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Abstract 

Background:  Hepatocellular carcinoma (HCC) has a high incidence and mortality 
worldwide, which seriously threatens people’s physical and mental health. Coagula‑
tion is closely related to the occurrence and development of HCC. Whether coagula‑
tion-related genes (CRGs) can be used as prognostic markers for HCC remains to be 
investigated.

Methods:  Firstly, we identified differentially expressed coagulation-related genes of 
HCC and control samples in the datasets GSE54236, GSE102079, TCGA-LIHC, and Gen‑
ecards database. Then, univariate Cox regression analysis, LASSO regression analysis, 
and multivariate Cox regression analysis were used to determine the key CRGs and 
establish the coagulation-related risk score (CRRS) prognostic model in the TCGA-LIHC 
dataset. The predictive capability of the CRRS model was evaluated by Kaplan–Meier 
survival analysis and ROC analysis. External validation was performed in the ICGC-LIRI-
JP dataset. Besides, combining risk score and age, gender, grade, and stage, a nomo‑
gram was constructed to quantify the survival probability. We further analyzed the cor‑
relation between risk score and functional enrichment, pathway, and tumor immune 
microenvironment.

Results:  We identified 5 key CRGs (FLVCR1, CENPE, LCAT, CYP2C9, and NQO1) and 
constructed the CRRS prognostic model. The overall survival (OS) of the high-risk group 
was shorter than that of the low-risk group. The AUC values for 1 -, 3 -, and 5-year OS in 
the TCGA dataset were 0.769, 0.691, and 0.674, respectively. The Cox analysis showed 
that CRRS was an independent prognostic factor for HCC. A nomogram established 
with risk score, age, gender, grade, and stage, has a better prognostic value for HCC 
patients. In the high-risk group, CD4+T cells memory resting, NK cells activated, and B 
cells naive were significantly lower. The expression levels of immune checkpoint genes 
in the high-risk group were generally higher than that in the low-risk group.

Conclusions:  The CRRS model has reliable predictive value for the prognosis of HCC 
patients.
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Background
Global cancer statistics in 2020 indicates that there are approximately 906,000 new 
cases and 830,000 deaths of primary liver cancer worldwide [1]. Primary liver cancer 
is the sixth most common cancer and the third most common cause of cancer-related 
deaths worldwide, with hepatocellular carcinoma (HCC) accounting for 75–85% of 
primary liver cancers. The incidence and mortality of liver cancer continue to increase 
compared to the statistics of about 841,000 new cases and 782,000 deaths of primary 
liver cancer worldwide in 2018 [2]. Due to the insidious onset of HCC, most patients 
are diagnosed at an advanced stage of the disease, so the best treatment time is lost. 
The prognosis is extremely poor, causing a serious economic burden, and seriously 
threatening people’s physical and mental health. In addition, the pathogenesis of HCC 
remains unclear. Therefore, identifying key molecules associated with HCC, under-
standing the molecular mechanisms of HCC, and finding therapeutic targets will con-
tribute to the early diagnosis, treatment, and prognosis of HCC.

Tumor patients usually show a hypercoagulable state [3]. Studies have found that 
the risk of venous thromboembolism (VTE) in tumor patients is 9 times higher 
than in the general population [4], which seriously affects the survival rate of tumor 
patients. The incidence of portal vein thrombosis (PVT) caused by HCC is as high 
as 40% [5]. PVT is an indicator of the aggressiveness of HCC and can be used as 
an important predictor of the poor prognosis of HCC patients [6]. Studies [7] have 
found that the tissue factor (TF) of extrinsic coagulation pathway can promote HCC 
tumorigenesis. Von Willebrand factor antigen (vWF-Ag) can be used as a prognos-
tic marker for postoperative outcomes of HCC patients, which is closely related to 
the incidence of postoperative complications and long-term outcomes [8]. Fibrin-
like protein 1(FGL1) is a member of the fibrinogen-associated protein (FREP) family. 
The expression level of FGL1 is related to the progression and prognosis of HCC [9]. 
Therefore, we focused on the prognostic value of coagulation-related genes (CRGs). 
Furthermore, studies have demonstrated the coagulation cascade plays an important 
role in the tumor immune microenvironment (TME) [10].

