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Abstract 

Background: Atherosclerosis is the common pathological basis for many cardiovascu-
lar and cerebrovascular diseases. The purpose of this study is to identify the diagnostic 
biomarkers related to atherosclerosis through machine learning algorithm.

Methods: Clinicopathological parameters and transcriptomics data were obtained 
from 4 datasets (GSE21545, GSE20129, GSE43292, GSE100927). A nonnegative matrix 
factorization algorithm was used to classify arteriosclerosis patients in GSE21545 
dataset. Then, we identified prognosis-related differentially expressed genes (DEGs) 
between the subtypes. Multiple machine learning methods to detect pivotal mark-
ers. Discrimination, calibration and clinical usefulness of the predicting model were 
assessed using area under curve, calibration plot and decision curve analysis respec-
tively. The expression level of the feature genes was validated in GSE20129, GSE43292, 
GSE100927.

Results: 2 molecular subtypes of atherosclerosis was identified, and 223 prognosis-
related DEGs between the 2 subtypes were identified. These genes are not only related 
to epithelial cell proliferation, mitochondrial dysfunction, but also to immune related 
pathways. Least absolute shrinkage and selection operator, random forest, support vec-
tor machine- recursive feature elimination show that IL17C and ACOXL were identified 
as diagnostic markers of atherosclerosis. The prediction model displayed good dis-
crimination and good calibration. Decision curve analysis showed that this model was 
clinically useful. Moreover, IL17C and ACOXL were verified in other 3 GEO datasets, and 
also have good predictive performance.

Conclusion: IL17C and ACOXL were diagnostic genes of atherosclerosis and associ-
ated with higher incidence of ischemic events.
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Background
Atherosclerosis (AS) is a chronic progressive inflammatory disease of blood vessels, 
which involves physiological processes such as disorders of lipid metabolism, vascular 
endothelial cell injury, inflammatory cell infiltration, and neo-capillary formation [1–3]. 
AS has no obvious symptoms in the early stage of the disease, and patients are mostly 
aware of it because of other cardiovascular and cerebrovascular complications [4]. 
Although drugs are available to treat atherosclerosis, there are still many patients who 
do not benefit from current drug therapy without significant effects or who are intoler-
ant to adverse effects [5]. The search for highly sensitive and specific biomarkers can 
help reduce the morbidity and mortality of AS. However, current timely diagnostic bio-
markers for AS are very limited and not well suited for the early and accurate diagnosis 
of AS. Therefore, it is important to find new diagnostic markers of AS for accurate diag-
nosis of AS.

Currently, the development of microarrays has led to extensive and in-depth analysis 
of genome-wide mRNA expression profiles. With the rapid development of gene chips, 
high-throughput sequencing, multi-omics analysis and other technologies, gene expres-
sion public databases are rapidly increasing. With the development and maturation of 
bioinformatics, bioinformatics techniques are widely used to analyze large number of 
expression profiling microarrays to find biomarkers related to disease diagnosis, treat-
ment and prognosis [6–8]. Machine learning has been widely used in finding markers 
for disease diagnosis base on multi-omics analysis. Support vector machine (SVM), least 
absolute shrinkage and selection operator (LASSO) regression and random forest (RF) 
methods are 3 important techniques in machine learning [9–11]. Due to the three meth-
ods can identify the best classification feature factor and build a prediction model with 
generalizability and high prediction accuracy. Xiong et al. screened 2 mRNAs as poten-
tial diagnostic biomarkers for abdominal aortic aneurysm using machine learning [12].

In this study, we used multiple machine learning methods analysis to analyze the 
expression profile microarrays of AS, aiming to screen genes closely related to AS diag-
nosis and provide new genetic diagnostic markers for AS. We firstly identified 2 sub-
types of atherosclerosis by using nonnegative matrix factorization (NMF) algorithm in 
GSE21545 dataset, and identified prognosis-related DEGs between the subtypes. After 
that, we identified 2 potential diagnosis genes by using LASSO, RF, SVM-RFE methods 
and developed a novel prediction model for AS diagnosis. We validated the model and 
found that the novel prediction model achieved a high AUC in 3 validation AS cohort.

