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Abstract 

Background:  It seems that several members of intestinal gut microbiota like Strepto-
coccus bovis, Bacteroides fragilis, Helicobacter pylori, Fusobacterium nucleatum, Enterococ-
cus faecalis, Escherichia coli, Peptostreptococcus anaerobius may be considered as the 
causative agents of Colorectal Cancer (CRC). The present study used bioinformatics and 
immunoinformatics approaches to design a potential epitope-based multi-epitope 
vaccine to prevent CRC with optimal population coverage.

Methods:  In this study, ten amino acid sequences of CRC-related pathogens were 
retrieved from the NCBI database. Three ABCpred, BCPREDS and LBtope online servers 
were considered for B cells prediction and the IEDB server for T cells (CD4+ and CD8+) 
prediction. Then, validation, allergenicity, toxicity and physicochemical analysis of all 
sequences were performed using web servers. A total of three linkers, AAY, GPGPG, 
and KK were used to bind CTL, HTL and BCL epitopes, respectively. In addition, the final 
construct was subjected to disulfide engineering, molecular docking, immune simula-
tion and codon adaptation to design an effective vaccine production strategy.

Results:  A total of 19 sequences of different lengths for linear B-cell epitopes, 19 and 
18 sequences were considered as epitopes of CD4+ T and CD8+ cells, respectively. The 
predicted epitopes were joined by appropriate linkers because they play an important 
role in producing an extended conformation and protein folding. The final multi-
epitope construct and Toll-like receptor 4 (TLR4) were evaluated by molecular docking, 
which revealed stable and strong binding interactions. Immunity simulation of the 
vaccine showed significantly high levels of immunoglobulins, helper T cells, cytotoxic T 
cells and INF-γ.

Conclusion:  Finally, the results showed that the designed multi-epitope vaccine could 
serve as an excellent prophylactic candidate against CRC-associated pathogens, but 
in vitro and animal studies are needed to justify our findings for its use as a possible 
preventive measure.
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Background
The human gut microbiome contains 1013–1014 bacterial cells which play important 
roles in health and disease prevention. These functions consist of providing an energy 
supply, balancing immune responses, preventing pathogens’ colonization and mainte-
nance of intestinal epithelium integrity [1]. Microbiome dysbiosis or any change in the 
composition of the human microbiome is the result of environmental factors [2] like 
diet, antibiotic treatment and recurrent infections which may lead to physiological and 
pathological alterations [3, 4]. Colorectal cancer (CRC) refers to a genetic disorder with 
uncontrolled proliferation of colorectal epithelial cells and may be triggered or exacer-
bated by microbiome dysbiosis. CRC has the first rank in terms of incidence and sec-
ond in terms of mortality in both females and males among all cancers [5, 6]. Figure 1 
shows the latest update (2020) of the CRC incidence rates according to the World Health 
Organization (WHO) report. CRC has a complicated etiology, while several cases of 
cancer have inherited and genetic backgrounds, most CRC cases arise due to predispos-
ing environmental factors [1, 7]. According to the reports of the national cancer insti-
tute, other risk factors for CRC are personal history of colorectal adenomas, previous 
colorectal or ovarian cancer, familial adenomatous polyposis (FAP) and Lynch syndrome 
(hereditary nonpolyposis colorectal cancer [HNPCC]), personal history of long-term 
chronic ulcerative colitis or Crohn colitis, heavy alcohol consumption, smoking, special 
race/ethnicities and obesity [5, 8–13].

A remarkable result of intestinal dysbiosis is the replacement of commensal micro-
organisms with potential pathogens. Seven potential pathogens including Streptococcus 
bovis (S. bovis) [14, 15], Helicobacter pylori (H. pylori), Bacteroides Fragilis (B. Fragilis), 
Fusobacterium nucleatum (F. nucleatum) [16], Enterococcus faecalis (E. faecalis), Escher-
ichia coli (E. coli) [17, 18], and Peptostreptococcus anaerobius (P. anaerobius) [19, 20] are 
eminent microorganisms involved in the occurrence of CRC [14].

The relationship between bacteria and malignancies is complex. In many cases, oral 
or intestine resident bacteria prevent the development of cancer by stimulating immune 
response and production of anti-inflammatory compounds [21] such as IL-10 and bac-
terial metabolites such as single chain fatty acids (SCFAs like butyrate and propionate) 
[22, 23], Lipopolysaccharide (LPS) in gram-negative bacteria [24] and ferrichrome in 

Fig. 1  Incidence rank of CRC according to WHO reports (https://​gco.​iarc.​fr/​today)

https://gco.iarc.fr/today
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Lactobacillus casei [25]. On other hand, the importance of bacteria in inducing cancers 
such as H. pylori and gastric cancers is proven. H. pylori is carcinogenic by producing 
CagA and VacA toxins [26]. Inflammation processes triggered by the intestinal micro-
organisms can also cause cancer. These associations were observed in F. nucleatum and 
P. anaerobius, which colonize the oral cavity and can induce colorectal cancer by stimu-
lating inflammation. Enterotoxigenic B. Fragilis (ETBF) stabilize intestinal colonization 
by biofilm formation and induce chronic inflammation and progression to cancers. E. 
faecalis and E. coli are transient members of the normal flora of the intestine, vagina 
and oral cavity. These species may cause CRC progression by producing virulence fac-
tors such as toxins and enzymes which cause chromosome instability in human chromo-
somes and cell cycle arresting in colon epithelial cells [27].

Histone-like protein A (HlpA) in S. gallolyticus, FadA, Fap2 and RadD in F. nuclea-
tum [28], and PCWBR2 in P. anaerobius [1] are the main adhesins in CRC-related bac-
teria. Bacterial cell wall HlpA is the main surface immunogenic protein that enables S. 
gallolyticus to bind to Heparin sulfate proteoglycans (HSPGs) and stimulates a humoral 
immune response. Fap2 interacts and inactivates T lymphocytes in favor of tumor cell 
growth [29, 30]. RadD mediates biofilm formation and attachment of F. nucleatum 
cells to the host cells and the same as Fap2 supports the growth of tumor cells. It is also 
claimed that the interaction between the putative cell wall binding repeat 2 (PCWBR2) 
surface protein of P. anaerobius and α2/β1 integrin activates a signaling pathway associ-
ated with an increased risk of CRC [20]. Considering the potent immunogenic activity of 
the aforementioned proteins, they are potential vaccine candidates for the related bacte-
ria causing CRCs.

Some bacterial protein toxins such as CagA and VacA produced by H. pylori 
[31–34], ETBF by B. fragilis and Cytolethal distending toxin (CDT) and Colibactin 
produced by E. coli are potent carcinogen promoters. They can elicit inflammatory 
reactions, interfere with signaling pathways and also may hamper cell cycles in favor 
of carcinogenesis. CagA and VacA toxins promote CRC during the reverse-feedback 
mechanism and hypergastrinemia and are known as the major factors of gastric can-
cer and possible inducers of CRC by affecting apoptosis and signal transduction sys-
tems of the cells, vacuolization and changing epithelial permeability, respectively [26, 
35, 36]. ETBF is a zinc-dependent metalloprotease that cleaves E-cadherin molecules, 
and its interactions with intestinal epithelial cells lead to the activation of the STAT3 
pathway. The toxin causes IL-2 reduction and IL-17 increase, which lead to the prolif-
eration and survival of cancer cells [37, 38]. CDT, cytotoxic necrotizing factor (CNF), 
cycle inhibiting factor, Shiga toxin and subtilase toxin are important cyclomodulins 
which can alter the cell cycle in favor of bacterial invasion and colonization [39]. 
CDT and Colibactin arrest the cell cycle and damage the double-stranded structure 
of DNA by alkylating adenine bases [40]. Superoxide dismutase (SOD) as a virulence 
factor of E. faecalis induce damage in the DNA backbone and predisposes the colon 
epithelial cells to mutations and cancer [41–43]. To the best of our knowledge, no 
study is conducted on multi-epitope vaccines against different CRC-inducing patho-
gens, so the present study is the first report intending to design a multi-epitope vac-
cine based on in silico designing and immunoinformatics approach against the most 
important CRC-related bacterial pathogens.
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Methods
In order to design multi-epitope vaccine against CRC-promoting bacteria, CD4+ and 
CD8+ T cell and B cell stimulating epitopes were selected. Then, validation, aller-
genicity, toxicity and physicochemical properties of all epitopes were performed using 
different web servers. Three linkers AAY, GPGPG and KK were used to connect cyto-
toxic T cell epitope (CTL), T-helper lymphocyte (HTL) and B-cell lymphocyte (BCL) 
epitopes, respectively. For assessment of the stability and binding affinity, the TLR4 
receptor was docked by ligands using FireDock, PatchDock and ClusPro 2.0 servers. 
Finally, codon adaptation and in silico cloning studies were carried out. In addition, 
the C-ImmSim server was used to describe the humoral and cellular profile of the 
mammalian immune system against the designed vaccine. The workflow for this sci-
entific study is shown in Fig. 2.