TME is closely related to tumor generation, survival, and metastasis of HCC [11]. 
Tumor coagulome is a molecular effector network driven by cancer in which many 
genes and proteins jointly promote the balance between coagulation and fibrinolysis. 
Tumor coagulome and its regulation have become a hot topic in cancer research [12]. 
Therefore, the detection of coagulation function can provide a clinical basis for early 
diagnosis of HCC, which is of great significance for reducing the risk of postoperative 
death in HCC patients.

At present, few studies have explored the prognosis and immune status of HCC 
from the perspective of CRGs. In this study, we screened CRGs for HCC by multiple 
datasets and Genecards database. A coagulation-related risk score (CRRS) prognos-
tic model for HCC was constructed based on CRGs in the TCGA dataset and vali-
dated for predictive ability in the ICGC dataset. Further, we analyzed the correlation 
between risk score and clinicopathological indicators. Then, combined with risk score 
and other prognostic clinical indicators, a nomogram model was constructed to quan-
tify the survival probability. Finally, the relationship between risk score and functional 
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enrichment, as well as TME was studied. This study provides a molecular basis for the 
complex mechanism of HCC and a potential target for the treatment of HCC.

Materials and methods
Data download and sample information collection

The expression profile data and corresponding platform annotation information of 
microarray datasets GSE54236 and GSE102079 were downloaded from the GEO data-
base (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). The GSE54236 dataset included 81 HCC 
tissues and 80 cirrhotic non-malignant tissues. A total of 152 HCC tissues and 105 
control tissues were included in the GSE102079 dataset. We also downloaded clinical 
information data and RNA-seq data from The Cancer Genome Atlas (TCGA) database 
(https://​portal.​gdc.​cancer.​gov/) and International Cancer Genome Consortium (ICGC) 
database (https://​dcc.​icgc.​org/). There were 374 HCC samples and 50 control samples 
in the TCGA-LIHC dataset, and 243 HCC samples and 202 control samples in the 
ICGC-LIRI-JP dataset. When analyzing the prognostic value of CRGs for HCC, some 
cases with incomplete clinical data were excluded. A total of 370 patients were included 
in the TCGA-LIHC dataset and 232 patients were included in the ICGC-LIRI-JP data-
set (Additional file 1: Table S1). In addition, 4332 CRGs were retrieved from the Gen-
ecards database (https://​www.​genec​ards.​org/) using the keyword "coagulation related 
genes". We validated the expression of key CRGs in LIHC tissues and normal tissues in 
the UALCAN database (http://​ualcan.​path.​uab.​edu/​analy​sis.​html).

Obtaining the differentially expressed coagulation‑related genes

We firstly converted the probes into gene symbols through the corresponding platform 
annotation information. The GSE54236, GSE102079, and TCGA-LIHC datasets were 
normalized by using "limma" package. We finally identified the differentially expressed 
genes (DEGs) with the cut-off conditions of |log2FC|> 1 and adjusted P < 0.05. The vol-
cano plot of DEGs was drawn by using the “ggplot2” package. Additionally, a Venn dia-
gram of differentially expressed coagulation-related genes (DECRGs) was drawn for 
visualization.

Construction of the coagulation‑related genes prognostic model

We firstly used R software package "survival" for univariate Cox regression analysis to 
identify the genes that were significantly associated with survival by calculating the rela-
tionship between DECRGs and overall survival (OS) in the TCGA-LIHC dataset. Then, 
the selected genes were further screened by LASSO regression with the R package "glm-
net". The variation in regression coefficients of the prognostic genes was identified by 
selecting the optimal and minimal criteria of the penalization parameter. Subsequently, 
multivariate Cox regression analysis helped to determine the key CRGs and establish 
the CRRS prognostic model. Akaike information criterion (AIC) was used to measure 
the accuracy and brevity of the model. The model with the lowest AIC value was con-
sidered to be the most simple and effective model with the least information loss when 
predicting the result. The concordance index (C-index) was also calculated as a measure 
of accuracy in predicting survival outcomes.

https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
https://www.genecards.org/
http://ualcan.path.uab.edu/analysis.html
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Tumor tissue collection and qPCR detection

A total of 18 human HCC and 16 adjacent tissues were collected in the Department 
of General Surgery, Lanzhou University Second Hospital. All experiments involving 
human tissues complied with the principles of the Declaration of Helsinki and have 
been approved by the Medical Ethics Committee of Lanzhou University Second Hos-
pital. The total RNA was extracted by using TRNzol Reagent, and was reverse-tran-
scribed with FastKing gDNA Dispelling RT SuperMix (TIANGEN, Beijing, China). 
All qPCR reactions were conducted with RotorGene 6000 PCR system (Qiagen) and 
performed with SsoFast EvaGreen Supermix (Bio-Rad). The relative expression of the 
gene was calculated by the 2−ΔΔCt method. The primers used were shown in Addi-
tional file 2: Table S2.

