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Abstract 

Background: Since the initial publication of clusterMaker, the need for tools to analyze 
large biological datasets has only increased. New datasets are significantly larger than 
a decade ago, and new experimental techniques such as single-cell transcriptomics 
continue to drive the need for clustering or classification techniques to focus on por-
tions of datasets of interest. While many libraries and packages exist that implement 
various algorithms, there remains the need for clustering packages that are easy to 
use, integrated with visualization of the results, and integrated with other commonly 
used tools for biological data analysis. clusterMaker2 has added several new algorithms, 
including two entirely new categories of analyses: node ranking and dimensionality 
reduction. Furthermore, many of the new algorithms have been implemented using 
the Cytoscape jobs API, which provides a mechanism for executing remote jobs from 
within Cytoscape. Together, these advances facilitate meaningful analyses of modern 
biological datasets despite their ever-increasing size and complexity.

Results: The use of clusterMaker2 is exemplified by reanalyzing the yeast heat shock 
expression experiment that was included in our original paper; however, here we 
explored this dataset in significantly more detail. Combining this dataset with the yeast 
protein–protein interaction network from STRING, we were able to perform a variety 
of analyses and visualizations from within clusterMaker2, including Leiden clustering 
to break the entire network into smaller clusters, hierarchical clustering to look at the 
overall expression dataset, dimensionality reduction using UMAP to find correlations 
between our hierarchical visualization and the UMAP plot, fuzzy clustering, and cluster 
ranking. Using these techniques, we were able to explore the highest-ranking cluster 
and determine that it represents a strong contender for proteins working together in 
response to heat shock. We found a series of clusters that, when re-explored as fuzzy 
clusters, provide a better presentation of mitochondrial processes.

Conclusions: clusterMaker2 represents a significant advance over the previously pub-
lished version, and most importantly, provides an easy-to-use tool to perform cluster-
ing and to visualize clusters within the Cytoscape network context. The new algorithms 
should be welcome to the large population of Cytoscape users, particularly the new 
dimensionality reduction and fuzzy clustering techniques.
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Background
High-throughput techniques to generate large proteomic, genomic, metabolomic and 
interactome datasets provide a wealth of information about basic biological processes 
as well as human diseases. More recently, with the advent of single-cell transcriptom-
ics and spatially resolved proteomics, the size and complexity of these datasets have 
exploded. One of the techniques historically used for the analysis of high-throughput 
biological data has been clustering to categorize large numbers of data points into 
significantly smaller numbers of groups, where all of the members of the groups are 
similar or have similar features or behaviors. While many libraries and packages exist 
that implement various algorithms, there remains the need for clustering packages 
that are easy to use, integrated with visualization of the results, and integrated with 
other commonly used tools for biological data analysis.

Clustering algorithms have been used for over 2  decades to analyze microarray 
data [1], find complexes in protein–protein interaction data [2, 3], and more recently, 
to categorize single-cell data into cell types [4–6]. The goal of clustering algorithms 
is to group similar data together, but the definition of similarity may depend on the 
specific use case. For example, traditional hierarchical clustering of microarray data 
looks for similarity in expression patterns, while clustering of protein–protein inter-
action networks aims to group nodes based on how closely connected they are. Below, 
we discuss these two major approaches to clustering algorithms as well as dimension-
ality reduction and ranking approaches, with a focus on their application to nodes 
and edges in a network.

Attribute clustering algorithms

Attribute clustering algorithms group nodes based on the similarity of the attributes 
of the nodes or a distance metric calculated using an edge weight. Examples of attrib-
ute clustering algorithms include hierarchical [1], k-means [7, 8], HOPACH [9], PAM 
[10], AutoSome [11], and Transitivity Clustering [12]. The results of these algorithms 
are generally presented as heatmaps, or dendrograms associated with heat maps (e.g., 
for hierarchical clusterings). The categories may be used to group nodes in a network 
context, but often they are used primarily as visualization aids since the groupings 
may be independent of the network topology.

Network clustering algorithms

Network clustering algorithms find densely connected regions in a network. Exam-
ples of network clustering algorithms include AutoSOME [11], Affinity Propagation 
[13], Connected Components, GLay [14], MCODE [15], MCL [16, 17], SCPS [18], 
Transitivity Clustering [12], Leiden [19], Infomap [20], Fast Greedy [21], Leading 
Eigenvector [22], Label Propagation [23] and Multilevel [24]. Generally, these algo-
rithms are used to break the network up into smaller groups, so rather than using 
heatmaps to visualize the results, the typical visualization is a clustered network, with 
multiple disconnected components.
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Clustering algorithms such as MCL and Leiden are examples of discrete clustering. 
That is, the algorithm will place a node either in one group or another based on the 
parameters and the specifics of the algorithm. However, sometimes nodes are not clearly 
in one group or another, and, for example, might be strongly associated with more than 
one cluster. This can lead to an overinterpretation of the clustering results. Fuzzy clus-
tering algorithms allow nodes to be a member of more than one cluster, where mem-
bership is a proportional value. For example, the fuzzy C-Means (FCM) algorithm [25, 
26], which is (roughly speaking) the fuzzy analog to the k-means clustering algorithm, 
iteratively calculates cluster centroids and assigns nodes to clusters, repeating until some 
convergence criterion is reached.