Retrieval of bacterial sequences associated with CRC​

In this study, ten proteins including HlpA, BFT, (FadA, Fap2 and RadD), Superoxide, 
Colibactin, PCWBR2 and (CagA and VacA) were selected for design of multi-epitope 
vaccines against S. gallolyticus, ETBF, F. nucleatum, E. faecalis, E. coli, P. anaerobius 
and H. pylori, respectively. The related sequences were retrieved from the National 
Center for Biotechnology Information (NCBI) Protein Database (https://​www.​ncbi.​
nlm.​nih.​gov/​prote​in/?​term=) database (Table 1).

Prediction of B cell epitopes

B cell epitopes play a pivotal role in the development of peptide vaccines, in the diag-
nosis of diseases as well as for allergy research [44]. Three servers, ABCpred (https://​
webs.​iiitd.​edu.​in/​ragha​va/​abcpr​ed/​ABC_​submi​ssion.​html), BCPREDS (http://​

Fig. 2  An overview of the steps of making a multi-epitope vaccine by in silico method in the present study

https://www.ncbi.nlm.nih.gov/protein/?term=
https://www.ncbi.nlm.nih.gov/protein/?term=
https://webs.iiitd.edu.in/raghava/abcpred/ABC_submission.html
https://webs.iiitd.edu.in/raghava/abcpred/ABC_submission.html
http://ailab-projects1.ist.psu.edu:8080/bcpred/
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ailab-​proje​cts1.​ist.​psu.​edu:​8080/​bcpred/) and LBtope (https://​webs.​iiitd.​edu.​in/​ragha​
va/​lbtope/​prote​in.​php), were used to predict B cell epitopes. We applied three differ-
ent servers to obtain the best coverage of the predicted epitopes. ABCpred is devel-
oped based on a recursive neural network (machine-based technique) using a fixed 
length pattern and can predict epitopes with 65.93% accuracy using this network [44]. 
The BCPREDS server uses three developed methods, AAP, BCPred and FBCPred, to 
predict B cell epitopes [45, 46]. The server, on the other hand, uses a support vector 
machine (SVM) algorithm to predict B-cell (linear) epitopes. ABCpred and BCPREDS 
servers have variable epitope lengths (10–20) and (12–22) to predict B cell epitopes, 
respectively. The third server used to predict B cell was the LBtope server [47]. Due to 
the high accuracy of epitope prediction, we considered the cut-offs above 0.6 to pre-
dict B cell epitopes in this server.

MHC‑I binding epitopes (CTL) prediction

Determination of peptide binding to major histocompatibility complex (MHC) class 
I is an important step in CTL detection methods for MHC class I peptide binding 
[48]. All 10 proteins in this study were screened for MHC-I (18 HLA-A, 32 HLA-B 
and 20 HLA-C) alleles based on the Immune Epitope Database server (IEDB; http://​
tools.​iedb.​org/​mhci/) [49]. Length preferences can vary depending on the MHC allele 
but are generally limited to peptides of length 8–11 amino acids [50]. We considered 
9-mer epitopes, NetMHCpan EL 4.1 method and a score above 0.5 to predict the 
desired epitopes.

MHC class II binding prediction

HLA class II molecules are expressed by human antigen-presenting cells (APCs) and 
are used directly to identify epitope candidates in infectious agents, allergens, can-
cer, and autoantigens [51]. The IEDB (http://​tools.​iedb.​org/​mhcii/) was used to pre-
dict HTL epitopes for 10 proteins. The IEDB parameters used for this study included 
a selection of peptide length 15 mer, IEDB recommended 2.22, and human Leuko-
cyte Antigen (HLA) reference set (containing 27 alleles). The selection IEDB Recom-
mended uses the Consensus approach, combining NN-align, SMM-align, CombLib 

Table 1  Details of sequences retrieved from CRC cancer related pathogens

Organism Protein Accession numbers Amino acids

Streptococcus gallolyticus HlpA KJF00052.1 91 aa

Bacteroides fragilis Bft AAB50410.2 389 aa

Fusobacterium nucleatum FadA AAY47043.1 129 aa

Fap2 WP_059222898.1 3784 aa

RadD WP_238968484.1 3463 aa

Enterococcus faecalis Superoxide dismutase EPI15045.1 202 aa

Escherichia coli Colibactin WP_193793145.1 3206 aa

Peptostreptococcus anaerobius PCWBR2 KXI10301.1 376 aa

Helicobacter pylori CagA P55980.1 1186 aa

VacA AAU85846.1 746

http://ailab-projects1.ist.psu.edu:8080/bcpred/
https://webs.iiitd.edu.in/raghava/lbtope/protein.php
https://webs.iiitd.edu.in/raghava/lbtope/protein.php
http://tools.iedb.org/mhci/
http://tools.iedb.org/mhci/
http://tools.iedb.org/mhcii/
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and Sturniolo if any corresponding predictor is available for the molecule, otherwise, 
NetMHCIIpan is used [52]. Finally, to predict epitopes MHC class II with high bind-
ing power, we used adjusted rank < 2 to filter.

Vaccine construction

In the present study, CTL, HTL, and BCL were joined together with a suitable linker to 
make an effective multi-epitope vaccine. A total of three linkers, AAY, GPGPG, and KK 
were used to bind CTL, HTL and BCL epitopes, respectively. The reason for using these 
linkers is that they play a vital role in producing a wide conformation (flexibility), protein 
folding and separation of functional domains, and therefore they are able to make the 
protein structure more stable.

Prediction of various physicochemical properties

The study of physical and chemical properties reveals the functional and structural 
properties of a protein. ProtParam (http://​web.​expasy.​org/​protp​aram/) server was used 
to evaluate the physical and chemical properties of the final vaccine construct [53]. This 
server has various physical and chemical parameters of proteins such as amino acid 
composition, extinction coefficient, instability index, total hydropathic mean (GRAVY), 
aliphatic index, theoretical pI, atomic composition and molecular weight allowing us to 
understand the stability, activity and nature of proteins [54]. The instability index (II) of 
a protein indicates its stability of the protein. If the calculated protein instability index 
is less than 40, it was considered as a stable protein. GRAVY is used to indicate the 
hydrophobicity value of a peptide that calculates the sum of the hydropathic values of all 
amino acids divided by the length of the sequence [55]. In addition, the Aliphatic index 
(AI) is defined as the relative volume of protein occupied by its aliphatic side chains that 
are involved in the thermal stability of a protein.

Another important feature that should be considered in vaccine design is protein solu-
bility, which is important in industrial and therapeutic applications. In this study, the 
Protein-Sol web server was used to predict protein solubility [56]. If our protein solubil-
ity score (scaled solubility value or QuerySol) was less than 0.45, it indicates that our 
protein is more soluble than the average soluble E. coli protein.

Identifying antigenicity, allergenicity and toxicity of protein sequences

The VaxiJen server (http://​www.​ddg-​pharm​fac.​net/​vaxij​en/​VaxiJ​en/​VaxiJ​en_​citat​ion.​
html) is the first server for alignment-independent prediction of protective antigens [57]. 
This server examines bacterial, viral, and tumor protein datasets to predict protein anti-
genicity. In addition, it has shown a prediction accuracy of 70 to 89 percent [57]. In this 
study, our target organism was bacteria and other parameters were selected by default.

Allergy is a harmful consequence of a wrong immune response that has evolved to 
develop immunity to macroparasites [58]. The AllerTOPv.2 server (https://​www.​
ddg-​pharm​fac.​net/​Aller​TOP/) is used to predict allergenicity [59]. On the other hand, 
AllerTOP is known as the first suitable alignment-free server for in silico prediction of 
allergens based on the physicochemical properties of protein sequences. Version 2 of 
this server is a significant improvement over version 1 and has an accuracy of 88.7%. 
It is also highly sensitive (94%) compared to other allergenic prediction servers [59, 

http://web.expasy.org/protparam/
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen_citation.html
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen_citation.html
https://www.ddg-pharmfac.net/AllerTOP/
https://www.ddg-pharmfac.net/AllerTOP/
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60]. ToxinPred (http://​crdd.​osdd.​net/​ragha​va/​toxin​pred/​multi_​submit.​php) is a unique 
method in silicon that will be useful in predicting the toxicity of peptides/proteins, 
designing toxic peptides and detecting toxic regions in proteins [61].