Development and validation of the coagulation‑related risk score model

A total of 370 patients were divided into high-risk and low-risk groups based on 
median risk score (0.936) in the TCGA-LIHC dataset. The accuracy of the CRRS 
model was evaluated by Kaplan–Meier survival curve and ROC curve. We used the 
"survminer" package to draw Kaplan–Meier survival curve to analyze the relationship 
between risk score and OS. The package "survival" and "timeROC" were used to draw 
the ROC curve. The AUC value of the ROC curve was calculated to evaluate the per-
formance of the prognostic model. In addition, the "pheatmap" package was used to 
draw risk curve, survival status plot, and heatmap of model genes in high-risk and 
low-risk groups. The ICGC-LIRI-JP dataset was employed for external validation of 
the prediction effect of the model.

Construction and validation of the clinical prognostic model

Univariate and multivariate Cox regression analyses were conducted on the TCGA 
and ICGC datasets to evaluate whether the CRRS can be used as an independ-
ent prognostic factor. To quantify the survival probability of patients, a nomogram 
integrating the risk score and age, gender, grade, and stage was constructed by the 
"rms" package. Simultaneously, a decision curve analysis (DCA) was performed with 
"ggDCA" package to determine the clinical application value of the risk score model 
by calculating the net benefits. Further, the calibration curve was drawn to evaluate 
the predictive accuracy of the nomogram.

Enrichment analysis

To understand the functions of DEGs between the high- risk and low-risk groups, we 
used the "org.Hs.eg.db" and "clusterProfiler" packages to conduct the Gene Ontology 
(GO) enrichment analysis and Gene Set Enrichment Analysis (GSEA). GO enrich-
ment analysis includes biological process (BP), cellular component (CC) and molecu-
lar function (MF). Adjusted P < 0.05 was considered as statistically significant.

Risk score and TME

The CIBERSORT database (http://​ciber​sort.​stanf​ord.​edu) provides a computational 
method for estimate immune cell composition from gene expression profiles of large 

http://cibersort.stanford.edu
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numbers of samples. Combined with CIBERSORT, the R software was used to trans-
form gene expression profile data into the proportion data of immune cells corre-
sponding to samples, run with 1000 permutations. The R software “fmsb” package 
was used to draw radar map of immune cell. The ssGSEA algorithm with the “gsva” 
package was used to determine the differences in immune function between the 
high-risk and low-risk groups. We further compared the correlation between the risk 
score and the expression levels of immune checkpoint genes. The Wilcoxon test was 
employed to contrast the successive variates between the two groups.

Statistical analysis

The Wilcoxon test was employed to contrast the successive variates between the two 
groups. The Kruskal–Wallis test was used for multiple comparisons. The chi-squared 
test was used for the comparison of categorical variable data between the two groups. 
Hazard ratios and 95% Confidence Interval were calculated using univariate and multi-
variate Cox analyses. All statistical P values were two-sided. *P < 0.05 was considered to 
be statistically significant. Statistical analyses were performed with the R 4.1.0 software 
and the GraphPad Prism 8.0.1 software.

