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Abstract 

Background:  The aim was to develop a personalized survival prediction deep learn-
ing model for cervical adenocarcinoma patients and process personalized survival 
prediction.

Methods:  A total of 2501 cervical adenocarcinoma patients from the surveillance, epi-
demiology and end results database and 220 patients from Qilu hospital were enrolled 
in this study. We created our deep learning (DL) model to manipulate the data and 
evaluated its performance against four other competitive models. We tried to demon-
strate a new grouping system oriented by survival outcomes and process personalized 
survival prediction by using our DL model.

Results:  The DL model reached 0.878 c-index and 0.09 Brier score in the test set, 
which was better than the other four models. In the external test set, our model 
achieved a 0.80 c-index and 0.13 Brier score. Thus, we developed prognosis-oriented 
risk grouping for patients according to risk scores computed by our DL model. Nota-
ble differences among groupings were observed. In addition, a personalized survival 
prediction system based on our risk-scoring grouping was developed.

Conclusions:  We developed a deep neural network model for cervical adenocarci-
noma patients. The performance of this model proved to be superior to other models. 
The results of external validation supported the possibility that the model can be used 
in clinical work. Finally, our survival grouping and personalized prediction system pro-
vided more accurate prognostic information for patients than traditional FIGO stages.

Keywords:  Adenocarcinoma of cervix, Survival prediction, Deep learning, SEER 
database

Background
Cervical cancer is the fourth most common cancer in females, causing 604,127 new 
cases in 2020 worldwide [1]. Though adenocarcinoma only accounts for 10–25% of all 
cervical cancer cases, its greater propensity to metastasis leads to poor prognosis [2, 3]. 
According to The National Comprehensive Cancer Network (NCCN) guidelines, the 
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primary treatment of early-stage cervical cancer is surgery. But the current guidelines 
don’t distinguish different strategies for squamous cell carcinoma (SCC) and adenocar-
cinoma (AC). Several factors have been recognized as associated with survival outcomes 
after surgery. The International Federation of Gynecology and Obstetrics (FIGO) stage 
is the most investigated prognostic factor for cervical AC with five-year overall survival 
(OS) being 79% in stage I and 37% in stage II [2, 4]. Besides that, lymph node status, 
tumor size, tumor grade, depth of cervical invasion, patients’ age, lymphovascular-space 
involvement, and parametrial involvement are also identified as prognostic factors [5–7].

Most prognostication studies for cervical AC were developed with multivariate analy-
sis, Cox proportional hazards (CPH) regression analysis, and the Kaplan–Meier (K–M) 
survival curve model [8–10]. However, these traditional methods have been proven to 
be less accurate in the survival prediction of some cancers than those new models like 
the linear multi-task (LMT) model, random survival forest (RSF) model, support vector 
machine (SVM) model and deep learning (DL) model [11, 12]. The DL model, as a newly 
emerging model, allows the automatic discovery of the representations with the use of 
fully connected layers in the network and can analyze the nonlinear correlations that 
are more common in the real world [13]. Until now, no study has been carried out for 
cervical AC patients to develop a new survival prediction DL model and to compare the 
predictive accuracy of different models.

However, a large number of cases are needed for the DL model to output more accu-
rate prediction results. Due to the relatively low incidence and poor prognosis of cervi-
cal AC, large cohort studies in the real world are difficult to carry out. The surveillance, 
epidemiology, and end results (SEER) database provides a new choice for researchers. 
The SEER database is a population-based data source covering approximately 34.65% of 
the U.S. population [14]. Clinical data and follow-up information for all tumor patients 
have been collected since 1973. The huge number of medical records has enabled it to 
provide information for the survival analysis of a variety of cancers [15–17] and to sat-
isfy demands for these machine learning models [18, 19]. Besides, another challenge for 
developing DL systems in survival prediction is clinical validation. The use of a single 
dataset for model development and validation leads to the risk of overfitting which is a 
common prediction error in machine learning [20]. Thus, validation of the DL model in 
external datasets, especially real word clinical records, is necessary.