Population coverage of epitopes

T cells detect a complex between a specific molecule of MHC and a specific pathogen-
derived epitope [62]. Specific HLA alleles are expressed with very different frequencies 
in different ethnicities. Therefore, the IEDB population coverage server (http://​tools.​
iedb.​org/​popul​ation/) was used in the design and development of T-cell epitope-based 
vaccines for population coverage analysis [62]. In this study, population coverage for a 
vaccine designed in both MHC Class I and MHC Class II types in different ethnicities 
was examined.

Secondary and tertiary structure prediction of the vaccine construct

One of the most important and challenging issues in the field of bioinformatics is the 
prediction of the secondary structure of the protein [63]. The secondary structure refers 
to the polypeptide backbone of local conformation proteins, which consists of three 
parts: regular secondary structure, α-helix and β-strand, and a type of irregular second-
ary structure, the coil region [63, 64]. In this study, PSIPRED (http://​bioinf.​cs.​ucl.​ac.​uk/​
psipr​ed/) tool was used to predict the secondary structure. It is one of the most widely 
used servers that use two feed-forward neural networks to analyze the output obtained 
from PSI-BLAST [65].

The RaptorX server (http://​rapto​rx.​uchic​ago.​edu/) was used to model the 3-dimen-
sional (3D) structure. RaptorX offers high-quality structural models (5 models) for many 
purposes. It also takes the server about 35 min to complete the processing of a sequence 
of 200 amino acids. The server, on the other hand, is designed for protein secondary 
structure prediction, alignment quality assessment and sophisticated probabilistic align-
ment sampling [66].

Refinement, validation and quality assessment of the 3D structure

The importance of improving template-based model structures beyond the existing 
accuracy of template information in the structure prediction community is emphasized. 
For this reason, the GalaxyRefine server (http://​galaxy.​seokl​ab.​org/​cgi-​bin/​submit.​cgi?​
type=​REFINE) was used to refine the structure of the protein model [67]. GalaxyRefine 
server has different parameters that include: global distance test-high accuracy (GDT-
HA), root-mean-square deviation (RMSD), MolProbity, and Ramachandran favored 
score. MolProbity shows crystallographic resolution and typical scores for experimental 
structures range from 1 to 2. RMSD is the most commonly used quantitative measure of 
the similarity between two superimposed atomic coordinates [68]. A lower RMSD value 
indicates better stability, and an RMSD score between 0 and 1.2 Angstrom (Å) is usually 
acceptable.

UCLA-DOE LAB (https://​saves.​mbi.​ucla.​edu/) and ProSA-web (https://​prosa.​servi​
ces.​came.​sbg.​ac.​at/​prosa.​php) servers were used to evaluate the validity and quality of 
the selected 3D structure [69, 70]. The UCLA-DOE LAB server has various tools such 
as PROCHECK and ERRAT for 3D structure validation. Ramachandran diagram was 

http://crdd.osdd.net/raghava/toxinpred/multi_submit.php
http://tools.iedb.org/population/
http://tools.iedb.org/population/
http://bioinf.cs.ucl.ac.uk/psipred/
http://bioinf.cs.ucl.ac.uk/psipred/
http://raptorx.uchicago.edu/
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
https://saves.mbi.ucla.edu/
https://prosa.services.came.sbg.ac.at/prosa.php
https://prosa.services.came.sbg.ac.at/prosa.php
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analyzed using the PROCHECK section from the UCLA-DOE LAB server (http://​molpr​
obity.​manch​ester.​ac.​uk/). The Ramachandran diagram shows the statistical distribution 
of the combination of the backbone dihedral angles φ and ψ, as well as the percentage 
and number of residues in the most favored, additional allowed, generously allowed, and 
disallowed region, which defines the quality of modeled structure [71].

ProSA-web server (https://​prosa.​servi​ces.​came.​sbg.​ac.​at/​prosa.​php) is a tool used to 
study 3D models of protein structures for possible errors [70]. One of the structural fea-
tures derived from this server is the z-score. The z-score indicates overall model quality 
and measures the deviation of the total energy of the structure concerning an energy 
distribution derived from random conformations [72]. In addition, a plot of local quality 
scores points to problematic parts of the model which are also highlighted in a 3D mol-
ecule viewer to facilitate their detection [70].

Multi‑epitope vaccine protein disulfide engineering

Disulfide bridges are formed between cysteine residues in peptides and proteins and 
are recognized as an essential element in the molecular architecture of proteins and 
peptides [73]. It is also believed that these bonds reduce conformational entropy and 
increase the free energy of the denatured state, thus increasing the stability of the pro-
tein structure [74]. In the present study, Disulfide by Design 2.0 (DbD2) (http://​cptweb.​
cpt.​wayne.​edu/​DbD2/) online server was used to detect disulfide bonds [75]. The server 
can provide refined 3D structures of the vaccine to identify residual pairs that can form 
disulfide bonds. When engineering the disulfide bonds, the intra-chain, inter-chain and 
Cβ for glycine residue, were selected and the v3 and Cα-Cβ-Sγ angles were kept at − 87° 
or + 97° ± 30 and 114.6° ± 10, respectively. Finally, an energy value of less than 1 kcal/mol 
was selected as the threshold for the remaining pair [75]. Because 90% of native disulfide 
bonds usually have an energy value of less than 2.2 kcal/mol [76].

Molecular docking of multi‑epitope vaccine with TLR4

Docking is recognized as an important tool in computer-aided drug design. Protein–
protein docking analysis was performed through the ClusPro 2.0 server [77]. This server 
requires two receptor and ligand files in the form of PDB. TLR-4 acts as a receptor for 
antigen recognition, which plays a role in immune activation and mediating cytokine 
induction [78]. The results obtained from this server include rigid body connection, 
clustering of the lowest energy structure, and structural refinement by minimizing 
energy. The vaccine-ligand complex was obtained based on the lowest energy and dock-
ing efficiency.

Docking analysis was again used by the PatchDock server (https://​bioin​fo3d.​cs.​tau.​ac.​
il/​Patch​Dock/) [79] to confirm the affinity of the vaccine structure designed with TLR4. 
The PatchDock server predicted potential complexity using three algorithm-molecular 
shape representations, surface patch matching, filtering, and scoring. Consequently, 
the top 10 results of the PatchDock server were evaluated using the FireDock (https://​
bioin​fo3d.​cs.​tau.​ac.​il/​FireD​ock/) server [80] to calculate the Global binding energy that 
consists of attractive and repulsive van der Waals (VdW) forces, atomic contact energy 
(ACE) and hydrogen bond. Before the docking process, the H2O molecules, ligands and 
polar hydrogens were removed while the Kollman charge was added. The structural 

http://molprobity.manchester.ac.uk/
http://molprobity.manchester.ac.uk/
https://prosa.services.came.sbg.ac.at/prosa.php
http://cptweb.cpt.wayne.edu/DbD2/
http://cptweb.cpt.wayne.edu/DbD2/
https://bioinfo3d.cs.tau.ac.il/PatchDock/
https://bioinfo3d.cs.tau.ac.il/PatchDock/
https://bioinfo3d.cs.tau.ac.il/FireDock/
https://bioinfo3d.cs.tau.ac.il/FireDock/
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coordinates of TLR4 were retrieved from the Protein Data Bank (PDB) (https://​www.​
rcsb.​org/) using the respective PDB ID: 2Z62. Finally, the visualization of complex vac-
cine-TLR interactions was performed by LigPlot + software.

Molecular dynamics simulation

The dynamic stability of the designed vaccine was investigated by performing a 100 ns 
molecular dynamics (MD) simulation. MD was performed using GROMACS package 
v2020, which provides a rich set of computational and analysis tools [81]. The param-
eters for MD simulation were derived from Amber sb99 force field and the system was 
the solvated by SPC/E water model. After electro-neutralization of the solvated simula-
tion box the energy minimization was performed by the aim of steepest descend algo-
rithm. Temperature and pressure were adjusted at 310 k and 1 bar respectively using a 
nose–hoover thermostat and a Parinello- Rahman barostat. All bonds were constrained 
by LINear Constraint Solver (LINCS) method. Both van der Waals and electrostatic 
non-bonded interactions were measured by the cutoff of 1 nm. In this regards the long 
range electrostatics were treated by PME method. Finally, a 100 ns MD simulation was 
carried out under the leap-frog algorithm.

Normal mode analysis (NMA)

The study of molecular dynamics (MD) is essential to evaluate the stability and physi-
cal motility of the vaccine-TLR4 docked complex in any in silico assay. Therefore, pro-
tein stability can be determined by comparing the dynamics of essential proteins with 
their normal modes [81, 82]. To perform the molecular dynamics simulation process, an 
iMODS server (http://​imods.​chaco​nlab.​org/) based on a normal state analysis (NMA) 
conductor was used [82–84]. Then, the complex of vaccine construct-TLR was delivered 
to the iMODS server. This iMODS server evaluates the stability of a protein by calculat-
ing its NMA. The server also provides images of factor B-factor and deformability plots, 
covariance map, mode variance plot, eigenvalues and elastic networks.