Results
Identification of DECRGs

To obtain DEGs of HCC and control group, we analyzed the GSE54236, GSE102079 and 
TCGA-LIHC datasets with a Bayesian test. The screening criterion was | log2FC |> 1 
and adjusted P < 0.05. In the GSE54236 dataset, 687 DEGs (including 255 up-regulated 
genes and 432 down-regulated genes) were found (Fig. 1A). 763 DEGs were identified 
to be differentially expressed in the GSE102079 dataset, among which 284 were up-
regulated and 479 were down-regulated (Fig. 1B). In the TCGA-LIHC dataset (Fig. 1C), 
7667 DEGs were identified (including 7273 up-regulated genes and 394 down-regulated 

Fig. 1  Identification of DECRGs. A The volcano plot of DEGs in the GSE54236 dataset. B The volcano plot of 
DEGs in the GSE102079 dataset. C The volcano plot of DEGs in the TCGA-LIHC dataset. D The Venn diagram of 
share DEGs among GSE54236, GSE102079, and TCGA-LIHC datasets. E The Venn diagram of DECRGs
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genes). There were 214 overlapping DEGs in the three datasets (Fig. 1D). A total of 4332 
CRGs were obtained in Genecards database. After intersecting the DEGs with CRGs, we 
obtained 86 DECRGs (Fig. 1E).

Construction of the prognostic model based on key CRGs

To identify the key CRGs with prognosis significance, we conducted univariate Cox 
regression analysis and screened out 28 genes significantly related to the survival of 
HCC with P < 0.05 in the TCGA dataset, of which 19 were risk factors and 9 were pro-
tective factors (Fig.  2A). Further, 9 genes were obtained by LASSO regression analy-
sis with the minimal penalization parameter. (Fig.  2B–C). Finally, 5 key CRGs were 
screened by multivariate Cox analysis and a CRRS prognostic model was constructed 
with AIC value is 1245.48 and C-index is 0.7 (Fig. 2D). The 5 key CRGs were as follows: 
FLVCR1, CENPE, LCAT, CYP2C9, NQO1. The prognostic model showed that FLVCR1, 
CENPE and NQO1 were risk factors, while LCAT and CYP2C9 were protective fac-
tors. The coefficient of CRGs was presented in Table1. The CRRS prognostic model for 
calculating HCC risk score was as follows: risk score = (0.1065 * FLVCR1) + (0.3748 * 
CENPE) + (− 0.0082 * LCAT) + (− 0.0019 * CYP2C9) + (0.0019 * NQO1).

Fig. 2  Identification of a CRRS prognostic model for HCC. A The forest plot of prognostic CRGs identified by 
univariate Cox analysis. B Cross validation for tuning parameter selection in the LASSO regression analysis. C 
The 9 key CRGs were selected by the LASSO regression analysis
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Meanwhile, we analyzed the expression of key CRGs in 371 LIHC tissues and 50 nor-
mal tissues in the UALCAN online tool. The results revealed FLVCR1, CENPE and 
NQO1 were significantly higher expressed in HCC group, while LCAT and CYP2C9 
were significantly lower compared with the control group (Fig.  3). To confirm the 
expression of key CRGs, we collected HCC and normal tissues from Lanzhou University 
Second Hospital, and performed qPCR to detect the relative mRNA expression of key 
CRGs. The results were consistent with online data. The results suggested that FLVCR1, 
CENPE and NQO1 had a higher expression, while LCAT and CYP2C9 had a lower 
expression compared with the normal group (Fig. 4).

Development and validation of the CRRS prognostic model

To evaluate and validate the predictive potential of the risk score prognostic model, 
we analyzed the differences in survival between the high-risk and low-risk groups. The 
results showed that the OS of the high-risk group was shorter than that of the low-risk 
group (P < 0.001) in the TCGA and ICGC datasets (Fig. 5A and D). The time-dependent 
ROC curve demonstrated that the AUC values for 1 -, 3 -, and 5-year OS in the TCGA 
dataset were 0.769, 0.691, and 0.674, respectively (Fig. 5B). Similarly, in the ICGC data-
set, the AUC values for 1-, 3-, and 5-year OS were 0.787, 0.736, and 0.312, respectively 

Table 1  The coefficient of the 5 genes

Gene symbol Gene description Coefficient

FLVCR1 Feline leukemia virus subgroup C cellular receptor 1 0.1065

CENPE Centromere protein E 0.3748

LCAT​ lecithin-cholesterol acyltransferase − 0.0082

CYP2C9 Cytochrome P450, family 2, subfamily C, polypeptide 9 − 0.0019

NQO1 NAD(P)H dehydrogenase, quinone 1 0.0019

Fig. 3  The expression levels of key CRGs in HCC and normal tissues
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(Fig. 5E). Furthermore, in the ROC curve containing risk score, age, gender, stage, and 
grade, the AUC value of the risk score was higher than that of other indicators in the 
TCGA dataset (Fig. 5C). In the ICGC dataset, the AUC value of the risk score was higher 
than that of other indicators except for stage (Fig.  5F). In addition, as the risk score 
increased, so did the number of deaths. Compared with the low-risk group, FLVCR1, 
CENPE, and NQO1 were highly expressed in the high-risk group, while LCAT and 
CYP2C9 were lowly expressed (Fig.  5G–I). The results of ICGC were consistent with 
TCGA (Fig. 5J–L).

