiments, as described in Table 1, Additional file 1: Table S1 and S2. 
All the results indicate that our strategy is robust for detecting effective biomarkers, 
which seems to indicate that the specificity could account for this performance. Hypoth-
esized that the specific biomarkers from different pathogens are identified, later they 
may be sensed by graphene arrays. Interestingly, graphene is a lightweight, chemically 
stable and conductive material that can be successfully utilized for the detection of vari-
ous virus strains. The current state-of-the-art applications of graphene-based systems 
for sensing a variety of viruses, e.g., SARS-CoV-2, influenza, dengue virus, hepatitis C 
virus, human immunodeficiency virus (HIV), rotavirus and zika virus, have been sum-
marized previously [33, 34]. That was to say, graphene-based biosensor technology with 
high sensitivity and specificity could be particularly useful in the life sciences and medi-
cine since it can significantly enhance patient care, early disease diagnosis and pathogen 
detection in clinical practice [35, 36]. Furthermore, CRISPR-Cas systems, in particular 
the recently discovered DNA-targeting Cas12 and RNA-targeting Cas13 systems, both 
possessing unique trans-cleavage activity, are being harnessed for viral diagnostics 
and therapies [37]. In addition, specific high-sensitivity enzymatic reporter unlocking 
(SHERLOCK) testing in one pot (STOP) is a streamlined assay combining simplified 
extraction of viral RNA with isothermal amplification and clustered regularly inter-
spaced short palindromic repeats (CRISPR)-mediated detection, which could be per-
formed at a single temperature in less than one hour with minimal equipment [38]. As a 
consequence, we tentatively propose cooperating with related institutes to combine the 
Shine strategy with graphene-based biosensor technology or CRISPR-Cas systems for 
application in pathogen sensing.
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The method ensured coverage of all pathogenic microbial genomes and effectively 
identify the specific species or subspecies to avoid lowering the quality of nucleic acid 
detection reagents, but of course, there were exceptions, i.e., highly divergent viruses, 
such as sapovirus and human astrovirus, which have limited consensus biomarkers 
with high performance. If none of the strain coverage rates of the candidate consensus 
sequences reached the preset value, we had to prioritize specificity and/or sensitivity and 
combine the candidate consensus sequences to improve conservation, although this may 
not be cost-effective and could cause several experimental errors. The recommended 
process was in turn performed by screening the combinations with the strain cover-
age rate reaching the preset values and having the fewest consensus sequences, taking 
the screened combinations as the candidate consensus sequences, and then verifying/
obtaining the primary-screened species-specific consensus sequences. The combination 
could be screened according to the number of consensus sequences from low to high, 
for selection. Unless a single consensus sequence covered all the current strains, it was 
possible to find two consensus sequences for which the sum of the strain coverage rates 
of the two consensus sequences was greater than or equal to the pre-set value of the 
strain coverage rate. If so, two consensus sequences were recorded in the results; if not, 
three consensus sequences were combined. That is, unless there was a single consensus 
sequence or two consensus sequences that could meet the preset value of the strain cov-
erage rate, it was possible to find three consensus sequences, where the sum of the strain 
coverage rates of the three consensus sequences was greater than or equal to the pre-
set value of the strain coverage rate. If so, the three consensus sequences were recorded 
in the results; if not, four consensus sequences were combined. Based on this analogy, 
infinite numbers of consensus sequences should not be combined until the consensus 
sequence combination that can meet the preset value of the total strain coverage rate is 
found and recorded in the result. Our strategy has been successfully applied to a number 
of clinical projects and has the overwhelming advantages of quantitative systematic and 
automated detection of all pathogenic microorganisms without limits of genome anno-
tation and incompletely assembled motifs described above.

Based on the incomplete motifs, there was no specific restriction on the order in which 
the motifs were connected together, i.e., the motifs could be connected to the chain in 
random order. If the region of similarity met the preset value contained different motifs, 
it was divided based on the original motif connection points into different subregions to 
determine whether the subregions were candidate multicopy regions. Compared with 
16 s rRNA, de novo biomarkers based on weighted average copy numbers and a series of 
sequences of newly discovered species- or subspecies-specific multicopy regions could 
be identified as potential design templates to avoid false positive results for sequenced 
pathogenic organisms.