Immune simulation

C-IMMSIM server (http://​kraken.​iac.​rm.​cnr.​it/C-​IMMSIM/​index.​php?​page=1) is an 
agent-based simulator of the immune response that uses bioinformatics methods to 
predict T and B cell epitopes [85]. The C-ImmSim utilizes the Celada-Seiden model for 
describing both humoral and cellular profiles of a mammalian immune system against 
a designed vaccine. In summary, this server /C-IMMSIM displays images in which the 
major classes of cells of both the lymphoid [T helper lymphocytes (Th)], CTL, B lym-
phocytes, and antibody-producer plasma cells, PLB) and the myeloid lineage [mac-
rophages (M) and dendritic cells] are represented [85]. The simulated parameters in 
this study included: (a) a vaccine without LPS, (b) considering three doses of vaccine 
(to create an efficient and long-lasting immune response) with time intervals of 1, 84 
and 168 days, (c) the volume of the simulation and the simulation steps were adjusted to 
10 and 1100, respectively. The other parameter "Random Seed" remains unchanged. It 
should be noted that one step of the simulation is equivalent to eight hours (8 h) of real-
time, allowing immune response modeling for about 350 days [i.e. (1050 × 8 h)/(24 h)].

https://www.rcsb.org/
https://www.rcsb.org/
http://imods.chaconlab.org/
http://kraken.iac.rm.cnr.it/C-IMMSIM/index.php?page=1
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Codon‑optimization and cloning for the design of multi‑epitope vaccine

Today, we need a set of predictor servers to adapt the usage of the target gene codon 
for most sequenced prokaryotes and the eukaryotic gene expression hosts selected to 
improve heterologous protein production [86]. Java Codon Adaptation Tool (JCat) 
server (http://​www.​jcat.​de/) was used to quantify the expression level of the multi-
epitope vaccine in E. coli (strain K12). This server calculates two important outputs for 
the query sequence to ensure maximum expression. One of them is GC content and the 
other is Codon Adaptation Index (CAI) value [86]. CAI requires the definition of high-
expression genes that allow a comparable value to be calculated for codon usage. Finally, 
the vaccine construct was cloned into plasmid pET-28a (+) using SnapGene software 
(version 5.2.3) (https://​www.​snapg​ene.​com/).

Analysis of the vaccine MRNA

The Vienna RNA website is known as a comprehensive collection of tools for folding, 
designing and analyzing RNA sequences [87]. In this study, RNAfold (http://​rna.​tbi.​uni-
vie.​ac.​at/​cgi-​bin/​RNAWe​bSuite/​RNAfo​ld.​cgi) web server was used to predict the sec-
ondary structure of MRNA. At this stage, after obtaining the optimized DNA sequence 
through the JCat server, for analysis of MRNA folding and vaccine secondary structure, 
first converted into a potential DNA sequence by DNA <—> RNA- > Protein at (http://​
biomo​del.​uah.​es/​en/​lab/​cyber​tory/​analy​sis/​trans.​htm). Finally, the minimum free 
energy (MFE) score was important to us. MFE of ribonucleic acids (RNAs) increases at 
an apparent linear rate with sequence length. Simple indices, obtained by dividing the 
MFE by the number of nucleotides, have been used for a direct comparison of the fold-
ing stability of RNAs of various sizes [88].

Results
Retrieval of bacterial sequences associated with colorectal cancer

Ten protein sequences with different amino acid lengths from colorectal cancer-related 
pathogens were retrieved in the FASTA format.

Prediction of B cell epitopes

The reason for examining B-cell epitopes is their extraordinary ability to neutralize 
pathogenic molecules through the secretion of antibodies [89, 90]. ABCpred, BCPREDS 
and LBtope servers were used for B-cell prediction. Preliminary analysis showed that a 
total of 19 epitopes with criteria such as antigenic, non-allergenic and non-toxic were 
selected (Table 2). It should be noted that epitopes were considered for the final vaccine 
that overlapped at least two or three high-score servers.

MHC‑I binding epitopes (CTL) prediction

The MHC-I binding epitopes (9 mer) predicted by the IEDB recommended method for 
70 available alleles (including 18 HLA-A, 32 HLA-B, and 20 HLA-C) were performed by 
the IEDB server. Among a large number of MHC-I predicted epitopes, 18 epitopes were 
selected as vaccine candidates. The selection of epitopes based on characteristics such 
as high score (good binder), antigenic, non-allergenic and non-toxic is shown in Table 3.

http://www.jcat.de/
https://www.snapgene.com/
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
http://biomodel.uah.es/en/lab/cybertory/analysis/trans.htm
http://biomodel.uah.es/en/lab/cybertory/analysis/trans.htm
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MHC class II binding prediction

MHC-II binding epitopes (15 mer) were examined for 27 alleles (including HLA-DR, 
HLA-DQ, and HLA-DP) using the IEDB-recommended method. From a large number 
of HTL epitopes, we selected 19 epitopes with a length of 15 amino acids, which are 
shown in Table 4. The criteria for selecting these epitopes were low adjusted rank (good 
binder), antigenic, non-allergenic and non-toxic properties.

Prediction of various physicochemical properties

The final vaccine construct containing 924 amino acids and its molecular weight was 
determined based on ProtParam server 99 kDa. Since the final molecular weight of our 
final construct is less than 110  kDa, it can be considered a suitable vaccine [91]. The 
vaccine contained 105 (Arg + Lys) positively charged residues. The estimated half-life is 
1.9 h (mammalian reticulocytes, in vitro), 20 h (yeast, in vivo), and more than 10 h (E. 
coli, in  vivo). The vaccine construct was composed of 13,973 atoms, and its chemical 

Table 2  Prediction of B cell epitopes based on ABCpred, LBtop and BCPREDS servers

Protein Length Peptide Start ABCpred LBtop BCPREDS Antigenicity Allergenicity Toxicity

HlpA 12 NFEVRERAARKG 50 0.54 – 0.99 1.7361 NON-ALLERGEN Non-
Toxin

BFT 14 SLKANPKAEGYDDQ 278 0.74 – 0.905 1.2 NON-ALLERGEN Non-
Toxin

20 TEYSCPSGNADE-
GLDGFTAS

259 0.87 0.64 – 0.9369 NON-ALLERGEN Non-
Toxin

FadA 12 SQYQDLASKYED 89 0.7 0.6 – 0.5765 NON-ALLERGEN Non-
Toxin

18 LDAEYQNLAN-
QEEARFNE

32 0.78 0.61 – 0.7945 NON-ALLERGEN Non-
Toxin

Fap2 12 DGASTNPDPNKL 2518 – 0.77 0.999 1.033 NON-ALLERGEN Non-
Toxin

18 EEVNLENSQ-
VATREELKT

42 0.87 0.66 0.928 1.1408 NON-ALLERGEN Non-
Toxin

RadD 12 EGTNNEVDHNTD 1612 0.72 68.65 0.986 1.621 NON-ALLERGEN Non-
Toxin

14 DLGTIDFNGDDGVG 1222 0.76 70.12 0.974 1.3681 NON-ALLERGEN Non-
Toxin

Superoxide 16 HPELGEKSV-
EDLISDM

46 0.81 0.62 – 0.5832 NON-ALLERGEN Non-
Toxin

20 IPEDIRT-
AVRNNGGGHANHT

64 – 0.61 0.882 1.0386 NON-ALLERGEN Non-
Toxin

Colibactin 16 LEAHQHEDDP-
SATGVR

1503 – 0.64 1 1.3 NON-ALLERGEN Non-
Toxin

20 QPPEGESNAPSPQ-
PAVQTNT

3163 – 0.78 1 1 NON-ALLERGEN Non-
Toxin

PCWBR2 12 INKLNVSRISGK 70 0.64 0.7 – 0.7269 NON-ALLERGEN Non-
Toxin

18 RYETSVKVS-
DELQKMSSG

83 0.78 0.65 – 0.9622 NON-ALLERGEN Non-
Toxin

CagA 12 NASKNPNKGVGA 515 – 0.69 0.99 1.1717 NON-ALLERGEN Non-
Toxin

14 ESSTKSFQKFGDQR 108 0.74 0.65 0.89 0.6742 NON-ALLERGEN Non-
Toxin

VacA 14 VGGYKASLTTNAAH 408 – 67.3 0.95 0.8495 NON-ALLERGEN Non-
Toxin

20 NFEFKAGTDTKNG-
TATFNND

472 0.87 0.67 0.95 1.5291 NON-ALLERGEN Non-
Toxin
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Table 3  Most probable predicted epitopes with MHC class I alleles from IEDB analysis tool