Correlation of prognostic model risk score with clinical indicators

To determine whether the risk score prognostic model is applicable to HCC patients 
with different clinical characteristics, we analyzed the correlation between risk score 
and age, gender, pathological grades, tumor stages, and TNM stages, and identified a 
significant correlation between risk score and pathological grades, tumor stages, and T 
stages in the TCGA-LIHC dataset (P < 0.001) (Fig. 6A). The Kruskal–Wallis test showed 
that there were differences in risk score among pathologic grades, tumor stages, and T 
stages, although the differences in the risk score among some subgroups were not statis-
tically significant (P > 0.05). The risk score tended to rise with pathological grades, tumor 
stages, and T stages (Fig. 6B–D).

Establishment and assessment of the nomogram for survival prediction

Since CRRS was significantly associated with the malignancy of HCC, we determined 
whether CRRS was a clinically independent prognostic factor for HCC patients by uni-
variate and multivariate Cox regression analyses. As predicted, the results suggested that 
CRRS is an independent prognostic factor for HCC (Fig.  7A–D). Subsequently, based 
on the TCGA dataset, we further constructed the nomogram of risk score, age, gen-
der, grade, and stage, which provided a visual method for predicting the 1 -, 3 -, and 
5-year survival probability of HCC patients (Fig. 7E). The DCA showed that CRRS has a 

Fig. 4  Relative mRNA expression of key CRGs in HCC and normal tissues detected by qPCR. *P < 0.05
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higher clinical net benefit than other clinical indicators (Fig. 7F). The calibration curve 
displayed that there was a good agreement between the survival probability predicted 
by the nomogram and the actual observed probability (Fig. 7G). These results suggested 
that the established nomogram has a good prognostic value for HCC patients.

Function and pathway enrichment analysis based on the CRRS model

To further explore the differences in the gene functions and pathways between the 
subgroups classified by CRG risk score, we identified the 5707 DEGs between the 
high-risk and low-risk groups, which mainly enriched in the ribosome and spli-
ceosome. Biological process involved ribosome biogenesis, RNA splicing, and 
cytoplasmic translation. The cellular component mainly focused on ribosome and 

Fig. 5  Evaluation and validation of the survival and risk of CRRS model. A, D The survival analysis of CRRS 
model in the TCGA-LIHC and ICGC-LIRI-JP datasets. B, E The ROC analysis of CRRS model in the TCGA-LIHC 
and ICGC-LIRI-JP datasets. C, F The ROC curve analysis of the CRRS model and clinical indicators in the 
TCGA-LIHC and ICGC-LIRI-JP datasets. G-I The distribution of risk score, survival status, and the heatmap of the 
5 genes in the TCGA-LIHC dataset. J-L The distribution of risk score, survival status, and the heatmap of the 5 
genes in the ICGC-LIRI-JP dataset
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spliceosome. The molecular function analysis showed that most of genes were 
involved in transcription coregulator activity, cadherin binding, ubiquitin-like 
protein ligase binding, GTPase binding, and ribonucleoprotein complex binding 
(Fig. 8A).

GSEA analysis indicated that the most enriched pathways in the low-risk group were 
complement and coagulation cascades, drug metabolism cytochrome p450, fatty acid 
metabolism, metabolism of xenobiotics by cytochrome p450, and peroxisome (Fig. 8B). 
In contrast, cell cycle, DNA replication, ECM receptor interaction, hematopoietic cell 
lineage, and primary immunodeficiency were enriched in the high-risk group (Fig. 8C).