In addition to the above characteristics, this approach involves obtaining species-spe-
cific consensus sequences for microorganisms. Were these different assignments due to 
the fundamental nature of the approach or the result of different approaches to species 
demarcation by the respective specialized study groups (SGs)? For instance, HIV-1 and 
HIV-2 were assigned to two different species, while SARS-CoV and SARS-CoV-2 were 
assigned to two strains of a single species. That is, how can the position of the viral entity 
in the natural world be defined? In practical terms, recognizing virus species as the 
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principal subjects of virology would also expand the scale of the spatiotemporal frame-
work connecting studies of natural virus variation, cross-host transmission, and patho-
genicity and thus contribute to the understanding and control of virus infections [39].

Materials and methods
Acquisition of raw data

The pathogenic genomic data were derived from public databases, such as the National 
Center for Biotechnology Information (NCBI) Assembly database [40], Global Initia-
tive on Sharing All Influenza Data (GISAID) [28, 41], ChunLab’s public data and ana-
lytics portal (EzBioCloud) [42], Eukaryotic Pathogen Database Project (EuPathDB) [43], 
Giardia Genomics Resources (GiardiaDB) [44], Trichomonas Informatics Resources 
(TrichDB) [44], Fungal & Oomycete Informatics Resources (FungiDB) [45], and Patho-
systems Resource Integration Center database (PATRIC) [46], which contained either 
completely assembled pathogenic genomes or incompletely assembled motifs. The 
defined populations were specific species or subspecies, and the control group was all 
the other species or subspecies of the same classification excluding the defined popula-
tions. The method further involved comparing selected adjacent microorganism target 
fragments one to one; if the similarity after comparison was lower than the preset values, 
an alert was issued, and screening conditions corresponding to the target strains were 
displayed. Abnormal data and redundant data introduced by human errors could be fil-
tered. The target fragments of microorganisms could be the whole genomes of microor-
ganisms or their gene fragments.

Searching for the specific regions

As shown in Fig. 2, to identify the specific regions in the microbial target fragments, (1) 
the microbial target fragments were compared with the whole-genome sequences of one 
or more comparison strains one to one, and fragments for which the similarity exceeded 
the preset value were removed to obtain several residual fragments as the first-round 
cut fragments T1-Tn, wherein n is an integer greater than or equal to 1; (2) then, the 
first-round cut fragments T1-Tn were compared with whole-genome sequences of the 
remaining comparison strains, and fragments for which the similarity exceeded the pre-
set values were removed to obtain the collection of residual cut fragments as the candi-
date specific regions of the microbial target fragments; and (3) the specific regions were 
then verified and obtained to determine whether the candidate specific regions met the 
criteria for the following steps: (a) searching in public databases [47] to find whether 
there were other species for which the similarity to the candidate specific region was 
greater than the preset value; (b) comparing the candidate specific regions of the whole-
genome sequences with those of the comparison strains to determine whether there 
were fragments with similarity greater than the preset values. If the candidate specific 
regions met the above criteria, the candidate specific regions were considered the spe-
cific regions of the microbial target fragments.

Searching for the multicopy regions

The target fragments of microorganisms may be chains or multiple incomplete motifs. 
When identifying multicopy regions in microbial target fragments, the motifs were 
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connected together before searching for candidate multicopy regions, in which the 
microbial target fragments often have multiple incomplete motifs. These motifs are 
formed by incomplete splicing of short reads under existing second-generation sequenc-
ing conditions. To identify the multicopy regions in the microbial target fragments illus-
trated in Fig. 3 (1) for searching candidate multicopy regions, internal alignments were 
performed on the microbial target fragments, and searching for the regions correspond-
ing to the to-be-detected sequences for which the similarity met the preset values as 
candidate multicopy regions, and the similarity was the product of the coverage rates 
and matching rates of the to-be-detected sequence; (2) for verifying and obtaining the 
multicopy regions, the median values of the copy numbers of the candidate multicopy 
regions were obtained, including by (a) determining the positions of each candidate 
multicopy region on the microorganism target fragments; (b) obtaining the numbers 
of other candidate multicopy regions covering the positions of each base of the to-be-
verified candidate multicopy regions; and (c) calculating the median values of the copy 
numbers of the to-be-verified candidate multicopy regions.