Dimensionality reduction algorithms

Dimensionality reduction techniques are used to reduce the number of input variables, 
that is, the dimensionality, in a dataset. The higher the dimensionality, the more compli-
cated the analysis and modeling of the dataset becomes. Reducing the number of input 
variables is important, as the performance of algorithms like clustering and ranking can 
degrade with high dimensionality. Dimensionality reduction is a common technique and 
has been used for many years. Algorithms such as principal component analysis (PCA) 
[27], principal coordinate analysis (PCoA) [28], and multidimensional scaling (MDS) 
[29–31] are common and have been in use for many years. More recently, new tech-
niques such as t-SNE [32] and UMAP [33] have been gaining popularity, particularly in 
the context of very large datasets such as single-cell transcriptomics, where both have 
been used to great effect to visualize cell-type clusters. Other dimensionality reduc-
tion techniques include non-negative matrix factorization (NMF) [34, 35], Isomap [36], 
Linear Embedding [37], and Spectral [38]. In the context of networks, embedding tech-
niques can also be used as a form of layout algorithm to move nodes in a network based 
on a reduction of a dataset to two dimensions.

Cluster ranking algorithms

The goal of ranking algorithms is to rank the clusters in the network by importance, 
where importance is measured by a provided attribute value (e.g., expression fold 
change) [39]. The ranking algorithms in clusterMaker2 are: Hyperlink-Induced Topic 
Search (HITS), Multiple Attribute Additive Method (MAA), Multiple Attribute Multi-
plication Method (MAM), PageRank (PR) and PageRank with Priors (PRWP). The high-
est-ranking cluster most likely represents a biologically relevant grouping, for example, a 
cancer biomarker cluster. The more important the cluster, the higher rank it has.

Cytoscape

Cytoscape [40–42] is open-source software used to analyze and visualize biological data. 
The Cytoscape 3 series was significantly refactored to improve overall performance 
and modularity. Cytoscape 3.0 was first released in 2013 and is now in its ninth release 
(Cytoscape 3.9). Cytoscape provides an extensive App application programming inter-
face (API) that allows programmers to extend the native capabilities of Cytoscape with 
new functionality. The Cytoscape app store [43] currently lists over 350 apps, which 
extend Cytoscape in a number of ways, from implementing specific algorithms for 
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targeted use cases, to integrating with public data repositories, to adding new visualiza-
tion capabilities.

In addition to an API for the development of Apps, Cytoscape provides a mechanism 
called CyREST [44] that allows R and Python-based workflows to directly interact with 
Cytoscape networks and data and with Cytoscape apps that have exposed commands 
through Cytoscape automation [45].

The Cytoscape app store [43] currently lists over 30 apps that perform some kind of 
clustering. However, the user interfaces of these individual apps are very different, and 
there is no interaction between them. Further, there are other apps that would like to 
include various clustering algorithms without having to reimplement them.

clusterMaker2

Here we present clusterMaker2, a significant update to the Cytoscape app clusterMaker 
[46]. In addition to clustering algorithms provided in the previous version of the app, a 
variety of frequently used dimensionality reduction techniques and ranking algorithms 
have been implemented in clusterMaker2. Furthermore, many of the new algorithms 
have been implemented using the Cytoscape jobs API, which provides a mechanism for 
executing remote jobs from within Cytoscape. The algorithms that use this technology 
calculate the results on a remote server and then send the results to clusterMaker2 cli-
ent. clusterMaker2 is also automatable [45] through Cytoscape commands or CyREST 
[44], which allows it to be used by other apps in the Cytoscape ecosystem. For example, 
the stringApp [47] and the AutoAnnotate [48] app both use clusterMaker2 as a cluster-
ing provider through the automation mechanism.clusterMaker2 has added several new 
algorithms, including two entirely new categories of analyses: node ranking and dimen-
sionality reduction. In the next several sections, we list the previous algorithms and 
describe any new algorithms.

Implementation
clusterMaker2 is an application available for use in the Cytoscape environment. 
Cytoscape is an open-source network visualization software platform. clusterMaker2 
extends Cytoscape by providing the functionalities needed for clustering, dimensional-
ity reduction, and ranking. clusterMaker2 is written in Java. clusterMaker2 also provides 
new capabilities to use remote servers to execute algorithms asynchronously. In the next 
sections, we discuss relevant implementation details of each new algorithm, beginning 
with some details that cross all of the algorithms.

Matrix API

For the algorithms implemented in Java, we realized that most if not all of the modern 
algorithms require some sort of matrix manipulation. To facilitate this and avoid dupli-
cation within the code, we implemented an internal matrix API that supports differ-
ent backend implementations. Currently, the API supports a simple implementation of 
matrices as two-dimensional Java arrays, a faster implementation that uses the oj! Algo-
rithms [49], and an implementation that includes sparse matrices from parallel colt [50]. 
In either case, convenience routines support the creation and manipulation of matrices 
from nodes and their attributes as well as edges.
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Remote (asynchronous) execution

Some of the network clustering and dimensionality reduction techniques described 
below were implemented using org.cytoscape.jobs package and a RESTful API. The 
Cytoscape jobs API provides a mechanism for executing jobs from within Cytoscape. It 
provides the framework for Cytoscape apps to marshal data, submit a remote job, check 
on the status of the submitted job, fetch the results, and unmarshal the data [49].

The front-end sends the graph data to the server and gets the analyzed data back. 
The options menu of each algorithm allows specifying a timeout period other than 
the default of 20  s, after which the algorithm shifts to running asynchronously in the 
background.

Falcon (https:// falco nfram ework. org/) is a Python-based web API framework for 
building app backends and microservices. clusterMaker2 uses Falcon to handle REST 
calls through Web Server Gateway Interface (WSGI).

Automation

clusterMaker2 exposes a wide variety of commands [45] that may be used through 
CyREST [44], including the RCy3 and py4cytoscape wrappers. clusterMaker2 exposes 
four namespaces: cluster (Table 1), for network and node attribute cluster algorithms; 
clusterdimreduce (Table  2), for dimensionality reduction algorithms; clusterrank 
(Table 3), for cluster ranking algorithms; and clusterviz (Table 4) for the visualizations 
clusterMaker2 provides. The clusterMaker2 website (http:// www. rbvi. ucsf. edu/ cytos 
cape/ clust erMak er2/) provides more details about the commands and their arguments.