Immune landscape of CRRS

We investigated the immune cell differences between the high-risk and low-risk groups, 
and revealed that compared with the low-risk group, Macrophages M0 was signifi-
cantly higher expressed in the high-risk group, while CD4+T cells memory resting, 
NK cells activated, and B cells naive were significantly lower (Fig. 9A). Accordingly, we 
analyzed the immune-related functions, and found that cytolytic activity, type I IFN 
response, and type II IFN response were enriched in the low-risk group, APC co-stim-
ulation and MHC class I response were enriched in the high-risk group (Fig. 9B). Based 
on the above results, we speculated that this risk score model is involved in immune 

Fig. 6  The risk score with the clinical indicators in the TCGA-LIHC dataset. A The heatmap for the 5 genes 
based on risk score and clinical indicators, ***P < 0.001. B The boxplot of risk score based on CRGs in HCC 
patients with different grades. C The boxplot of risk score in HCC patients with different tumor stages. D The 
boxplot of risk score in HCC patients with different T stages
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microenvironment regulation. In addition, we found that the expression levels of 
immune checkpoint genes in the high-risk group was generally higher than that in the 
low-risk group (Fig. 9C).

Fig. 7  Construction and validation of the clinical prognostic model. A, B Univariate and multivariate Cox 
regression analyses based on risk score and other clinical indicators in the TCGA-LIHC dataset. C, D Univariate 
and multivariate Cox regression analyses based on risk score and other clinical indicators in the ICGC-LIRI-JP 
dataset. E The nomogram for predicting the probability of 1-, 3-, and 5-year OS for HCC patients. F The DCA 
of the 1-year survival probability in the TCGA-LIHC dataset. G The calibration curve of the nomogram for 
predicting 1-, 3-, and 5-year survival probability. ***P < 0.001
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Discussion
The occurrence of HCC is a complex biological process. It is particularly important 
to explore the pathogenesis of HCC, find new biomarkers at the molecular level, and 
achieve early diagnosis and treatment [13]. Abnormal coagulation in cancer patients 
causes cancer-related thrombosis, which is one of the leading causes of cancer-related 
death, resulting in human suffering and loss of life. The change in coagulation func-
tion plays a vital role in the invasion and metastasis of tumor cells [14]. The research on 
inhibiting the coagulation system to reduce tumor growth and metastasis has attracted 
much attention [15]. However, little attention has been paid to the relationship between 
coagulation and prognosis, immune microenvironment of HCC. Therefore, we aimed 
to elucidate the role of CRGs in HCC tumor development, prognostic assessment, and 
immune microenvironment.

In this study, we identified 5 key CRGs to construct a prognostic model. The prog-
nostic model showed that FLVCR1, CENPE and NQO1 were risk factors, while LCAT 
and CYP2C9 were protective factors. Meanwhile, compared with the control group, 
FLVCR1, CENPE and NQO1 were significantly higher expressed in HCC, while LCAT 
and CYP2C9 were significantly lower expressed. According to growing evidence, CRGs 
are associated with the prognosis of many malignancies. Studies have shown that 
FLVCR1 plays a crucial role in various biological processes such as cell proliferation 
and apoptosis, and is significantly highly expressed in HCC, which is associated with 

Fig. 8  Function enrichment analysis. A GO enrichment analysis. The size of the circle indicates the number 
of genes. The screening criterion was set as adjusted P < 0.05. B-C Enrichment plots from GSEA analysis in the 
low-risk and high-risk groups. For more information about KEGG pathway, see https://​www.​kegg.​jp/​kegg/​
kegg1.​html

https://www.kegg.jp/kegg/kegg1.html
https://www.kegg.jp/kegg/kegg1.html
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increased cell proliferation and invasion [16]. FLVCR1 can promote the proliferation of 
synovial sarcoma by inhibiting apoptosis and autophagy [17]. NQO1 encodes a reduc-
tase that regulates oxidative stress of chromatin binding-proteins for DNA damage in 
cancer cells [18]. NQO1 is significantly up-regulated in HCC patients and expected to 
be a therapeutic target and prognostic marker for HCC [19]. CYP2C9 is a member of the 
cytochrome P2C (CYP2C) family and is involved in clinical drug metabolism. The low 
expression of CYP2C9 and LCAT in HCC is associated with poor prognosis [20–22]. 
Nevertheless, the research on the expression of CENPE in HCC samples and its clinical 
relevance is very limited. One study using human hepatoma cell lines, animal models, 
and human liver cancer samples found that the low expression of CENPE contributes to 
the development of HCC [23], which is inconsistent with this study. This may be related 
to chromosome instability caused by the decrease of CENPE. Whether CENPE has a 
two-sided effect in the occurrence of HCC needs a large number of experiments to fur-
ther study.