Materials and methods
Data collection and pre‑processing

The gene expression profiles of human atherosclerosis samples and healthy control sam-
ples were obtained from array-based data available in the Gene Expression Omnibus 
(GEO) database. The search strategy aimed to find published dataset which included a 
three-step search strategy that was carried out from inception to July, 2022. An initial 
limited search using the keywords: “Atherosclerosis”, “Atheromatosis”, “Homo sapiens”, 
“Expression profiling by array”. Dataset needs to meet the following points: (1) Homo 
sapiens; (2) Atherosclerosis; (3) Sample size greater than 20 cases. Four microarray data 
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sets (GSE21545 [13], GSE20129 [14], GSE43292 [15], GSE100927 [16]) were utilized in 
our analysis (Additional file 1: Fig. S1). From the GSE21545 dataset, 126 AS samples were 
included. From GSE20129, 71 control samples and 48 AS samples were included. From 
GSE43292, the 32 control samples and 32 AS samples were included. From GSE100927, 
35 control samples and 69 AS samples were included. The training set was obtained from 
GSE21545, and the validation set was obtained from GSE20129, GSE43292, GSE100927. 
The raw files from the four datasets were pre-processed and normalized using limma or 
RMA-affylmGUI in R Bioconductor.

Nonnegative matrix factorization (NMF) analysis in GSE21545

The R package “NMF” was performed to identify molecular subtypes based on the gene 
expression profiles, and patients were classified for follow up studies. We used a NMF 
algorithm to determine the number of clusters and their stability according to param-
eters such as cophenetic, dispersion, silhouette, and sparseness [17].

Identification of differentially expressed genes (DEGs) and prognosis genes 

between subtypes

DEGs between subtypes were identified using the R package limma with screening crite-
ria of adjusted P value < 0.05 [18]. Then, we performed univariate COX analysis to deter-
mine the prognostic value of each DEGs.

Functional and pathway enrichment analysis

To explore the biological functions mainly performed by DEGs and prognosis genes 
between subtypes, we performed functional enrichment analysis using the "clusterPro-
filer" package, including GO and KEGG analysis. The screening criteria were P < 0.05 
and FDR < 0.05 [19, 20].

Evaluation of immune infiltrating cells in AS

Based on the normalized gene expression data from the disease and control samples, the 
web tool CIBERSORT (http:// CIBER SORT. stanf ord. edu/) was used to calculate immune 
cell infiltration and explore the disease immune microenvironment. The 22 immune cell 
genes (LM22) were used as the reference set. The number of permutations set was 1000. 
A P value < 0.05 in the CIBERSORT results was retained [21].

Machine learning methods

LASSO method, which is suitable for the reduction in high-dimensional data, was used 
to select the optimal predictive features in risk factors from the patients with AS. Sup-
port vector machine-recursive feature elimination (SVM-RFE) approach is based on the 
VC dimensional theory of statistical learning theory and the structural risk minimiza-
tion principle. Based on limited sample information, SVM-RFE seeks to find the best 
compromise between the complexity of the model (the learning accuracy) and the learn-
ing ability. Random forest (RF) refers to a classifier that uses multiple trees to train and 
predict samples. The three classifiable models’ overlapping genes were then figured out.

http://CIBERSORT.stanford.edu/
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Construction of AS diagnosis nomogram

We used the expression level of predictors by the R-package “rms” to construct the 
nomogram and predict the risk of AS. Calibration curves were used to estimate the con-
sistency between predicted and actual diagnosis, and the performance of the model in 
predicting diagnosis was evaluated by area under curve (AUC) [22].

Statistical methods

R software (4.1.2) was employed to carry out all statistical analysis and graph plotting. 
Wilcoxon test was applied to analyze the differences between two groups. Kruskal–Wal-
lis test was used for comparison among more than two groups of samples. The Kaplan–
Meier method was used to plot survival curves for prognostic analysis, and the log-rank 
test was used to determine the significance of differences. The correlation test was per-
formed using Spearman correlation analysis and distance correlation analysis. Com-
parisons of composition ratios among groups were performed by chi-square test. All 
statistical P values were two-tailed, and P < 0.05 was used as the truncated value.