Attribute clustering algorithms

In the latest version of clusterMaker2, we have added two new attribute clustering meth-
ods, PAM [10] and HOPACH [9]. These algorithms are similar to the existing k-means 
algorithm and were added by detailed transcoding of the original R implementation of 
HOPACH and an implementation of PAM based on the published description of the 
algorithm. Both were tested against R implementations of the algorithms.

Network clustering algorithms

The following algorithms have been added in the latest version of clusterMaker2, using 
the remote execution mechanism described above: Leiden [19], Infomap [20], Fast 
Greedy [21], Leading Eigenvector [22], Label Propagation [23] and Multilevel clusterer 
[24]. In each case, the server-side implementation takes advantage of the python-igraph 
package for the algorithm itself (see Table 5).

As discussed above, sometimes nodes are not clearly in one group or another, and, 
for example, might be strongly associated with more than one cluster. We intro-
duced two fuzzy clustering algorithms, which allow nodes to be a member of more 
than one cluster and where membership is a proportional value. The first of these is 
the well-known Fuzzy C-Means (FCM) algorithm [25, 26], which we implemented 
in Java based on the published method. The second fuzzy algorithm, which we call 
a cluster “fuzzifier,” was developed and implemented by the clusterMaker2 authors. 
It is based on the observation that the most expensive part of the fuzzy c-means cal-
culation is the iterative determination of the centroid of each cluster. clusterMaker2 

https://falconframework.org/
http://www.rbvi.ucsf.edu/cytoscape/clusterMaker2/
http://www.rbvi.ucsf.edu/cytoscape/clusterMaker2/
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Table 1 clusterMaker2 cluster commands

Namespace Command Description Type

cluster ap Affinity propagation Network clusterer

autosome_heatmap AutoSOME attribute clustering Attribute clusterer

autosome_network AutoSOME network clustering Network clusterer

bestneighbor Best neighbor filter Cluster FIlter

connectedcomponents Connected components Network clusterer

cuttingedge Cutting edge filter Cluster FIlter

density Density filter Cluster FIlter

fastgreedy Fast greedy (remote) Network clusterer

fcml Fuzzy C-means cluster Fuzzy cluster

featurevector Create correlation network from node attributes Network clusterer

fuzzifier Cluster fuzzifier Fuzzy cluster

getcluster Get an attribute cluster result Utility

getnetworkcluster Get a cluster network cluster result Utility

glay Community cluster (GLay) Network clusterer

hair_cut HairCut filter Cluster FIlter

hascluster Test to see if this network has a cluster of the 
requested type

Utility

hierarchical Hierarchical cluster Attribute clusterer

hopach HOPACH-PAM cluster Attribute clusterer

infomap Infomap (remote) Network clusterer

kmeans K-means cluster Attribute clusterer

kmedoid K-medoid cluster Attribute clusterer

labelpropagation Label propagation (remote) Network clusterer

leadingeigenvector Leading eigenvector (remote) Network clusterer

leiden Leiden clusterer (remote) Network clusterer

mcl MCL cluster Network clusterer

mcode MCODE cluster Network clusterer

multilevel Multilevel cluster (remote) Network clusterer

PAM Cluster Partition around medoids (PAM) cluster Attribute clusterer

scps Spectral clustering of protein sequences Network clusterer

transclust Transitivity clustering Network clusterer

Table 2 clusterMaker2 clusterdimreduce commands

Namespace Command Description

clusterdimreduce isomap Isomap (remote)

lle Local linear embedding (remote)

mds MDS (remote)

pca Principal component analysis

pcoa Principal coordinate analysis

spectral Spectral (remote)

tsne t-distributed stochastic neighbor

tsneremote tSNE (remote)

umap UMAP (remote)
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already provides several algorithms to provide a first-round segregation of nodes 
into clusters, and given those clusters, it is relatively easy to calculate a centroid 
and then evaluate proportional measurement based on those centroids. The cluster 
“fuzzifier,” then, takes as its input a previous clustering performed by clusterMaker2, 
such as MCL, and then “fuzzifies” it by reassigning nodes to clusters proportionally. 
The algorithm assumes that edge values exist and are distances (not weights) and 
then calculates the distance from each node to each cluster centroid using a Java 
implementation of the algorithm defined by the R usedist [54] package’s distance_
to_centroid function.

Dimensionality reduction algorithms

Some of the dimensionality reduction techniques in clusterMaker2 are coded in 
Java and implemented completely in the app, whereas others are implemented par-
tially using the Cytoscape API and partially on the server. The Java dimensionality 
reduction techniques in clusterMaker2 are: PCA, PCoA, and t-SNE [32]. The ones 
using REST implementations are: Isomap [36], Linear Embedding [37], MDS [29–
31], Spectral [38], t-SNE [32], and UMAP [33]. t-SNE has been implemented in both 
ways.

Table 3 clusterMaker2 clusterrank commands

Namespace Command Description

clusterrank HITS Create rank from the hyperlink induced topic search algorithm

MAA Create rank from multiple nodes and edges (additive sum)

MAM Create rank from multiple nodes and edges (multiply sum)

PR Create rank from the PageRank algorithm

PRWP Create rank from the PageRankWithPriors algorithm

Table 4 clusterMaker2 clusterviz commands

Namespace Command Description

clusterviz attributeview Create new network from attributes

clusterview Create new network from clusters

createRankingPanel Show results from ranking clusters

createResultsPanel Create results panel from clusters

destroyRankingPanel Hide results from ranking clusters

destroyResultsPanel Destroy all cluster results panels

heatmapview JTree HeatMapView (unclustered)

knnview JTree KnnView

linkSelection Link selection across networks

treeview JTree TreeView

unlinkSelection Unlink the selection across networks
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Cluster ranking algorithms

MAA and MAM are simple algorithms that through addition or multiplication calculate 
the average score of a cluster [47]. The remaining methods utilize network ranking algo-
rithms from the Java JUNG library [48]. All of the algorithms except HITS use node and/
or edge values to calculate the rank of each cluster. All of these algorithms have been 
implemented directly in Java.