In this study, we aimed to develop a survival prediction DL model for cervical AC 
patients who have had surgeries. To verify the reliability of the new model, real word 
data from a medical center in China was also included as an external-test set. We made a 
systematic comparison of different models, including the CPH model, LMT model, RSF 
model, SVM model, and DL model. We also developed risk grouping based on survival 
prediction and a new personalized survival prediction system based on the DL model.

Materials and methods
Data collection in SEER database

The SEER database had 133 usable variables including cancer stage at the time of 
diagnosis and patient survival data. In this study, we used the “International Clas-
sification of Disease for Oncology, Third Edition (ICD-O-3)” for the selection of pri-
mary cervical cancer patients diagnosed from 1973 to 2014. The selection codes for 
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ICD-O-3 were C53.0 (Endocervix), C53.1 (Exocervix), C53.8 (Overlapping lesion of 
cervix uteri), and C53.9 (Cervix uteri). The selection codes for histology are adeno-
mas and adenocarcinomas (the description of the “histo3v” code is 8140 and 8389). 
We kept cervical AC patients who have had surgery. Cases with multiple tumors were 
excluded and the final sample size was 2501 (Table 1). For the missing values, we filled 
up them with the mean of each variable when building the model. Detailed informa-
tion can be found in the Additional file 1.

Table 1  Patient demographic characteristics in SEER database

Characteristics No. %

Age, years (N = 2501) Mean 44

SD 12.7

Race (N = 2480) White 2049 82.62

Black 144 5.81

Asian 287 11.57

Marital status (N = 2422) Single 478 19.74

Married 1504 62.10

Separated 37 1.53

Divorced 267 11.02

Widowed 136 5.62

Stage (N = 2465) IA 838 34.00

IB 1372 55.66

IIA 104 4.22

IIB 151 6.13

Lymph node metastasis (N = 2395) No metastasis 2190 91.44

Regional lymph node 179 7.47

Aortic/distant lymph node 26 1.09

Positive lymph node numbers (N = 1814) 0 1616 89.08

1 88 4.85

2 43 2.37

3 26 1.43

4 10 0.55

 >  = 5 31 1.72

Resected lymph node numbers (N = 2311) Mean 14.3

SD 13.6

Tumor diameter, mm (N = 1359) Mean 23.7

SD 40.6

Depth of invasion (N = 1359) Inner 1/3 770 56.66

Middle 1/3 250 18.40

Outer 1/3 339 24.94

Differentiation (N = 1942) Low 435 22.40

Moderate 752 38.72

High 755 38.88

Surgery (N = 955) Local excision 75 7.85

TH 49 5.13

TH + LND 65 6.81

TH + BSO 127 13.3

TH + BSO + LND 639 66.9
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Since the SEER dataset utilized publicly available desensitized data, data from the 
database did not need approval from the institutional review board (IRB) or informed 
consent from patients.

Data preparation in SEER database

According to the clinical definition of cervical adenocarcinoma and the year of data 
entry, we selected variables to be analyzed. Then, we excluded those duplicated vari-
ables using correlation matrix analyses. According to the clinical definition of cervical 
adenocarcinoma, we selected some variables to be analyzed. Then, we excluded those 
duplicated variables using correlation matrix analyses, and setting correlation coefficient 
threshold: 0.7 (Fig.  1). Thus, a total of 11 variables were selected for further analyses 
among 133 original variables in the SEER database, including age, race, marital status, 
stage, lymph node metastasis, positive lymph node numbers, resected lymph node num-
bers, tumor diameter, depth of invasion, differentiation and surgery.

We use whole numbers to encoded these categorical variables, such as variable differ-
entiation, we encoded low, moderate and high differentiation as 0,1,2 respectively. Stages 
were defined from the farthest extension of the tumor and whether lymph nodes were 
involved. The SEER catalog is named “rename eod10_ex”. Depth of invasion referred to 
extent of tumor invasion to the cervix and was defined according to “eod10_sz” and “CS 