Results
Identification of molecular subtypes in AS

To explore the expression characteristics in AS, we qualitatively classified patients based 
on the expression profiles. By NMF algorithm, a cluster number of 2 was the best choice 
to classify the whole sample into C1 (n = 46) and C2 (n = 80) in GSE21545 dataset (Addi-
tional file 2: Fig. S2, Fig. 1A). Kaplan–Meier survival analysis indicated that patients with 
RPMRs.cluster.A had a worse ischemic events ((HR 4.08, 95% CI 1.22–13.63, P = 0.023, 
Fig. 1B). To explore the potential biological change between distinct cluster, firstly, the 
PCA demonstrated there is significant DEGs between the two clusters, and 223 prog-
nostic related DEGs were identified (Fig.  1C, Additional file  3: Table  S1). Then, we 
applied GO and KEGG enrichment analysis, which showed that C2 was significantly 
enriched in immune-related pathways (mast cell activation, regulation of interferon-
gamma production, and IL-17 signaling pathway), epithelial cell proliferation (epithelial 
cell proliferation, regulation of epithelial cell proliferation), mitochondrial dysfunction 
(mitochondrial inner membrane), suggesting that C2 may play an important role in AS 
development and immune regulation (Fig. 1D, E).

Immune infiltrating cell analysis between the two molecular subtypes

To further investigate the role of two cluster in immune infiltrating of AS, we used 
CIBERSORT to explore the infiltration of various types of immune cells in AS sam-
ples. Figure  2A indicated the immune cell infiltration landscape and immune cell 
score correlation results in different samples of the GSE21545 dataset, respectively. 
Moreover, univariate Cox regression analysis was performed based on GSE21545 
dataset, high immune cell score of eosinophils, mast cells activated, B cells memory 
corelated with worse ischemic events in AS (Fig.  2B). In addition, we also evaluate 
the association between molecular subtypes and immune cell subpopulations. The 
results showed T cells CD8, T cells regulatory (Tregs), M0 macrophages, and M1 
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macrophages were more abundant in C2 cluster, while M2 macrophages was signifi-
cantly higher in C1 cluster (Fig. 2C). The above results suggest that C2 cluster had a 
higher inflammatory environment, which leads to the progression of the disease.

Machine learning methods to detect diagnostic markers in AS

To further explore the risk gene features, we carried out the LASSO regression model 
to screen out 33 potential predictors from 223 prognostic related DEGs (Fig. 3A, B, 
Additional file 4: Table S2). To evaluate the discrimination of the prediction model, 
the AUC of ROC was estimated. As shown in Fig. 3C, the prediction model achieved 
a AUC of 0.930 (95% CI 0.887–0.973), which indicated good discrimination of the 
model. Then, we carried out the SVM-RFE approach (k = 10, halve.above = 50) to 
screen out 17 potential predictors from 223 prognostic related DEGs (Fig.  3D, E, 
Additional file 5: Table S3). To evaluate the discrimination of the prediction model, 
the AUC of ROC was estimated. As shown in Fig. 3F, the prediction model achieved 
a AUC of 0.981 (95% CI 0.964–0.998), which indicated good discrimination of the 
model. In addition, we carried out the RF approach (ntree = 500) to screen out 3 
potential predictors from 223 prognostic related DEGs (Fig. 3G, H, Additional file 6: 
Table S4). To evaluate the discrimination of the prediction model, the AUC of ROC 
was estimated. As shown in Fig.  3I, the prediction model achieved a AUC of 0.997 

Fig. 1 The molecular subtypes categorization of AS base on expression profiles. (A) AS patients from 
GSE21545 dataset were divided into sub‐consensuses based on the gene transcriptional profiling using 
NMF method. Consensus maps showed the correlation profiling of AS derived from two sub‐consensuses. 
(B) Kaplan–Meier curve showed a significant difference between the two clusters. (C) UMAP analysis for 
the transcriptome profiles of C1 cluster and C2 cluster, showing a remarkable difference on transcriptome 
between different group. (D) GO enrichment analysis, (E) KEGG enrichment analysis for prognostic related 
DEGs
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(95% CI 0.992–1.000), which indicated good discrimination of the model. The above 
results show that the three machine learning methods have good performance in 
identifying diagnostic markers.

IL17C and ACOXL were identified as diagnostic biomarkers for AS

To further explore the diagnostic biomarkers for AS, the three classifiable models’ over-
lapping genes were figured out (Fig. 4A). These genes included IL17C and ACOXL. Next, 
we compared the expression of IL17C and ACOXL in two molecular subtypes, of which 
the expression level of IL17C and ACOXL were significantly higher in C2 cluster than in 
C1 cluster (Fig. 4B, E). To evaluate the discrimination of the diagnostic biomarkers, the 
AUC of ROC was estimated. The IL17C achieved a AUC of 0.917 (95% CI 0.865–0.968) 
(Fig.  4C) and the ACOXL achieved a AUC of 0.899 (95% CI 0.842–0.955) (Fig.  4F), 
which indicated good discrimination of the diagnostic biomarkers. Next, Kaplan–
Meier survival analysis was performed based on GSE21545 dataset, high expression of 
IL17C coorelated with worse ischemic events ((HR 2.43, 95% CI 1.05–5.64, P = 0.039, 
Fig. 4D), high expression of ACOXL coorelated with worse ischemic events (HR 2.68, 
95% CI 1.12–6.43, P = 0.027, Fig.  4G). Then, we applied KEGG enrichment analysis, 
which showed that high expression IL17C was significantly enriched in immune-related 