HCC patients were divided into two groups based on risk score. FLVCR1, CENPE, and 
NQO1 were highly expressed in the high-risk group, while LCAT and CYP2C9 were 
highly expressed in the low-risk group. This further suggested that CRGs may be the 
driver genes of HCC development. The survival curve showed that CRRS was correlated 
with OS, and the OS in the high-risk group was significantly shorter than that in the 
low-risk group. The ROC curve showed that the CRRS effectively predicted the OS of 
HCC patients. Univariate and multivariate Cox regression analyses showed that CRRS 
was an independent prognostic factor. It is suggested that clinical indicators should be 

Fig. 9  Risk score and TME. A The radar map of the 22 immune cells. B The boxplot of immune-function 
score in high-risk and low-risk groups. C The differences in immune checkpoint genes between high-risk and 
low-risk groups. *P < 0.05, **P < 0.01, ***P < 0.001
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considered when screening prognostic features [24]. To improve the prediction accu-
racy of the model, we incorporated risk score and clinical indicators to construct a 
nomogram, which made the prognosis more quantitative and intuitive. A recent study 
revealed that CRGs can predict the prognosis of patients with cutaneous melanoma [25].

To explore possible intrinsic differences in different prognosis of HCC, we performed 
enrichment analysis and immune analysis. Functional enrichment involved ribosome 
and spliceosome. GSEA analysis indicated cell cycle, DNA replication, ECM receptor 
interaction, hematopoietic cell lineage, and primary immunodeficiency were enriched in 
the high-risk group. It is well known that dysregulation of these processes will lead to the 
occurrence and metastasis of tumors [26–30]. The relationship between immune cells 
and tumors is extremely complex. More and more studies have shown that tumor-infil-
trating immune cells can affect the efficacy of HCC immunotherapy [31, 32]. HCC cells 
reshape the tumor microenvironment through various mechanisms, enabling tumor 
cells to evade immune surveillance by reducing the number of T cells and NK cells, ulti-
mately promoting tumor proliferation and metastasis [33]. In this study, macrophages 
M0 was significantly higher expressed in the high-risk group, while CD4+T cells mem-
ory resting, NK cells activated, and B cells naive were significantly lower. Meantime, 
immune functions showed that cytolytic activity, type I IFN response, and type II IFN 
response were enriched in the low-risk group. This all indicated immune tolerance in 
patients with high-risk HCC. These findings contribute to our further understanding of 
the pathogenesis of HCC. Studies have proven that high expression of immune check-
point genes can suppress immune activation and promote tumor immune escape [34]. 
Immune checkpoint blockers are a promising treatment for a variety of malignancies, 
which can enhance the anti-tumor immune response by restoring immune recogni-
tion and immune attack killing. In this study, we found that the risk score of the CRGs 
model was positively correlated with the expression levels of almost all immune check-
point genes, which suggested that the higher the risk score, the more likely it is to benefit 
from immunotherapy. In a similar study [35], two coagulation pathways were collected 
from the KEGG database and DEGs were analyzed between the two coagulation path-
ways in HCC patients. Then, 11 CRGs were identified and a CRRS prognostic model was 
established in the TCGA dataset. Further, this study suggested that there has correlation 
between coagulation and TME in HCC, and the risk score can serve as a prognostic bio-
marker for predicting HCC survival and guiding immunotherapy.

Limitations

In addition, this study also had some limitations. Firstly, due to the lack of complete 
clinicopathological information, we collated some clinical data for analysis. Secondly, 
although the relationship between CRGs and HCC prognosis has been found in HCC 
patients, the mechanism behind these phenomena remains unclear, and a large number 
of experiments are still needed to further study the role of CRGs in HCC.

Conclusions
In this study, we identified 5 key CRGs associated with HCC. The CRRS prognos-
tic model constructed based on CRGs can effectively predict the prognosis of HCC 
patients. The combination of the risk score with other clinical indicators increased its 
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clinical application potential. The risk score was also correlated with the TME. In addi-
tion, these HCC-associated CRGs may become new targets for the diagnosis or treat-
ment of HCC.
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