Visualization

The latest version of clusterMaker2 adds two new visualizations and a new visual tool 
that augments others, in addition to the three visualization types previously described 
[46] (see Figure 1 in [46]).

First, we added a traditional PCA plot, complete with loading vectors, as shown in 
Fig. 1. By adjusting the colors and transparency, users can see the variance and where 
the major contributions to that variance come from. The dataset in the figure is from an 
early microarray experiment on the stress response in yeast [55]. The plot allows users 
to pan and zoom, and to map colors from the Cytoscape network onto the points on the 
plot.

For other dimensionality reduction techniques and embeddings, a similar scatter plot 
but without loading vectors is used. For example, in Fig. 2, the same data as in Fig. 1 is 
embedded using UMAP and shown in a scatter plot. The non-PCA scatter plots provide 
an additional feature where the 2D coordinates of the points on the plot may be mapped 
onto the Cytoscape network. This provides a dimensionality reduction-driven layout.

Finally, we added the ability to browse network clustering results in the Cytoscape 
Results Panel. This includes a small thumbnail of each cluster and allows the user to 

Fig. 1 PCA scatter plot from clusterMaker2. This plot shows the two principal components of the yeast 
heat shock data set (GPL51) discussed in the paper. The arrows represent the loading vectors for each of 
the attributes. The legend on the right shows the attributes and their loading vector colors, which may be 
changed by clicking on the button. Selection is bi-directional, so selecting a point in the scatter plot will 
select the corresponding node in the network. See the Fig. 2 legend for a description of the Plot, Advanced, 
and Get Colors buttons
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select all of the nodes belonging to that cluster by clicking on the row. The Results Panel 
also provides some summary information and a column for an algorithm-specific meas-
ure of cluster quality. In addition, the overall modularity of the clusters is reported as 
part of the side panel.

Implementation details for all algorithms

Table 5 shows the algorithms, their descriptions and other details, and sources.

Results
As described above, clusterMaker2 provides a variety of clustering, dimensionality 
reduction, and ranking algorithms to explore biological networks and attributes. In this 
scenario, we will show how these various algorithms can be used together to explore 
a dataset, and in addition, we will demonstrate the advantages associated with having 
clusterMaker2 as part of the Cytoscape ecosystem and thus able to integrate with other 
Cytoscape apps and capabilities.

Fig. 2 UMAP scatter plot from clusterMaker2. Similar to the PCA plot shown in Fig. 1, UMAP, tSNE, and other 
dimensionality reduction techniques produce scatter plots with the same functionality except that there are 
no loading vectors. The plots may be pan and zoomed and selection is also bi-directional. Hovering over a 
node will show it’s name, and the Get Colors button can be used to color the points according to the color 
of the corresponding node in the network. The Advanced button allows the user to select the point size and 
color. The use can Export the plot as a PNG, JPG, SVG, or PDF file. The Copy Layout button will use the X, Y 
coordinates of the points in the scatter plot to move the corresponding nodes in the network
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Our scenario begins with data from a yeast heat-shock experiment conducted by 
Gasch and colleagues, but not reported on in their paper [55]. We then combine this 
data with yeast protein–protein interaction data from the STRING database. The end 
result is a network of yeast proteins and their physical interactions annotated with tran-
scriptional changes resulting from heat shock.

To explore this data, we cluster the network to find complexes and other tightly con-
nected proteins, then cluster the expression data to find expression patterns, and group 
genes together based on those expression patterns. Using the expression patterns to 
color the nodes in the network allows viewing the transcriptional patterns within the 
context of the protein complexes and groupings. Given the somewhat manual nature of 
the approach taken to group the expression patterns, we explore the use of dimensional-
ity reduction techniques to see if we could have grouped the expression data more easily 
that way.

Next, we explore a subset of the most significant protein clusters using our cluster 
“fuzzifier” to determine if there might be associations between the clusters that are lost 
as a result of the discrete nature of the cluster algorithms. Finally, we rank the protein 
clusters using the transcription data to determine which of these clusters have the most 
significant response to heat shock at the transcriptional level.

Data sources

Data from two sources are used in this scenario: the physical protein–protein interaction 
network for Saccharomyces cerevisiae from the STRING database, and the same heat 
shock data from Gasch et al. [55] that we used in our previous paper [46]. We extracted 
this dataset from GEO series GSE18 platform GPL51 and used the matrix data directly. 
In particular, we used the following columns: “GPL51-01 heat shock 05 min”, “GPL51-
02 heat shock 10  min”, “GPL51-03 heat shock 15  min”, “GPL51-05 heat shock 20  min 
repeat”, “GPL51-06 heat shock 40 min”, “GPL51-07 heat shock 60 min”, and “GPL51-08 
heat shock 80 min.”

Importing the protein–protein interaction (PPI) network

We begin by using the stringApp [47] to load the genome-wide Saccharomyces cerevi-
siae physical protein–protein interaction network into Cytoscape. This is accomplished 
by pulling down the File menu and selecting Import → Network from Public Data-
bases… Select STRING: protein query as the Data Source and Saccharomyces cer-
evisiae as the species. Then select “All proteins of this species” and click on “physical 
subnetwork” under Network type. Set the Confidence (score) cutoff: to 0.50 to get a 
network of reasonable size without too many possible false-positive edges. Now, click-
ing on “Import” will import the entire yeast protein–protein interaction network (Fig. 3).