Fig. 1  Correlation matrix of 11 selected variables. Values in this figure indicated the correlation coefficient of 
two corresponding variables. The color indicated the strength of the correlation. Depth: depth of invasion. 
Diam: tumor diameter. Diff: differentiation. Lymmeta: lymph node metastasis. Lymon: resected lymph node 
numbers. Lympo: positive lymph node numbers
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Tumor Size/Ext Eval (2004 +)” in the SEER catalog. Depth of invasion was defined as a 
categorical variable indicating depth less than 1/3, depth between 1/3 and 2/3, and depth 
deeper than 2/3. Lymph node status was clearly described in the database according to 
the “eod10_nd”, “eod10_pn”, and “eod10_ne” catalog, consisting of lymph node metas-
tasis, positive lymph node numbers and resected lymph node numbers, lymph node 
metastases were defined as categorical variables, indicating no metastases, pelvic lymph 
node metastases, or paraaortic lymph node metastases, the number of positive lymph 
nodes and the number of dissected lymph nodes were defined as continuous variables. 
In the SEER database, several methods were introduced to define race. In this study, we 
classified race into White, Black, and Asian as a categorical variable according to the 
catalog “rac_recy”. Marital status was defined as single, married, separated, divorced, and 
windowed according to catalog “rename mar_stat”. Differentiation was defined as a cat-
egorical variable indicating low, moderate, and high according to catalog “grade”. Surgery 
was also a categorical variable consisting of local excision, total hysterectomy (TH), total 
hysterectomy and lymph node dissection (TH + LND), total hysterectomy, and bilateral 
salpingo-oophorectomy (TH + BSO), and total hysterectomy and bilateral salpingo-
oophorectomy plus lymph node dissection (TH + BSO + LND) according to catalog 
“ss_surg”. In addition, another two continuous variables were age and tumor diameter.

To make attribute values of variables lie numerically in the same scale, and have the 
same importance, before passing the input variables through the model, we preprocess 
our data by min–max scale using the “minmax_scaling” package [21] in python.

Patient characteristics in the SEER database

A total of 2501 corpus adenocarcinoma patients registered from 1973 to 2014 in the 
SEER database were enrolled in this study. According to correlation analyses, 11 vari-
ables of these patients were involved for analysis. The selected patients were split into a 
training set (n = 1501, 60%), validation set (n = 500, 20%) and testing set (n = 500, 20%).

The patient demographic characteristics are shown in Table 1. A total of 2049 cases 
were White (82.62%), 144 were Black (5.81%), and 275 were Asian (11.09%). A total of 
478 cases were single (19.74%), 1504 were married (62.10%), 37 were separated, 267 were 
divorced (11.02%) and 136 were widowed (5.62%). 435 cases were poorly differentiated 
(22.40%), 752 were moderately differentiated (38.72%) and 755 were highly differentiated 
(38.88%). A total of 2190 patients had localized tumors (91.44%), 179 patients extended 
to regional lymph nodes (7.47%), and 26 patients extended to distance lymph nodes 
(1.09%). A total of 838 cases were stage IA (34.00%), 1372 were stage IB (55.66%), 104 
were stage IIA (4.22%) and 151 were stage IIB (6.13%). 75 patients underwent local exci-
sion surgery (7.85%) and 639 underwent TH + BSO + LND (66.9%).

Data in the external‑test set

Cases in the external-test set were retrospectively collected at Qilu Hospital Shandong, 
China. Data were collected through medical records and annual telephone follow-ups. 
The median follow-up time was 48.4 months. Informed consent from the patients was 
exempt because of the retrospective nature of the study. The study was approved by the 
hospital’s ethics committees.
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We included patients who underwent surgery in Qilu Hospital from August 2005 
to March 2021 and were pathologically diagnosed with cervical AC. Patients who 
refused follow-up were excluded. We also excluded patients whose first operation was 
not carried out in Qilu Hospital and patients with multiple tumors. Finally, the num-
ber of cases included in the external-test set is 220 (Table 2). Clinical data including 
age, race, marital status, stage, lymph node metastasis, positive lymph node numbers, 
resected lymph node numbers, tumor diameter, depth of invasion, differentiation, 
and surgery were analyzed. Detailed information can be found in the Additional file 2.