Protein Peptide 
sequence

Start End Allele Score Antigenicity Allergenicity Toxicity

HlpA SAAAVDAVF 22 30 HLA-B*35:01 0.861527 0.5365 NON-ALLER-
GEN

Non-Toxin

Bft KANPKAEGY 280 288 HLA-A*30:02 0.830051 1.0961 NON-ALLER-
GEN

Non-Toxin

HLA-B*15:01 0.665572

HLA-B*57:01 0.615497

HLA-B*58:01 0.596159

YPGVMAHEL 333 342 HLA-B*35:01 0.819059 0.6723 NON-ALLER-
GEN

Non-Toxin

HLA-B*07:02 0.718513

HLA-B*53:01 0.716264

HLA-B*51:01 0.59173

HLA-B*08:01 0.523581

FadA QVYNELSQR 66 74 HLA-A*68:01 0.957771 0.8312 NON-ALLER-
GEN

Non-Toxin

HLA-A*31:01 0.795891

HLA-A*11:01 0.657712

HLA-A*33:01 0.58309

HLA-A*03:01 0.508062

Fap2 KTISVTAEK 1975 1983 HLA-A*11:01 0.978654 0.7777 NON-ALLER-
GEN

Non-Toxin

HLA-A*03:01 0.956606

HLA-A*30:01 0.866036

HLA-A*68:01 0.820562

HLA-A*31:01 0.691021

FADGLEQRY 3426 3434 HLA-A*01:01 0.972812 1.1206 NON-ALLER-
GEN

Non-Toxin

HLA-B*35:01 0.923357

HLA-B*53:01 0.519186

RadD GANPSVEYW 304 312 HLA-B*58:01 0.991946 1.1284 NON-ALLER-
GEN

Non-Toxin

HLA-B*57:01 0.987697

HLA-B*53:01 0.73539

KEQENISQM 58 66 HLA-B*40:01 0.954627 0.4345 NON-ALLER-
GEN

Non-Toxin

HLA-B*44:03 0.828703

HLA-B*44:02 0.783902

superoxide 
dismutase

YIDVETMHL 18 26 HLA-A*02:06 0.78953 1.3306 NON-ALLER-
GEN

Non-Toxin

HLA-A*02:01 0.737224

TPVLGLDVW 158 166 HLA-B*53:01 0.930286 1.9457 NON-ALLER-
GEN

Non-Toxin

HLA-B*35:01 0.50924

Colibactin YLDALAQQL 2339 247 HLA-A*02:01 0.981781 0.4388 NON-ALLER-
GEN

Non-Toxin

HLA-A*02:06 0.926393

HLA-A*02:03 0.777941

KADLAQLRY 970 978 HLA-A*01:01 0.970875 0.9347 NON-ALLER-
GEN

Non-Toxin

HLA-A*30:02 0.650643

HLA-B*58:01 0.611357
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formula was C4511H6895N1187O1370S10. The aliphatic index was 69.36 and the grand 
average hydropathicity index (GRAVY) was − 0.564, which reflects the vaccine’s polar 
nature and effective interaction with water, suggesting high solubility. The instability 
index was calculated at 23.00, which was < 40, classifying the vaccine as a stable pro-
tein (Table 5). The solubility of the vaccine construct was 0.460 according to QuerySol 
(Fig. 3).

Evaluation of antigenicity, allergenicity and toxicity of protein sequences

The designed multi-epitope vaccine was evaluated for antigenic, non-allergenic and 
non-toxic properties. The antigenicity of the final vaccine construct was predicted at 
0.8952% by VaxiJen at a 0.4% threshold for the bacterial model. Allergenicity and toxicity 
were evaluated to ensure that the candidate vaccine did not have any allergic reactions 
or toxic effects after entering the body. As predicted by AllerTOP 2.0 and ToxinPred web 
servers, the vaccine candidate was non-allergenic and non-toxic.

Multi‑epitope vaccine construction

The multi-epitope vaccine construct was composed of a combination of 37 T cells (18 
MHC-I and 19 MHC-II epitopes) and 19 linear B cell epitopes using AAY, GPGPG and 

Table 3  (continued)

Protein Peptide 
sequence

Start End Allele Score Antigenicity Allergenicity Toxicity

PCWBR2 YIIQNIYLV 149 157 HLA-A*02:06 0.914671 0.6827 NON-ALLER-
GEN

Non-Toxin

HLA-A*02:01 0.884041

HLA-A*02:03 0.70463

HLA-A*68:02 0.587899

RVDTAFAVY 187 195 HLA-A*01:01 0.860066 0.4398 NON-ALLER-
GEN

Non-Toxin

HLA-A*30:02 0.801369

HLA-B*15:01 0.533769

CagA VPASLSAKL 1050 1058 HLA-B*07:02 0.925163 1.1446 NON-ALLER-
GEN

Non-Toxin

HLA-B*35:01 0.668443

HLA-B*53:01 0.618146

HLA-B*51:01 0.60881

GINPEWISK 735 743 HLA-A*11:01 0.904802 1.2858 NON-ALLER-
GEN

Non-Toxin

HLA-A*03:01 0.83302

VacA GEKLVIDEF 600 608 HLA-B*44:03 0.863097 0.4654 NON-ALLER-
GEN

Non-Toxin

HLA-B*44:02 0.801589

HLA-B*40:01 0.72177

RVNNQVGGY​ 456 464 HLA-A*30:02 0.84623 1.5337 NON-ALLER-
GEN

Non-Toxin

HLA-B*15:01 0.597925
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Table 4  Most probable predicted epitopes with MHC class II alleles from IEDB analysis tool

Protein Peptide 
sequence

Start End Allele Score Antigenicity Allergenicity Toxicity

HlpA KKDSAAAVDAVF-
SAI

19 33 HLA-
DQA1*04:01/
DQB1*04:02

2.5 0.5391 NON-ALLER-
GEN

Non-Toxin

Bft SFILGDEFAVLRFYR 94 108 HLA-
DPA1*01:03/
DPB1*04:0

0.24 0.4059 NON-ALLER-
GEN

Non-Toxin

HLA-
DPA1*02:01/
DPB1*01:01

0.29

HLA-
DPA1*01:03/
DPB1*02:01

0.97

HLA-
DPA1*03:01/
DPB1*04:02

1.3

HGLKRFVNLH-
FVLYT

244 258 HLA-
DRB1*15:01

0.33 0.4609 NON-ALLER-
GEN

Non-Toxin

HLA-
DPA1*01:03/
DPB1*04:01

1.4

FadA AVLAVSASAFA-
ATDA

8 22 HLA-
DQA1*03:01/
DQB1*03:02

0.97 0.4315 NON-ALLER-
GEN

Non-Toxin

HLA-
DRB1*09:01

1.3

HLA-
DQA1*05:01/
DQB1*03:01

1.5

SLVGELQAL-
DAEYQN

24 38 HLA-
DQA1*05:01/
DQB1*02:01

1.3 0.4966 NON-ALLER-
GEN

Non-Toxin

Fap2 AVLVANNGAN-
VEIAS

1112 1126 HLA-
DRB1*13:02

0.01 0.7538 NON-ALLER-
GEN

Non-Toxin

HLA-
DRB3*02:02

0.15

HLA-
DQA1*01:02/
DQB1*06:02

0.34

EKIKNLRLELIQLME 77 91 HLA-
DRB4*01:01

0.21 0.6094

HLA-
DPA1*03:01/
DPB1*04:02

0.99

HLA-
DPA1*02:01/
DPB1*01:01

1.5

RadD LVKFNINATKAIGIL 599 613 HLA-
DRB3*02:02

0.02 0.4117 NON-ALLER-
GEN

Non-Toxin

HLA-
DRB1*07:01

0.21

HLA-
DRB1*13:02

0.89

HLA-
DRB1*09:01

1.4 NON-ALLER-
GEN

Non-Toxin
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Table 4  (continued)

Protein Peptide 
sequence

Start End Allele Score Antigenicity Allergenicity Toxicity

HLA-
DPA1*02:01/
DPB1*14:01

2

AKLINNMNVTVG-
VDA

2626 2640 HLA-
DRB1*13:02

0.15 0.806

HLA-
DRB3*02:02

0.3

superox-
ide dis-
mutase

ELPYAYDALEPYIDV 7 21 HLA-
DRB3*01:0

0.93 0.4856 NON-ALLER-
GEN

Non-Toxin

HLA-
DQA1*05:01/
DQB1*02:0

0.24

HLA-
DQA1*01:01/
DQB1*05:01

1.7 NON-ALLER-
GEN

Non-Toxin

KAAFKTAA​TGR​
FGSG

116 130 HLA-
DRB1*09:01

0.36 0.8373

HLA-
DPA1*02:01/
DPB1*14:01

0.53

Colibac-
tin

QKGFRFSIAYALNYL 425 438 HLA-
DPA1*02:01/
DPB1*14:01

0.01 1 NON-ALLER-
GEN

Non-Toxin

HLA-
DRB1*07:0

0.14

HLA-
DRB3*02:02

0.33

HLA-
DRB5*01:01

0.37 NON-ALLER-
GEN

Non-Toxin

HLA-
DPA1*01:03/
DPB1*04:01

0.47

HLA-
DRB1*01:01

1.6

HLA-
DRB1*09:01

1.6

ALPIAYLTAYYALVV 2797 2811 HLA-
DRB1*01:01

0.2 0.6023

HLA-
DRB1*12:01

1.11

HLA-
DRB1*01:01

1.8

HLA-
DPA1*01:03/
DPB1*04:01

0.56

HLA-
DPA1*01:03/
DPB1*02:01

1.2

PCWBR2 DALTAGTMAAE-
LEIP

115 129 HLA-
DQA1*04:01/
DQB1*04:02

0.61 0.8571 NON-ALLER-
GEN

Non-Toxin
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KK linkers. All predicted epitopes were carefully selected and shown to be non-allergen, 
non-toxic, and highly antigenic.