Importing the expression data

To Import the expression data from GPL51 described above, we dropped any cells from 
the data matrix with |log2(fold change)|< 1, and any rows (genes) that did not have more 
than one significant fold change in any of the heat-shock data columns mentioned above.

Once the dataset was modified as above, we imported it into Cytoscape using 
File → Import → Table from File. To map the data in the expression file to the 
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PPI network, we set the “Key column for the network” to display name and under 
“Advanced Options…” we set the delimiter to Tab and turn off COMMA. Now we have 
a PPI network where each of the proteins are annotated with the 5-min (GPL51-01), 
10-min (GPL51-02), 15-min (GPL51-03), 20-min (repeat) (GPL51-05), 40-min (GPL51-
06), 60-min (GPL51-07), and 80-min (GPL51-08) heat-shock expression fold changes, if 
they passed our cutoffs. We are now set to analyze this dataset.

Clustering the PPI network

The PPI network as shown in Fig. 3 is too dense for easy interpretation. A typical next 
step is to break the network up into clusters, which represent tightly connected groups 
of proteins such as complexes. We will use Leiden clustering [19] to do this. The Leiden 
algorithm is an improvement of the Louvain algorithm, which maximizes the modular-
ity score of each community by comparing how much more connected the nodes are 
in a community compared to a random network. It has three phases: local moving of 
nodes, refinement of the partition aggregation of the network based on the refined parti-
tion, and using the non-refined partition to create an initial partition for the aggregate 
network.

Select Apps → clusterMaker Cluster Network → Leiden Clusterer (remote) to 
bring up the Leiden cluster options. After some experimentation (Leiden clustering is 
relatively quick), we found a resolution parameter of 0.5 and 30 iterations to work well. 
The resolution parameter correlates with the size of the communities. Higher resolution 

Fig. 3 Cytoscape export of the STRING protein–protein interaction network for Saccharomyces cerevisiae 
imported using the stringApp. The confidence score used was 0.5 and the standard STRING style is shown
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parameter values lead to smaller communities, while lower values lead to fewer, larger 
communities. The number of iterations gives the number of times Leiden algorithm is 
iterated. Each iteration improves the partition further. Adjusting the parameters to be 
the ones given above results in a network clustered to a biologically meaningful extent. 
For the Source for array data, select “stringdb::score” as the Attribute. This is the edge 
confidence score assigned by STRING. Select “Create new clustered network” and click 
“OK”. The resulting network should look similar to Fig. 4. Note that we have disabled the 
“Glass ball effect” and “STRING style labels” in the STRING results panel at the right. 
A quick exploration of the clustered network confirms that Leiden has done a reason-
able job—the first four clusters in the upper left-hand corner are the ribosome, preribo-
some, large subunit of the preribosome, and the mitochondrial ribosome, respectively. 
This makes sense, as these are all large complexes. The fifth cluster is RNA polymerase II 
holoenzyme, and the sixth is the spliceosome. What complex a cluster represents can be 
determined by selecting a cluster and running the stringApp functional enrichment on 
that cluster using the entire genome as a background.

Hierarchical clustering of expression data

A classical analysis of an expression dataset would involve performing a hierarchi-
cal clustering of the data and viewing it using a heatmap with associated dendrogram. 

Fig. 4 Export of the Saccharomyces cerevisieae protein–protein interaction network after clustering with 
Leiden clusterer using a resolution of 0.5 and 30 iterations. Node colors are random (preserved from the initial 
STRING network), and we have disabled the “glass ball” effect as well as the STRING-style labels using the 
stringApp results panel
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In hierarchical clustering, at each iteration of the proximity matrix the similar clusters 
merge with other clusters until one cluster is formed. The nodes the most similar to each 
other are grouped together earlier.

To do this using clusterMaker2, we select Apps → clusterMaker Cluster Attrib-
utes → Hierarchical cluster. We then select all of the heat shock columns (GPL51-01 
heat shock 5 min, GPL51-02 heat shock 10 min, GPL51-03 heat shock 15 min, GPL51-05 
heat shock 20 min repeat, GPL51-06 heat shock 40 min, GPL51-07 heat shock 60 min, 
and GPL51-08 heat shock 80 min), then click on “Show TreeView when complete” and 
finally click OK. This will bring up a heat map with the associated dendrogram for the 
dataset (Fig. 5). By selecting branches of the dendrogram, we can select groups of genes 
in the heatmap and simultaneously select the corresponding proteins in the PPI view.

Coloring the PPI network

To help understand the biological significance of these transcriptional changes at the 
protein level, we would like to find a mapping from the hierarchical clustering onto the 
proteins in the PPI network. This could be useful, for example, to see if any complexes 
are particularly affected by transcriptional changes.

There are two ways to map expression dataset onto the network. The simplest 
approach is to use the Map Colors Onto Network capability in TreeView: select all of 
the rows and click on “Create HeatStrips.” This will add bar charts showing the expres-
sion fold changes at the various times post-heat-shock on the nodes (as in the Fig.  6 
inset). Unfortunately, this is extremely hard to see when looking at the entire network. 
To explore this dataset more fully, we used the ability to select branches of the dendro-
gram, which selected the corresponding nodes in our PPI. We created a new column 
in the Node Table named Color and assigned values from -10 to 10 depending on the 
level of upregulation or downregulation across time points we saw in the corresponding 
dendrogram branch. This was done quite crudely based only on visual inspection of the 
dendrogram branches and heatmap colors. For completeness, we did try to calculate a 
cut of the tree using external tools, but the dendrogram is extremely dense and it was 
difficult to achieve satisfactory results that provided anything close to a usable distribu-
tion on the tree.