Table 2  Patient demographic characteristics in the external test set

Characteristics No. %

Age, years (N = 219) Mean 46

SD 9.53

Race(N = 220) Asian 220 100.00

Marital status (N = 219) Single 0 0

Married 208 94.98

Divorced 9 4.11

Widowed 2 0.91

Stage (N = 158) IA 15 9.49

IB 137 86.71

IIA 6 3.80

IIB 0 0

Lymph node metastasis (N = 219) No metastasis 193 88.13

Metastasis 26 11.87

Positive lymph node numbers (N = 219) 0 177 80.82

1 16 7.31

2 10 4.57

3 6 2.74

4 4 1.83

 >  = 5 6 2.74

Resected lymph node numbers (N = 219) Mean 21

SD 7.27

Tumor diameter, mm (N = 219) Mean 28.4

SD 1.58

Depth of invasion (N = 219) Inner 1/3 103 47.03

Middle 1/3 21 9.60

Outer 1/3 95 43.37

Differentiation (N = 168) Low 25 14.88

Middle 76 45.24

High 67 39.88

Surgery (N = 219) Local excision 9 4.11

TH 3 1.37

TH + LND 2 0.91

TH + BSO + LND 131 59.82

RTH + BSO + LND 74 33.79
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DL model building and evaluation

The original multitask logistic regression (N-MTLR) model developed by Chun-Nam 
Yu [22] was adopted as a basis for our model. Our model was developed on the PyTorch 
framework [23]. Scikit-learn [21] and pandas packages [24] were also involved in the data 
processing.

The structure of the final deep learning network involved 6 fully-connected layers, each 
layer had 100 neurons. The grid search method was used for selecting optimal hyperpa-
rameters. Optimal hyperparameters were as follows: weight initialization method = glo-
rot_uniform, optimizer = “Adam” [25], learning rate = 1e−4, l2 regularization = 1e−4, l2 
smooth = 1e−2, dropout rate = 0.3, number of iterations = 3000. The ranges of each of the 
hyperparameters as: the number of neuron layers [2, 10]; the hidden number of neurons in 
each layer [2, 300]; learning rate [10e−6, 1]; l2 regularization [10e−4, 10e−2]; l2 smooth 
[10e−4, 10e−2]; dropout rate [0, 1]. To prevent the potential overfitting of machine learn-
ing model, We conducted additional assessments using the testing set.

Hyperparameters for CPH model, LMT model, RSF model, and SVM model were as 
follows: In CPH model, weight initialization method = glorot_uniform, l2 regulariza-
tion = 1e−2, learning rate = 1e−4, topology error check = 1e−4. In LMT model, final 
model involved 4 hidden neuron layers, each hidden layer had 50 neurons, activation 
function is ReLU, weight initialization method = glorot_uniform, optimizer = “Adam” 
[25], learning rate = 1e−3, l2 regularization = 1e−2, l2 smooth = 1e−2, dropout = 0.2. In 
RSF model, number of trees = 200, maximum features = log2, maximum depth = 2, mini-
mum node size = 5. In SVM model, kernel = Gaussian, scale = 0.25, weight initialization 
method = glorot_uniform, bias = True, learning rate = 1e−3, topology error check = 1e−3, 
l2 regularization = 1e−3.

Data from the SEER database were split into the training set, validation set, and testing 
set. The testing set and QL set were independently applied to evaluate the performance of 
our model. We used the concordance index (c-index) and the integrated Brier scores (IBS) 
to compare the performances of different models.

Statistical analyses

Overall survival (OS) was the main indicator for survival outcome analyses and prediction. 
K–M curve and receiver operating characteristic (ROC) curve were performed for patients 
staged with the traditional staging system and new risk grouping system. The area under 
the curve (AUC) was also calculated to compare the prognosis prediction ability of the 
two staging methods. Finally, personalized survival curves were also plotted for randomly 
selected patients from the testing set. A z-score test [26] was constructed to statistically 
compare the C-index and AUC between the two models, the results were considered signif-
icant if the P value < 0.05. These analyses were conducted using R version 3.0 (R Foundation 
for Statistical Computing, Vienna, Austria). Besides, we used STATA software (version 13) 
for parts of the statistical analyses.

Results
Performance of DL model

The structure of the final deep learning network involved 6 neuron layers, each layer had 
100 neurons. When iterations at 3000 the loss values curve tended to flatten (Fig. 2A).
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To prevent the potential overfitting of machine learning model, We conducted addi-
tional assessments using the testing set. Finally, our model reached a c-index of 0.878 
and an IBS of 0.09 in the testing set (Fig. 2B). In addition, Calibration curves showed that 
nearly all regions of the predicted survival curves were plotted within confidence inter-
vals (Fig. 2C). 2.580 of the median absolute error (AE) and 3.094 of the mean AE were 
achieved in each time interval in testing set (Fig. 2C).