Population coverage and conservancy of epitopes

The potential efficacy of a potential vaccine can be determined by the frequency of dis-
tribution of HLA alleles in different ethnicities. In this study, population coverage in 
CD8+ and CD4+ T cells was investigated separately as well as their combined effect. The 
predicted T cell epitopes (CD8+ and CD4+) were exposed to population coverage in 16 
different geographical regions of the world, as shown in Fig. 4D. Analyzes showed that 
among 18 CD8+ T cell epitopes, the highest coverage was in Europe (98.07%), North 
America (95.61%), and West India (94.69%). After that, North Africa (89.06%), East Asia 
(88.21%), Northeast Asia (88.03%), West Africa (87.42%), South Asia (86.82%), South 
Africa (85.42%), East Africa (85.26%), Southwest Asia (84.63%), Southeast Asia (82.77%), 
Central Africa (78.93%), Oceania (74.80%), South America (76.88%) provided other cov-
erage. While the lowest coverage was related to the region Central America (7.01%).

Table 4  (continued)

Protein Peptide 
sequence

Start End Allele Score Antigenicity Allergenicity Toxicity

HLA-
DQA1*01:02/
DQB1*06:02

1.1

HLA-
DQA1*03:01/
DQB1*03:02

1.6

LEIPLLLTKSNKLPD 126 140 HLA-
DRB1*15:01

0.84 0.4256

CagA FMEFLAQNNT-
KLDNL

404 418 HLA-
DRB1*04:01

0.41 0.5405 NON-ALLER-
GEN

Non-Toxin

HLA-
DRB3*02:02

0.77

HLA-
DRB3*02:02

0.54 0.5348

HLA-
DRB1*13:02

0.7

YKFNQLLIHN-
NALSS

292 306 HLA-
DRB1*04:01

1.3 NON-ALLER-
GEN

Non-Toxin

VacA EYDLYKSLLSSKIDG 97 111 HLA-
DRB1*01:01

0.19 0.6034 NON-ALLER-
GEN

Non-Toxin

HLA-
DRB1*07:01

0.69

HLA-
DRB1*04:05

0.72

KLVIDEFYYSP-
WNYF

602 616 HLA-
DRB1*04:01

0.94 NON-ALLER-
GEN

Non-Toxin

HLA-
DPA1*01:03/
DPB1*04:01

0.61 0.6653

HLA-
DPA1*01:03/
DPB1*02:01

2
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On the other hand, the population coverage results for CD4+ T cell epitopes are 
shown in Fig. 4D. The highest coverage for CD4+ T-cell epitopes was found in East Asia 
(73.14%), North America (71.89%), and Europe (68.97%). Other results were reported 
in South Asia (58.10%), North Africa (54.47%), West Indies (52.58%), Northeast Asia 
(49.82%), West Africa (48.30%), Central Africa (43.89%), Oceania (43.57%), Southeast 
Asia (43.38%), East Africa (39.63%), and South America (32.67%). The lowest population 
coverage was for Southwest Asia (28.80%), Central America (23.09%) and South Africa 
(7.65%).

Secondary and 3D structure prediction of the vaccine construct

The secondary (i.e. α-helix, β-strand, and random coil) and 3D structure of the final vac-
cine construct were predicted by PSIPRED and RaptorX servers, respectively. According 
to the PSIPRED server, the final vaccine contained 34% of the amino acids in the α-helix 
structure and 16.66% and 49.34% of the amino acids in the β-strand and coil structures, 
respectively (Fig. 5A).

Table 5  Physicochemical properties of the final vaccine construct

Characteristics Assessment

Number of amino acids 924

Molecular weight 99 KDa

Theoretical pI 8.13

Total number of positively charged residues (Arg + Lys) 105

Total number of atoms 13,973

Chemical formula C4511H6895N1187O1370S10

Estimated half-life (mammalian reticulocytes, in vitro), (yeast, in vivo), and 
(Escherichia coli, in vivo)

1.9, 20 and 10 h

Aliphatic index 69.36

Instability index 23.00

Grand average of hydropathicity (GRAVY)  − 0.564

Solubility 0.460

Antigenicity 0.8952%

Allergenicity Non-Allergen

Fig. 3  The solubility of the vaccine structure according to QuerySol was 0.460, which showed that it has 
good solubility
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Five models were suggested by the RaptorX server for 3D structure in PDB format. 
Among the five models proposed by the RaptorX server, the structure of Model 3 
(Fig. 5B) was selected.

Refinement, validation and quality assessment of the tertiary structure

The GalaxyRefine server was used to increase the overall and partial structural quality 
of the final vaccine construct. Among the 5 models proposed by this server, the best-
refined model (5C) is shown in Fig.  5C with a GDT-HA score of 0.8888, an RMSD 
score of 0.571, a MolProbity score of 2.614, a Clash score of 32.2 and a Ramachandran 
score of 88.5 (Table 6). Therefore, it can be concluded that the quality of the refined 
model is high compared to the raw structure.

In validation, Ramachandran diagram analysis based on the PROCHECK server 
showed that 70.7%, 20.8%, 5.8% and 2.7% of protein residues were located in the most 
favored region, additional allowed, generously and disallowed (outlier) area of the final 
vaccine, respectively. (Fig.  4A). The quality and potential errors in the final vaccine 
3D model were verified by ProSA-web. The Z-score, which indicates the overall qual-
ity of the model, was − 9.2 (Fig. 4B). However, a model with a lower Z-score is consid-
ered a higher-quality model. In addition, a plot was drawn to check the quality of the 

Fig. 4  Vaccine 3D Structure Validation by UCLA-DOE LAB and ProSA-web. A The statistics of the 
Ramachandran chart show the most favorable region, additionally allowed, generously and disallowed 
(outlier) area with 70.7%, 20.8%, 5.8%, and 2.7%, respectively. B Based on ProSA-web, the Z-score of the 
refined model is − 9.2. C The server also draws a plot to check the quality of the local model, which negative 
values indicating that there is no error in the structure of the model. D Worldwide population coverage rates 
based on CD8+ T cell epitopes and CD4+ T cell epitopes
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local model, where negative values indicate that there is no error in the model structure 
(Fig. 4C).

Protein disulfide bridging for vaccine stability

Disulfide engineering was applied to the multi-epitope vaccine construct refined model 
via DbD2. Four pairs of amino acids from the vaccine construct: 375GLY-377GLY, 

Fig. 5  Displays the second and third structures of the final vaccine contracture. A In this Figure, the 
β-strands, the α-helix, and the random coils are shown in yellow, pink, and gray colors, respectively. B The 3D 
structure of a multi-epitope vaccine that was selected as the best model by the RaptorX server. β-strands, the 
α-helix, and the random coils are shown in yellow, red, and white-blue colors, respectively. C The 3D structure 
of multi-epitope vaccine after refinement

Table 6  Quality scores of 5 models predicted by GalaxyRefine server

Model GDT-HA RMSD MolProbity Clash score Poor rotamers Rama favored

Initial 1.0000 0.000 5.202 318.7 89.4 77.7

MODEL 1 0.8885 0.576 2.730 32.5 1.5 88.2

MODEL 2 0.8861 0.587 2.586 32.8 1.0 88.5

MODEL 3 0.8883 0.586 2.568 30.3 1.0 87.9

MODEL 4 0.8899 0.588 2.581 31.1 1.0 87.7

MODEL 5 0.8888 0.571 2.614 32.2 1.1 88.5
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642THR-645LYS, 668LEU-702SER, and 826ASN-844VAL, were selected for disulfide 
bond by the mutation because the bond energy had less than 1 kcal/mol. In addition, 
these mutations are shown in Fig. 6.