To map the colors, we created a continuous mapping in Cytoscape using the Color-
Brewer [56] diverging Red-Blue palette. The combination of the approximate color 
and heatstrips provides a general overview of the expression changes for each cluster, 
and when we zoom in, the corresponding details (Fig. 6). Note that SSA1, a member of 
the HSP70 family, is initially upregulated for the first 10 min, but shows no expression 
change after that. This can be seen easily in the close-up view (or the corresponding row 
in the heatmap), but is not visible in the PPI overview.

UMAP analysis of expression data

The manual process we used above to choose colors was relatively straightforward, albeit 
somewhat time-consuming. As the number of attributes increases, however, it can be 
extremely difficult to group the genes together in meaningful ways. Dimensionality 
reduction techniques have become an increasingly valuable tool to group data based on 
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Fig. 5 Export from the clusterMaker2 Jtree HeatMap view of the hierarchical clustering of heat shock data 
from GPL51. The image uses a standard yellow-cyan color scheme where yellow grandient indicates the 
degree of over-expression and cyan gradient indicates the degree of under-expression
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numerous attributes by providing a visualization that groups similar items together even 
when the number of attributes is very large.

We will now look at the same heat shock expression data used for the hierarchical 
clustering Fig. 5, but this time using the Uniform Manifold Approximation and Projec-
tion [57] (UMAP) approach to explore a 2D embedding of this multidimensional data. 
UMAP can be used for visualization of high-dimensional datasets similarly to t-SNE, but 
also for general nonlinear dimension reduction. In mathematical terms, it is a manifold 
learning technique constructed from the theoretical framework based on Riemannian 
geometry and algebraic topology. It can use labels for supervised dimensionality reduc-
tion and transform new data into a pretrained embedding space.

Because there are a number of nodes with no data, first select all of the nodes with 
a color value or a “Non-Zero Count” 1 or greater (you can sort the column or use the 
Cytoscape Filter tab). Once they are all selected, use Apps → clusterMaker Dimen-
sionality Reduction → UMAP (remote) to bring up the UMAP options. Select all six 
of the heat shock columns, select “Only use data from selected nodes” and set the “Num-
ber of neighbors” to 20 and the “Minimum distance” to 0.5. The number of neighbors 
controls how UMAP balances local versus global structures. It constraints the size of 
the local neighborhood the algorithm looks at when learning the data. Low number of 
neighbors makes UMAP concentrate on a local structure and potentially lose the big 
picture, whereas larger values of number of neighbors results in UMAP looking at larger 
neighborhoods with the potential cost of losing fine details. The minimum distance 
parameter controls how tightly UMAP packs points together. It provides the minimum 
distance that points are allowed to be apart. Low values of minimum distance will result 
in clumpier embeddings, which serve the interest in finer details better. Larger values 
prevent UMAP from packing points together and puts the focus on the preservation of 

Fig. 6 Using colors and heatstrips to explore PPI and expression data. Nodes are colored using a BrewerColor 
Red-Blue palette derived from the Color column as described in the text. Red indicates overexpression 
and blue indicates underexpression. The inset shows proteins involved in protein folding and refolding 
are overexpressed during heat stress response. The heatstrips (small bar charts on the nodes) show the 
expression changes at the individual time points and use the yellow-cyan gradient described in Fig. 5
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the topological structure. Make sure to also click “Show scatter plot with results” so we 
can explore the resulting embedding. Click OK to send the request to the server to per-
form the UMAP. Once the UMAP scatter plot comes up, click on “Get Colors” to apply 
the red-blue coloring from the nodes to the UMAP. It is easy to see how well the UMAP 
segregates the data (Fig. 7). Highlighting the red group in the center and performing an 
enrichment on the selected nodes indicates significant enrichment for protein folding. 
Indeed, many of the nodes in this cluster are part of the highlighted group in Fig. 6.

Fuzzy clustering

Fuzzy clustering can help to reveal the relationships between clusters to find instances 
where proteins are shared between clusters. As described above, we have implemented a 
novel approach to calculating fuzzy clusters in clusterMaker2, which we call a “fuzzifier.”

To apply fuzzy clustering, we must start with the fully connected network depicted 
in Fig. 3 or a clustered network with the inter-cluster edges added. We could perform a 
fuzzy clustering on the entire network, but the result would again be too dense to facili-
tate exploration. Another approach is to select the nodes from several clusters that are 
of interest—for example, clusters with high ranking or that show consistently high over-
expression or under-expression. In this case, we’ll choose the nodes from nine clusters 

Fig. 7 UMAP embedding of the heat shock expression data exported from clusterMaker2’s scatter plot (see 
Fig. 2). The colors correspond to the manually created Color column where fold change values are mapped 
onto the Red–Blue ColorBrewer gradient (red = degree of overexpression, blue = degree of underexpression). 
The circled group is enriched in protein folding, unfolded protein binding, and protein refolding
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that contain many over-expressed genes: clusters 13, 19, 20, 25, 82, 197, 242, 259, and 
668. We selected the nodes in those clusters by using the clusterMaker2 “link selection 
across networks” function and then selecting the clusters in the clustered view (Fig. 6). 
This selected the corresponding nodes in the full network (Fig. 3). Then we could per-
form fuzzy clustering by selecting Apps → clusterMaker Cluster Network → Cluster 
Fuzzifier. We chose stringdb::score as the Array Source, 1/value as the Edge weight 
conversion (to convert it to a distance) and selected Cluster only selected nodes and 
selected Create new clustered network to see the result. To show the relationships 
between the clusters, we redid the layout using the score as an edge weight and changed 
the shape of the fuzzy cluster centroids (Fig. 8).