Comparison of different models

We built the CPH model, LMT model, RSF model, and SVM model using the same data 
set from the SEER database. C-index and IBS were calculated, and actual and predicted 
survival curves were drawn for all models (Fig.  3). The CPH model reached 0.715 for 
the C-index, 0.16 for IBS, 13.572 for median AE, and 12.036 for mean AE (Fig. 3A, B). 

Fig. 2  Performance of our DL model in the test set. A After 3000 iterations, the loss value decreased from 
22,000 to 11,000. B The IBS of our DL model in the test set is 0.09. C Calibration survival curves of the testing 
set according to the DL model
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The LMT model reached 0.702 for the C-index, 0.16 for IBS, 15.631 for median AE, 
and 16.407 for mean AE. The predicted curve deviated from the confidence intervals 
(Fig. 3C, D). RSF model reached 0.737 for the C-index, 0.13 for IBS, 8.099 for median 
AE, and 8.470 for mean AE (Fig. 3E, F). The SVM model reached 0.693 for the C-index, 
0.12 for IBS, 9.436 for median AE, and 8.829 for mean AE (Fig. 3G, H).

DL model in the external test set

Finally, our model reached a c-index of 0.80 and an IBS of 0.13 in the external test set 
(Fig. 4A). Calibration curves showed the predicted survival curve located within confi-
dence intervals. 2.324 of the median AE and 3.144 of the mean AE were achieved in each 
time interval (Fig. 4B).

Prognosis‑oriented risk grouping

K–M curves and ROC curves were plotted for patients from the SEER database and Qilu 
Hospital according to the conventional staging system (Fig. 5A–D). In the SEER data-
base, mortality for stage II, III, and IV patients increased 2.21-, 6.35- and 7.28-fold rela-
tive to the stage I patients (95%CI 2.02–8.08, P < 0.0001). In the Qilu dataset, mortality 
for stage II and III patients increased 0.87- and 3.98-fold relative to the stage I patients 

Fig. 3  performance of other models including CPH model, LMT model, RSF model, and SVM model. A The 
IBS of the CPH model in the test set is 0.16. B Survival curves of the testing set according to the CPH model. 
C The IBS of the LMT model in the test set is 0.16. D Survival curves of the testing set according to the LMT 
model. E The IBS of the RSF model in the test set is 0.13. F Survival curves of the testing set according to the 
RSF model. G The IBS of the SVM model in the test set is 0.12. H Survival curves of the testing set according to 
the SVM model
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(P > 0.05). The AUCs were 0.6859 and 0.5770 separately. The difference in survival 
between stages was inapparent.

Risk factors for patients in the testing set and external test set were computed by 
our DSL model. According to their risk scores, patients were divided into four staging 
groups (Fig. 6). Patients with a score of 0–2.7 were classified in risk group I and marked 
in red color, patients with a score of 2.7–3.7 in risk group II and green color, patients 
with 3.7–4.4 scores in risk group III and blue color, patients with 4.4–5.5 score in risk 
group IV and purple color.

K–M curves and ROC curves were plotted for patients from the testing set and exter-
nal test set according to our risk grouping system (Fig. 7A–D). In the test set, mortal-
ity for group II, III, and IV patients increased 2.19-, 7.09-, and 14.40-fold relative to the 
group I patients (95%CI 4.83–10.40, P < 0.0001). In the external test set, mortality for 
group II, III, and IV patients increased 4.84-, 14.56-, and 21.88-fold relative to the group 
I patients (95%CI 4.83–10.40, P < 0.0001). The AUROC was 0.7938 for the testing set and 
0.8067 for the external test set.

Personalized survival prediction using the DL model

Then, we tried to process personalized survival prediction using our new model. A sur-
vival curve was drawn according to one single patient. To verify the accuracy of the 
personalized survival prediction, we painted survival curves for four patients who were 
randomly selected from each group of our risk grouping system. Notable differences 
among patients were observed in both the test set and the external test set (Fig. 8A, B).