The other candidate multicopy regions mentioned above refer to candidate multicopy 
regions other than the candidate multicopy regions to be verified. If the median copy 
numbers of the candidate multicopy regions were greater than 1, the candidate multi-
copy regions were recorded as multicopy regions. The preset value of the similarity could 
be determined as needed. The recommended preset value of similarity had to exceed 
80%. If the region where the similarity met the preset value contained different motifs, 
the region was divided based on the original motif connection points and divided into 
different subregions to determine whether the subregions were candidate multicopy 
regions. The coverage rate = (length of similar sequence/(end value of the to-be-detected 
sequence  -  starting value of the to-be-detected sequence + 1)) %. The matching rates 
referred to the identity values when the to-be-detected sequences were aligned with 
themselves. The identity values of the two aligned sequences could be obtained by soft-
ware such as needle [48], water [49] or blat [50]. The length of similar sequences referred 
to the number of bases in which the matched fragments occupied the to-be-detected 
sequences when the to-be-detected sequence was aligned with other sequences, that is, 
the length of the matched fragments. In the preferred embodiment, the 95% confidence 
interval of the copy numbers of the candidate multicopy regions was calculated. The 
confidence interval refers to the estimated interval of the overall parameters constructed 
by the sample statistics, that is, the interval estimation of the overall copy numbers of 
the target regions. The confidence interval reflected the degree to which the true values 
of the copy numbers of the target regions were close to the measurement result, which 
indicates the credibility of the measured values of the measured parameters.

Searching for the conserved regions

To obtain species-specific consensus sequences of microorganisms as presented in Fig. 1 
(1) for searching for candidate consensus sequences, specific sequences of target strains 
belonging to the same species were clustered based on the clustering algorithm [51] to 
obtain several candidate species-specific consensus sequences; and (2) for verifying and 
obtaining primary-screened species-specific consensus sequences, whether the candidate 
species-specific consensus sequences met the following conditions remapped by mafft 
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was determined [52]. Herein, the strain coverage rates met the preset values, and the 
effective copy numbers met the preset values. If the candidate species-specific consensus 
sequences met all the above conditions, it was determined that the candidate species-spe-
cific consensus sequences were species-specific consensus sequences; the percentage of 
strain = (number of target strains with the candidate species-specific consensus sequence/
total number of target strains) * 100%. The effective copy numbers, i.e., weighted average 
copy numbers were calculated according to formula (I), where n was the total number of 
copy number gradients of the candidate species-specific consensus sequences; Ci was the 
copy number corresponding to the i-th candidate species-specific consensus sequence; Si 
was the number of strains with the i-th candidate species-specific consensus sequence; and 
Sall was the total number of target strains. Formula (I) refers to the summation of Ci (Si/
Sall), where i ranges from Cmin to Cmax, and the number of i is n. Cmin is the minimum 
copy number of all candidate species-specific consensus sequences. Cmax is the maximum 
copy number of all candidate species-specific consensus sequences.

Designing the best sets from the appropriate templates above

Based on the above various combinations of different submodules, the final candidate 
species-specific consensus sequences could be compared to the whole genomes of all 
target strains to calculate the percentage of strains and effective copy numbers of the 
candidate species-specific consensus sequences. Designing the templates of the pri-
mary-screened species-specific consensus sequence and achieving the best sets of prim-
ers and probes were performed as follows: (1) we obtained the candidate probes and 
primers by Primer3[53] or Beacon Designer™; (2) the sequences of the candidate probes 
and primers were aligned to the whole-genome sequences of all the target strains; (3) 
the strain coverage rates corresponding to the sequences of each probe and primer were 
calculated; and (4) the candidate probes and primers for which the strain coverage rates 
met the preset values were screened, and the primary-screened species-specific consen-
sus sequences corresponding to the screened candidate probes and primers were chosen 
as the final species-specific consensus sequences.

Conclusions
Overall, the Shine strategy was presented to identify specific, sensitive and conserved 
biomarkers from massive microbial genomic data within populations. We have proposed 
a design strategy to improve the quality of nucleic acid detection reagents, which has 
been validated by several clinical projects. Our method was highly accurate and sensi-
tive and could detect newly discovered multicopy universal species-specific and even 
subspecies-specific target fragments, covering all identified epidemic pathogenic micro-
organisms. Therefore, the method was suitable for identifying shared universal phylo-
genetic biomarkers with few false positive or false negative results and automating the 
design of minimal primers and probes to detect pathogens with cost-effective predictive 
power.

N

i=0

Ci ∗
Si

Sall
(I)
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