The results indicate that clusters 20, 82, and 197 are closely intertwined. We used the 
stringApp enrichment analysis to explore the grouping by looking at enrichment of all 
three clusters, then cluster 20 and 197 together and cluster 82 alone. All three of these 
clusters represent genes in the mitochondrion exclusively. All of the genes are enriched 
in the GO Biological Process “Cellular respiration.” Clusters 20 and 197 represent pro-
teins in the TCA cycle, and all of the proteins in cluster 82 are part of the oxidation–
reduction process in the mitochondrion, including the mitochondrial respiratory chain 
complexes III and and IV. It makes perfect sense that genes responsible for cellular res-
piration would be upregulated in response to heat stress. RIP1, in particular, has been 
shown to have an important role in the selective export of heat shock RNAs [58]. The 
close association of these three clusters would not have been apparent without perform-
ing a subsequent fuzzy clustering, yet, there is little doubt that cluster 82 is logically 
separate from clusters 20 and 197, so this is not in any way an indictment of the Lei-
den cluster results. Furthermore, cluster 20 represents two complexes, the mitochon-
drial succinyl-CoA synthetase complex with LSC1 and LSC2 and the respiratory chain 
complex II with SDH1, SDH2, SDH3, SDH4, and YJ045W (SDH9), which is a paralog of 

Fig. 8 Fuzzy clustering of 9 selected Leiden clusters. Inset shows three intertwined clusters that represent 
mitochondrial proteins. Solid lines are from the original STRING protein–protein interaction network and 
dashed lines are the membership edges between proteins and their fuzzy-cluster centroid. Node colors are 
assigned based on cluster number, and each fuzzy cluster is represented by a FClusterNNN node where the 
NNN is replaced by the cluster number of the dominant cluster. The FCluster node is put at the centroid of all 
nodes in that fuzzy cluster
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SDH1. The separation between cluster 20 and 197 is also explained by the STRING evi-
dence, which shows that while LSC2 has a strong confidence score for interaction with 
IDH2, it does not bind with any confidence to the rest of the proteins. On the other 
hand, LSC1 has a strong confidence score for interaction with SDH2, and both LSC1 and 
LSC2 have moderate confidence scores for interaction with the rest of the proteins in 
respiratory chain complex II.

Overall, the fuzzy clustering analysis provides us with a much more nuanced view of 
the relationships between these clusters, allowing a more detailed analysis of the molec-
ular processes of the heat shock response in yeast. The incremental approach—discrete 
clustering, then fuzzy clustering of the groups of interest—allows us to avoid overinter-
preting the initial clustering while not increasing the complexity that would result from 
fuzzy clustering of the entire network.

Cluster ranking

The goal of ranking is to order the clusters based on some criteria (typically node attrib-
utes) to determine the most relevant or important clusters [39].

After clustering the network with Leiden clustering as shown in Fig.  6, MAA rank-
ing was applied from Apps → clusterMaker Ranking → Create rank from multiple 
nodes and edges (additive sum). To focus on up-regulated genes, we will choose the 
same node attributes (GPL51-01–GPL51-08) and select Basic normalization, but Only 
positive values for the Two-tailed values normalization. After running the ranking algo-
rithm, the ranking panel (Fig. 9) can be opened from Apps → clusterMaker Visualiza-
tions → Show results from ranking clusters. By calculating a ranking score for each 
cluster, we can analyze the relevance of the clusters in terms of the research question. In 
this case, higher ranking score would imply that the cluster is more associated with yeast 
heat shock. The genes grouped in the cluster 13 with a ranking score 1.0 were examined 
more closely to assess the biological relevance of the ranking results. Cluster 13 was cho-
sen for closer examination because its ranking score was the highest of all clusters.

The biological relevance of cluster 13 was checked in two ways. First, the proteins in 
the cluster were manually looked up in the protein database UniProt [59]. Furthermore, 
functional enrichment analysis was performed on the cluster.

Looking at Uniprot, most of the genes in cluster 13 are associated with yeast heat 
shock, which supports the results of the ranking algorithm. For example, SSA4 (https:// 
www. unipr ot. org/ unipr ot/ P22202) and HSP104 (https:// www. unipr ot. org/ unipr ot/ 
P31539) are known heat-shock proteins.

Functional enrichment analysis was performed on cluster 13 using the STRING Func-
tional Enrichment function [47] (Fig. 10). Most genes in the cluster are associated with 
GO [60] Molecular function “Unfolded Protein Binding” and GO Biological Process 
“Protein Folding.” Furthermore, Reactome [61] Pathways “Cellular responses to Stress” 
and “Cellular Responses to Heat Stress” included most of the proteins involved.

Assessing the biological relevance of other clusters with high, mid and low scores

Cluster 13 is not the only one with a high ranking score. Cluster 154 has a score of 0.903, 
which indicates a high relevance as well. The cluster consists of two proteins, which 
are both strongly upregulated. One of these is a heat shock protein, HSP42, involved 

https://www.uniprot.org/uniprot/P22202
https://www.uniprot.org/uniprot/P22202
https://www.uniprot.org/uniprot/P31539
https://www.uniprot.org/uniprot/P31539
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Fig. 9 clusterMaker2 ranking panel with ranking results from the multiple nodes and edges (additive sum) 
ranking algorithm. As discussed in the test, the highest cluster with score 1.0 is cluster 13
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in cytoskeleton reorganization after heat shock (https:// www. unipr ot. org/ unipr otkb/ 
Q12329/ entry). Cluster 447, with a relatively high score of 0.762, is also a two-protein 
cluster. Both proteins are upregulated, indicating an association with heat shock. Cluster 
259 has a low score of 0.469 and consists of four genes, of which some are up- and some 
downregulated, and one protein is neutral.