Fig. 4  Validation of our DL model in the external test set. A The IBS of our DL model in the external-test set is 
0.13. B Predicted survival curves according to the DL model located within confidence intervals
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Discussion
Adenocarcinoma of the cervix is known as a relatively worse prognosis than squamous 
cell carcinoma. In this study, we established a deep learning model to predict survival 
outcomes for adenocarcinoma patients. To our knowledge, this is the first prognostica-
tion study for cervical adenocarcinoma patients applying a deep learning method.

In this study, we demonstrated that the new model had a good performance with a 
c-index of 0.80 and an IBS of 0.13 in the external test set. Besides, the accuracy of predic-
tion supported by five different models was carefully compared and analyzed. In the test 
set, our model reached a c-index of 0.878 which was higher than that in the other four 
models, and IBS of 0.009 which was lower than that in the other four models. According 

Fig. 5  K–M curves and ROC curves of patients from the SEER database (A, B) and Qilu Hospital (C, D) 
according to the conventional staging system

Fig. 6  Four risk groups were divided according to a prognosis risk score calculated by our DL model
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Fig. 7  K–M curves and ROC curves of patients from the SEER database (A, B) and Qilu Hospital (C, D) 
according to the new prognosis-oriented grouping system

Fig. 8  Personalized survival prediction using the DL model showed notable differences among patients in 
both test set (A) and external test set (B)
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to survival calibration curves, the predicted survival curve of our DL model almost coin-
cided with the actual curve, while that of the LMT and SVM models deviated from the 
confidence intervals. Though survival calibration curves of RSF and CPH also didn’t 
visually deviate, the relatively low c-index and high IBS prevented them from being con-
sidered better models. All these data supportted the conclusion that the DL model was 
the most capable to complete survival analysis and provided the most accurate results. It 
was worth noting that the predicted survival curve drawn by the DL model in the exter-
nal test set was completely located within the confidence intervals. A relatively small 
sample size in the external test set might contribute to this result.

Besides, we also demonstrated a new grouping system oriented by survival outcomes. 
The K–M curve drawn according to our new grouping system showed a more signifi-
cant difference in survival rate. The AUCs were also higher with 0.7938 versus 0.6859 
in the test set and 0.8067 versus 0.5770 in the Qilu dataset. There was no doubt that the 
traditional staging system was of comprehensive significance in guiding treatment and 
prognosis. However, when considering the survival outcomes, our grouping system had 
better prediction ability than the traditional staging system. Finally, in pursuit of more 
accurate survival prediction, we developed a personalized prediction system that could 
draw a predicted survival curve for a single patient. This personalized system showed 
strong performance on a validation set of randomly selected patients.

Previous studies have explored the ability of the CPH model to investigate prognos-
tic factors of cervical adenocarcinoma. However, the conventional model, like the CPH 
model, could only deal with simple linear relationships between a prognostic factor 
and survival outcome. Complex nonlinear relationships existed among different factors 
which work together to influence the outcome. Thus, our DL model showed better per-
formance by making up for this defect, which was consistent with results in other can-
cers [27, 28]. In addition, past works have never concentrated on the staging system and 
prognosis-related subgroups in cervical adenocarcinoma. The personalized prediction 
system was also unprecedented. Our work would provide new ways to predict survival 
for cervical adenocarcinoma patients.

The limitations of this study included the absence of more detailed patient information 
including pathological features, radiologic findings, and laboratory indicators. Further 
studies including a large series with comprehensive information and detailed survival 
data would be needed. Nevertheless, the extension of our new system to an online pro-
gram that can update with new measures should be expected.

Conclusion
In this paper, we developed a deep neural network model for cervical adenocarcinoma 
patients using data from the SEER database. The performance of this model was shown 
to be superior to other survival prediction models including the CPH model, LMT 
model, RSF model, and SVM model in the test set. Real-word information on cervical 
adenocarcinoma patients was also incorporated to validate the DL model. The results 
of external validation supported the possibility that the model can be used in clinical 
work. Finally, new survival grouping and personalized prediction systems were proposed 
which provided more accurate prognostic information for patients.
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