Molecular docking of multi‑epitope vaccine with TLR4 receptor

Molecular docking can evaluate the interactions between a ligand molecule and the 
receptor molecule to check the stability and binding affinity of their docked com-
plex [84]. In this study, TLR4 was selected as the receptor for molecular binding. The 
energy scores obtained for best docking the vaccine-TLR4 complex from ClusPro 
v2.0 and PatchDock servers were − 1232.7 and − 32.40, respectively, which indicates 
a very good binding affinity. The score of the top models is shown in Table 7. These 
complexes were subjected to MD simulation to analyze their stability. In addition, a 
schematic diagram of the interaction between the vaccine structure and TLR4 was 
created by LigPlot + software (Fig.  7). Hydrogen bonds and salt bridge interactions 
were obtained by the DIMPLOT program. DIMPLOT was shown, Gly370, Arg428, 
Ser431, Tyr409, Gly432, Asp411, Ser285, Asp307, Val388, Gly233, Ser230, Gly572, 
Ser173, Arg140, Asp571, Asp478 residues from chain A of the vaccine were bound 
to Gln219, Gln188, Gln163, Ser140, Arg268, Tyr191, Lys278, Asn279, Glu94, Arg227, 
Asn176, His68, Leu117 residues from chain B by hydrogen bonds with bond lengths 
of 2.84 angstroms (Ǻ), 2.96 Ǻ, 3.26 Ǻ, 1.48 Ǻ, 2.94 Ǻ, 2.55 Ǻ, 2.54 Ǻ, 2.85 Ǻ, 3.21 Ǻ, 
2.44 Ǻ, 2.66 Ǻ, 2.55 Ǻ, 1.5 Ǻ, 2.66 Ǻ, 3.33 Ǻ respectively. Also, the Asp571 residue 
from chain A of the vaccine binds to His68 residue from chain B of the TLR4 by salt 
bridge interaction.

Molecular dynamic simulation

To evaluate the dynamic properties of the final vaccine, MD simulation was performed 
for 100 ns the results are represented in Fig. 8. At first, it is important to ensure that the 
simulation time is sufficient for a particular system. The best method for this is to meas-
ure the RMSD of the system during MD simulation. The results of this analysis is showed 

Fig. 6  Disulfide engineering display in the final vaccine construct. The original form is shown on the left and 
the mutant form is on the right
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in Fig. 8A and as it is clear the protein reached its equilibrated state at the time of 50 ns 
was which followed by some fluctuations in diagram and this confirms that the simula-
tion time is enough for this system. Also it can be seen that there is no sever fluctuation 
in RMSD diagram which is an index for structural stability of the as designed vaccine. 
Another issue that might be considered in order to vaccine retain its function is ensuring 
that the protein is not compressed and the epitopes are not inaccessible. Analyzing the 
radius of gyration (Rg) of protein is used in MD to evaluate time dependence changes in 

Table 7  Top models of docked complexes of designed vaccine with TLR4

Cluster Members Representative Weighted score

0 147 Center  − 843.1

Lowest energy  − 1232.7

1 68 Center  − 875.7

Lowest energy  − 1098.3

2 65 Center  − 950.8

Lowest energy  − 1080.8

3 60 Center  − 1241.8

Lowest energy  − 1251.3

4 56 Center  − 934.1

Lowest energy  − 978.6

5 49 Center  − 863.9

Lowest energy  − 1174.1

6 26 Center  − 856.9

Lowest energy  − 926.3

7 22 Center  − 844.5

Lowest energy  − 949.0

8 18 Center  − 993.8

Lowest energy  − 993.8

9 17 Center  − 935.4

Lowest energy  − 935.4

10 16 Center  − 856.4

Lowest energy  − 946.8

Fig. 7  Representation of interacting residues between vaccine docked with TLR4. The Gly370, Arg428, 
Ser431, Tyr409, Gly432, Asp411, Ser285, Asp307, Val388, Gly233, Ser230, Gly572, Ser173, Arg140, Asp571, 
Asp478 residues from chain A of the vaccine were bound to Gln219, Gln188, Gln163, Ser140, Arg268, Tyr191, 
Lys278, Asn279, Glu94, Arg227, Asn176, His68, Leu117 residues from chain B by hydrogen bonds
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compactness of its structure. Figure 8b shows the changes in Rg for the designed vaccine 
during the simulation. As can be seen, the value of Rg is increased for the protein which 
indicated that its conformation is expanded after simulation. Another confirmation for 
this can be achieved by analyzing the value of solvent accessible surface area (SASA). 
The result of SASA analysis is reported in Fig. 8c and as it is clear in its diagram, the sur-
face area is increased along the simulation time. Together with Rg analysis, these results 
suggest that the structure of protein did not undergo compactness and this prevent disa-
bling the vaccine epitopes. Another important factor for vaccine Immuno-modulation is 
stability in its secondary structures which can be investigated by an analysis called DSSP. 
Figure 8d shows the changes in protein secondary structures during the simulation time. 
After 100 ns of MD simulation there is just less than 8 percent of protein residues which 
undergoes denaturation from their secondary structures. This predicts structural stabil-
ity of the designed vaccine under the similar condition to which it may be assigned. In 
conclusion the results of MD simulations confirm that the as designed vaccine maintain 
its functional state in solution and can be tested for its Immuno-modulation ability in 
experimental.

NMA evaluation of the vaccine‑receptor complex

NMA was conducted to scrutinize protein stabilization and their large-scale mobility 
[92]. MD simulation of the vaccine candidate/TLR4 interactions is shown in Fig.  9. 
Figure 9A shows the deformation of the protein flexibility, which depends on the indi-
vidual distortion of each residue depicted by the chain hinges. On the other hand, 
locations with hinges are areas with high deformability and illustrate a stable binding. 
The b-factor shows the relative amplitude of atomic displacement for the equilibrium 
position. According to Fig. 9B, few fluctuations of atomic displacement were observed 
for the TLR4-vaccine complex. Figure 9C showed the eigenvalue determined for the 
complex, which was 1.272 e-07. This Figure also showed that it has relatively least 
energy required to deform its structure based on the lowest eigenvalue. Figure  9D 

Fig. 8  The final construct of the molecular dynamics simulation vaccine with GROMACS software
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shows the variance plot of the complexes. In this diagram, the variance associated 
with the eigenvalue is inversely related to the individual variance shown by the blue-
colored bands and the cumulative variance shown by the green bands (Fig. 9D). Fig-
ure 9E shows a covariance matrix map of the interaction between residue pairs of the 
proteins of a complex (red: correlated motion between a pair of residues, white: non-
correlated motion, and blue: anti-correlated motion). Finally, the stiffness study of the 
protein complex was performed using elastic network analysis. As shown in Fig. 9F, 
the darker the gray dots, the greater the protein stiffness in certain sections.

Immune simulation

The multi-epitope vaccine designed to evaluate the specific immune response of 
the vaccine was submitted to the C-IMMSIM v10.1 server. Secondary and tertiary 
immune responses showed higher levels of antibodies (IgM + IgG, IgG1 + IgG2, IgM, 
IgG1) than the primary immune response, which coincided with a decrease in antigen 
levels (Fig. 10A). In addition, several long-lasting B cell isotypes were found, indicat-
ing possible isotype switching potentials and memory B cell formation (Fig. 10B). On 
the other hand, Fig.  10C shown the increase in cell proliferation in B cells as well 
as the presentation of antigens after vaccination. According to Fig.  10D–F, the lev-
els of TH (helper) and TC (cytotoxic) cell populations also increased significantly in 
memory development. Increased macrophage activity and antigen presentation are 
shown in Fig. 10G. Figure 10H shows a significant increase in interferon-gamma titer 
as well as a moderate increase in interleukin 2 (IL-2) (Fig. 10H) after the third injec-
tion of the vaccine. Finally, we saw a significant increase in Th1 (Fig. 10I). All of these 
data suggest that our candidate multi-epitope vaccine can induce an effective immune 
response that can protect against pathogens.

Fig. 9  The Molecular dynamics simulation of the vaccine–TLR4 complex. Six graphs including A 
Deformability index, B B-factor values calculated by normal mode analysis, C The eigenvalue of the docked 
complex, D The covariance matrix between pairs of residues, E The elastic network model are shown, F The 
darker the gray dots, the greater the protein stiffness in certain sections
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Codon adaptation and in silico cloning

The CAI and GC content of the long nucleotide sequence of 2772  bp was evaluated 
to optimize the vaccine construct. Better expression (transcription and translation) in 
organisms requires a GC content between 30 and 70% to be optimal, while a CAI value 
should be higher than 0.8 to 1 [93, 94]. The GC content and CAI values of the optimized 
nucleotide sequence obtained from the Jcat server were 50.180% and 0.9913, respec-
tively. EcoRI (GAA​TTC​) and BamHI (GGA​TCC​) restriction sites were added to the N 
and C terminals of the final vaccine codon sequence. Finally, SnapGene software was 
used to integrate the adapted DNA sequence to the pET-28a (+) vector, between the 
EcoRI and BamHI restriction sites (Fig. 11).