Discussion
There is little doubt or debate about the importance of grouping data based on some 
similarity or distance metric. Within a network context, whether the nodes represent 
genes, proteins, cells, or any other entities linked by some form of relationship, the met-
ric can be expressed as the connectivity or weighted connectivity between the linked 
entities. Independent of a network context, the metric can be expressed as the similarity 
of values or features between the entities. However, as demonstrated above, combining 
grouping based on network connectivity with that based on entity features can be valu-
able. clusterMaker2 provides exactly that capability.

However, it is also clear that clusterMaker2 does not cover the entire space of commu-
nity detection, clustering, and unsupervised classification. It might be argued that some 
favored conventional clustering algorithm or dimensionality reduction technique is 

Fig. 10 Screenshot of Cytoscape showing functional enrichment results for cluster 13. The top 5 results are 
shown, which include unfolded protein binding (cyan), cellular response to stress (blue), cellular response to 
heat stress (light green), protein folding (green), and HSP90 chaperone cycle for steroid hormone receptors 
(SHR) (pink). The second, third, and fifth terms are Reactome pathways; the first term is from GO molecular 
function; and the fourth term is from GO biological process. As shown in Fig. 6, the heatstrips represent the 
individual expression fold change for each time point. The enrichment results strongly correspond to the 
consistent up-regulation across the entire time spectrum for most of these genes

https://www.uniprot.org/uniprotkb/Q12329/entry
https://www.uniprot.org/uniprotkb/Q12329/entry
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missing. While this may be true, it is also the case that no package could provide access 
to all clustering and dimensionality reduction techniques. The new web service frame-
work added in the latest releases of clusterMaker2 should provide us with the ability to 
respond much more quickly to user requests and we will continue to add new algorithms 
over time based on user feedback.

Another potential criticism of clusterMaker2 is that all of the algorithms implemented 
in clusterMaker2 are already available in R, or Python. This is certainly true, and we 
have taken advantage of that by using Python packages extensively for our web service 
implementation, so we are extremely grateful and supportive of the R and Python bioin-
formatics communities. On the other hand, clusterMaker2 is integrated into Cytoscape 
and is part of the overall Cytoscape ecosystem. This provides the opportunity to leverage 
these clustering packages from within Cytoscape without programming, and to integrate 
those results into Cytoscape networks. As mentioned above, clusterMaker2 is already 
used by other Cytoscape apps to add clustering capabilities to specific workflows. Inte-
gration into Cytoscape also provides significant advantages in terms of the integration 
of the visualizations provided with the network, as demonstrated in the figures above. 
clusterMaker2 specifically links the visualizations, providing a brushing and linking [62, 
63] facility between the various visualizations and the Cytoscape network.

One other criticism is that clusterMaker2 provides very limited support for cluster 
evaluation techniques. Currently, only a modularity score is produced for network clus-
ter algorithms and silhouette is provided for algorithms that require a cluster number as 
an input parameter. However, there are several other cluster evaluation techniques that 
provide internal or external measures of the clustering. External cluster evaluation tech-
niques such as the Rand Index [64] and Mutual Information [65] require some type of 
ground truth, which makes them somewhat unsuitable for the typical clusterMaker2 use 
cases where ground truth is almost never known. Internal cluster evaluation techniques, 
on the other hand, do not require a ground truth, and would be worthwhile to additions 
to a future version of clusterMaker2. For example, both the Calinski-Harabasz index [66] 
and the Davies-Bouldin index [67] could be added to clusterMaker2 in a new Cluster 
Evaluation category. Until that point, however, the Python package sklearn provides 
these functions (sklearn.metrics.calinski_harabasz_score and sklearn.metrics. davies_
bouldin_score and a good tutorial covering these methods is available on the analytic-
sindiamag.com web site [68]. It should be noted, however, that while cluster evaluation 
algorithms provide an assessment of the clustering based on various measures of “good-
ness”, the best clustering for most clusterMaker2 users is one that reflects the underlying 
biology. A good way to inspect that is shown in the workflow above, where over-repre-
sentation analysis was performed on each cluster to determine the extent to which the 
underlying biology was reflected in the cluster. This in no way detracts from the use of 
cluster evaluation algorithms, but they should be used in conjunction with biological 
meaningful measures. Hopefully, a future version of clusterMaker2 will facilitate that.

The contributions of supervised and semi-supervised machine learning techniques 
to biology are also important to mention here. In particular, modern unsupervised 
learning techniques such as autoencoders have been used effectively in a biological 
context (c.f. [69–73]), and clusterMaker2 currently does not provide any support for 
these algorithms. While it is clear that these techniques are achieving great success, 
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at this point, it would be difficult to incorporate them into clusterMaker2’s architec-
ture. However, it should be noted that applications such as AlphaFold [74] have been 
extremely successful by distributing pre-trained neural networks, skipping the train-
ing step for end users. One could imagine similar approaches that would pre-train a 
series of neural networks for common types of biological networks. Pre-trained net-
works would be much easier to integrate into clusterMaker2.

Finally, there are several areas to explore in future versions of clusterMaker2. First, 
as mentioned above, we continue to respond to user requests for additional clustering 
algorithms that are currently not included in clusterMaker2. Second, we are exploring 
unsupervised machine learning algorithms such as variational autoencoders [75] for 
inclusion. Finally, the usability of the scatterplot implementation could be improved 
to provide support for better selection modes, panning, and zooming.

Conclusions
clusterMaker2 represents a significant advance over the previously published version 
of clusterMaker and is the culmination of a large number of improvements, includ-
ing the addition of dimensionality reduction techniques, fuzzy clustering methods, 
and the use of web services to improve the ease of implementation of new algorithms 
and the performance of algorithms on large networks. All of these additional features 
have been integrated into the Cytoscape ecosystem and have been made accessible 
via CyREST commands to allow integration into bioinformatic pipelines using R or 
Python. Most importantly, clusterMaker2 provides an easy-to-use tool to perform 
clustering and to visualize clusters within the Cytoscape network context.
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