Fig. 2 Immune infiltrating cell analysis between the two molecular subtypes. (A) Correlation heat map 
of immune infiltrating cell. The size of the colored squares represents the strength of the correlation; blue 
represents a negative correlation, and red represents a positive correlation. The darker the color is, the 
stronger correlation is. (B) Forest plots showing the results of the univariate Cox regression between immune 
infiltrating cell and ischemic events in AS. (C) The abundance of each immune infiltrating cell in two clusters. 
The upper and lower ends of the boxes represented the interquartile range of values. The lines in the boxes 
represented median value, and black dots showed outliers. (*P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001)
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pathways (B cell receptor signaling pathway, T cell receptor signaling pathway), meta-
bolic pathways (citrate cycle TCA cycle, gylcosylphosphatidylinositol GPI anchor bio-
synthsis, sphingolipid metabolism), high expression ACOXL was significantly enriched 
in metabolic pathways (linoleic acid metabolism, alpha linolenic acid metabolism) 
(Fig. 4H, I).

Relationship between diagnostic biomarkers and immune cells

Next, we investigate the role of diagnostic biomarkers in immune infiltrating of AS 
(Fig.  5A, G). The results showed the expression of ACOXL was positively correlated 

Fig. 3 Machine learning methods to detect diagnostic markers in AS. (A) Fine-tuning the least absolute 
shrinkage and selection operator (LASSO) model’s feature selection. (B) LASSO regression was used to 
narrow down the prognostic related DEGs, resulting in the discovery of 33 variables as potential markers 
for AS. The ordinate represents the value of the coefficient, the lower abscissa represents log (λ), and the 
upper abscissa represents the current number of non-zero coefficients in the model. (C) ROC curves were 
constructed to assess the diagnostic accuracy of the LASSO model. (D,  E) A plot illustrating the process of 
selecting biomarkers using the SVM-RFE technique. The SVM-RFE technique was used to identify a subset of 
17 characteristics from the prognostic related DEGs. (F) ROC curves were constructed to assess the diagnostic 
accuracy of the SVM-RFE model. (G) The Gini coefficient method’s results in a random forest classifier. The 
x-axis displays the genetic variable, and the y-axis the significance index. (H) The effect of the decision tree 
number on the error rate. The x-axis denotes the number of decision trees, while the y-axis shows the error 
rate. (I) ROC curves were constructed to assess the diagnostic accuracy of the RF model
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with macrophages M1 (r = 0.27, P = 0.002), monocytes (r = 0.20, P = 0.027), T cells CD8 
(r = 0.40, P < 0.001), T cells regulatory (Tregs) (r = 0.22, P = 0.012), and negatively cor-
related with T cells CD4 naive (r = -0.25, P = 0.004) (Fig. 5B–F). The expression of IL17C 
was positively correlated with dendritic cells resting (r = 0.19, P = 0.031), macrophages 
M1 (r = 0.24, P = 0.008), T cells CD8 (r = 0.57, P < 0.001), and T cells regulatory (Tregs) 
(r = 0.31, P < 0.001) (Fig. 5H–K).

Construction of AS diagnosis nomogram

Next, we developed a diagnosis model of AS. The model that incorporated the above 
independent predictors was developed and presented as the nomogram (Fig. 6A). The 
calibration curve of the AS diagnosis nomogram for the prediction of AS risk dem-
onstrated good agreement in this cohort (Fig. 6B). The decision curve analysis for the 
nomogram was presented in Fig. 6C, D. The decision curve showed that if the threshold 
probability of a patient and a doctor is > 1 and < 96%, respectively, using this nomogram 
to predict AS risk adds more benefit than the scheme.