MRNA prediction of the designed vaccine

The secondary structure of the vaccine MRNA sequence was predicted by the RNAfold 
server with a minimum free energy score of − 861.60 kcal/mol. A lower MFE indicates a 
higher thermodynamic stability of the MRNA secondary structure.

Fig. 10  Immunization simulation results by C-ImmSim of the construct of multi-epitope vaccine as an 
antigen. A Demonstration of immunoglobulin production in response to antigen injection after vaccine 
administration, shown as different color peaks. B B cell population after three vaccine injections, which 
indicates an increase in different types of B cells and their class-switching potential. C Displays the population 
results per state of B cell. D The evolution of T-helper cells. E Population per state of T-helper cell. F Production 
of cytotoxic-T cells after vaccine injection. G Macrophages population per state. H Induction of cytokines and 
interleukins (increased production of IFN-γ and IL-2) after vaccination. I Th1-mediated immune response
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Discussion
CRC is known as the fourth cause of death among cancers and predisposing factors like 
different lifestyle, genetic and environmental risk reasons can promote the cancer [95]. 
CRC is induced by normal epithelium alteration into high-proliferative epithelial cells 
and results in the reorganization of intestinal epithelial cells and adenoma-carcinoma 
formation. This cancerous process metastasized to the colon and may progress to CRC 
[96]. There is a strong association between the presence of S. bovis, B. fragilis, H. pylori, 
F. nucleatum, E. faecalis, E. coli, and P. anaerobius and the incidence of CRC [1, 14, 95]. 
Even with antibiotic treatment, there is a high risk for the recurrence of disease and the 
emergence of antibiotic-resistant strains, so there is a need to develop novel methods 
like immunization via vaccines against pathogenic and toxigenic strains [97].

Peptide-based vaccines, especially those contain cocktail of several peptides, show a 
significant effect on the treatment outcome of patients with CRC [98]. These vaccines 
target either host proteins [99] or immunogen proteins of pathogens related to cancer 
[100].

A desirable multi-epitope vaccine should be consisting of peptides with capable of 
generating CTL, TH and B cells and triggering potential immune response against [101]. 
Today, the design of multi-epitope vaccines is recognized as an emerging area that is 
of considerable importance. However, vaccines designed with this approach have been 
shown in vivo efficacy with protective immunity, but have also entered phase I clinical 
trials [102–105].

Fig. 11  In silico cloning of the final vaccine construct into pET28a (+) expression vector. The vector was 
shown in black color, while the red color provided the gene coding for the vaccine to construct a protein. 
EcoRI and BamHI restriction enzyme sites have been proposed as cutting sites
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This study aimed to design a multi-epitope and prophylactic vaccine against colorectal 
cancer-related pathogens based on the immunoinformatics approach. Considering the 
importance of the virulence factors, 10 proteins from different microorganisms were 
selected to predict effective epitopes.

A total of 56 epitopes (924 amino acids) including 19 epitopes for B cell, 19 epitopes for 
MHC I binding, and 18 epitopes for MHC II binding were considered. For the epitope 
to be effective and safe for the host, it must be antigenic, non-allergenic, non-toxic, and 
stable. All the selected epitopes were antigenic, non-allergenic and non-toxic.

The suitable molecular weight of the designed vaccine makes it easy for purification, so 
can be considered a suitable vaccine. Higher aliphatic index values indicate greater ther-
mostability at several temperatures and negative GRAVY values indicate the hydrophilic 
nature of the candidate vaccine, so it can show strong interactions with water molecules. 
The vaccine instability index was calculated to be 23.00 and since it was less than 40.00, 
it was considered a stable protein. Also, the designed vaccine has good solubility.

PSIPRED and RaptorX web servers were used to evaluate the structure of the second 
and 3D candidate multi-epitope vaccines, respectively. Accordingly, the PSIPRED server 
predicted the α-helix, β-strand, and coil of the candidate vaccines to be 34%, 16.66%, and 
49.34%, respectively.

In the final constriction refining, five proposed refined models were introduced and 
model 5 was selected as the best-refined model with GDT-HA 0.8722, an RMSD score 
of 0.586 a MolProbity score of 2.582, a Clash score of 32.1, and a Ramachandran score 
of 88.3. Studies have shown that RMSD < 2.0 Å corresponds to good docking solutions 
[106], and in the present study, our final RMSD construct was also in the best condition.

Because disulfide bonds play an important role in folding, stability, and protein func-
tion, if they are ignored, the stability of the target protein can be reduced [107]. For this 
reason, we saw 4 pairs of 375GLY-377GLY, 642THR-645LYS, 668LEU-702SER, and 
826ASN-844VAL amino acids with less than one energy bond, which indicates more sta-
bility of the final construct.

Different frequencies of HLA type vary in different ethnicities around the world due 
to the high polymorphism of the MHC molecule. The selected alleles considered in this 
study proved to show sufficient population coverage a large scale (Fig. 4D). The highest 
population coverage in CD8+ T cells is in Europe (98.07%), North America (95.61%), and 
West India (94.69%). While the lowest CD8+ T cells population coverage is in Central 
America (7.01%). On the other hand, the largest population coverage in CD4+ T cells is 
in East Asia (73.14%), North America (71.89%), and Europe (68.97%). The lowest popu-
lation coverage was for Southwest Asia (28.80%), Central America (23.09%) and South 
Africa (7.65%).

Two online servers, ClusPro 2.0 and PatchDock & FireDock were used for docking 
analysis to increase our forecast accuracy. These servers pointed to a strong interaction 
between the TLR4 and the designed vaccine. The energy scores obtained for binding the 
vaccine-TLR4 complex using these two servers indicated a very good binding affinity. In 
summary, the MD simulation findings obtained from the present study confirm that the 
designed vaccine molecule can interact optimally with the TLR4 protein. The C-IMMSIM 
server was then used to evaluate the ability of the candidate vaccine to initiate an immune 
response with an immune simulation. However, based on the results, enhancement of 
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memory B cells and T cells was visible. Also, the secondary and tertiary immune responses 
showed higher levels of antibodies than the primary immune response. On the other hand, 
a significant increase in IFN-γ titer as well as a moderate increase in IL-2 was shown after 
the third injection of the vaccine. All these data suggest that our candidate multi-epitope 
vaccine can induce an effective immune response that can protect against pathogens.

Finally, to ensure the translation efficiency of the multi-epitope vaccine designed in a 
specific expression system, the vaccine MRNA was amplified using the JCAT. Adaptive 
DNA sequences between EcoRI (GAA​TTC​) and BamHI (GGA​TCC​) restriction enzyme 
cleavage sites were then added to N and C terminals, respectively, and subsequently 
cloned into pET28a (+), the expression vector. The codon adaptability index (0.98) and 
GC content (53.63%) were promising for the expression of high-level proteins in bacte-
ria. On the other hand, during predicting the stability of the secondary structure of the 
vaccine mRNA, the RNAfold server produced less negative and less free energy, so it can 
be concluded that the predicted vaccine can be stable after in vivo transcription.

Conclusion
CRC is one of the most common cancers worldwide. Increasing evidence suggests that 
gut microbiota dysbiosis is closely related to CRC. Streptococcus bovis, Helicobacter 
pylori, Bacteroides Fragilis, Fusobacterium nucleatum, Enterococcus faecalis, Escherichia 
coli, and Peptostreptococcus anaerobius are the main microbial agents involved in CRC 
pathogenesis. Therefore, in the present study, an in silico vaccine was designed against 
their most important epitopes, then its effectiveness was evaluated through different 
immunoinformatics servers. The designed multi-epitope vaccine seems to act as an 
effective prophylactic candidate vaccine since the results showed an increase in antibod-
ies, T lymphocytes, and its subtypes (such as helper T lymphocytes and cytotoxic T lym-
phocytes) as well as INF-γ levels. In general, the application of these results is pending 
validation in the wet lab experimental models.

Limitations
Each of these bioinformatics predictive servers has limitations that are not comparable 
to the experimental method. For example, the C-IMMSIM server simulator is limited 
because it does not have the disease layer and is unable to detect vaccine efficacy. On the 
other hand, NMA is probably the least computationally expensive method for studying 
the dynamics of macromolecules, but the MD method is more accurate than NMA.

A major limitation of this study is the lack of the experimental validation and evalua-
tion of the safety and efficacy of the designed vaccine construct. However, major steps 
such as laboratory and animal studies are needed to justify our findings to determine 
safety, efficacy, and immunogenicity as a possible preventive measure. In general, the 
application of these results is pending validation in the wet lab experimental models.
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