Fig. 4 Diagnostic indicators for AS screening. (A) Venn diagram showing overlapping markers. (B) The 
illustration shows the expression distribution of IL17C between C2 cluster (red) and C1 cluster (blue). (C) ROC 
curves were constructed to assess the diagnostic accuracy of the IL17C. (D) Kaplan–Meier curve showed a 
significant difference between the high and low IL17C exprseeion. (E) The illustration shows the expression 
distribution of ACOXL between C2 cluster (red) and C1 cluster (blue). (F) ROC curves were constructed 
to assess the diagnostic accuracy of the ACOXL. (G) Kaplan–Meier curve showed a significant difference 
between the high and low ACOXL exprseeion. (H) KEGG enrichment analysis for IL17C. (I) KEGG enrichment 
analysis for ACOXL
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IL17C and ACOXL were a robust diagnostic biomarkers for AS in GSE20129, GSE43292, 

and GSE100927 datasets

Consistent with this finding, increased mRNA expression of IL17C and ACOXL 
were observed in atherosclerosis compared with that in normal in GSE20129 data-
sets (Fig. 7A, C). The IL17C achieved a AUC of 0.892 (95% CI 0.833–0.950) (Fig. 7B) 
and the ACOXL achieved a AUC of 0.750 (95% CI 0.661–0.838) (Fig. 7D), which indi-
cated good discrimination of the diagnostic biomarkers. Moreover, we compared 
the expression of IL17C and ACOXL in GSE43292 dataset, of which the expression 
level of IL17C and ACOXL were significantly higher in AS than in the normal tis-
sues (Fig. 7E, G). ROC curves with AUC values was 0.852 (95% CI 0.759–0.944) for 
IL17C, 0.925 (95% CI 0.865–0.984) for ACOXL (Fig. 7F, H). In addition, we compared 
the expression of IL17C and ACOXL in GSE100927 dataset, of which the expression 

Fig. 5 Relationship between diagnostic biomarkers and immune cells. (A) Correlation between 22 kinds 
of immune cells and ACOXL. The size of the colored squares indicates the connection’s strength. (B–F) 
Correlation between macrophages M1, monocytes, T cells CD8, T cells regulatory, T cells CD4 naive and 
ACOXL. (G) Correlation between 22 kinds of immune cells and IL17C. The size of the colored squares indicates 
the connection’s strength. (H–K) Correlation between dendritic cells resting, macrophages M1, T cells CD8, T 
cells regulatory (Tregs) and IL17C
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Fig. 6 Construction of AS diagnosis nomogram. (A) The nomogram for predicting the risk of AS by two 
feature genes. (B) The Calibration curves of the AS prediction nomogram. (C) The decision curve analysis for 
the nomogram. (D) The clinical impact analysis for the nomogram

Fig. 7 External validation of IL17C and ACOXL. The illustration shows the expression distribution of IL17C 
(A) and ACOXL (C) between atherosclerosis (red) and control group (blue) in GSE20129 dataset. ROC curves 
were constructed to assess the diagnostic accuracy of the IL17C (B) and ACOXL (D) in GSE20129 dataset. The 
illustration shows the expression distribution of IL17C (E) and ACOXL (G) between atherosclerosis (red) and 
control group (blue) in GSE43292 dataset. ROC curves were constructed to assess the diagnostic accuracy of 
the IL17C (F) and ACOXL (H) in GSE43292 dataset. The illustration shows the expression distribution of IL17C 
(I) and ACOXL (K) between atherosclerosis (red) and control group (blue) in GSE100927 dataset. ROC curves 
were constructed to assess the diagnostic accuracy of the IL17C (J) and ACOXL (L) in GSE100927 dataset
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level of IL17C and ACOXL were significantly higher in AS than in the normal tissues 
(Fig. 7I, K). ROC curves with AUC values was 0.818 (95% CI 0.736–0.899) for IL17C, 
0.803 (95% CI 0.719–0.887) for ACOXL (Fig.  7J, L). The above results suggest that 
IL17C and ACOXL were a robust diagnostic biomarkers for AS.

Discussion
In this study, we identified two molecular subtypes based on the expression profiles, with 
C2 cluster showing a worse ischemic events. In addition, mRNA transcriptome differen-
tial expression genes between distinct cluster were closely related to biological processes 
such as immune-related pathways, epithelial cell proliferation pathways, and mitochon-
drial dysfunction pathways. In addition, C2 cluster had a higher T cells CD8, T cells reg-
ulatory (Tregs), M0 macrophages, and M1 macrophages, and lower M2 macrophages.

The immune system is one of the major regulatory systems in the development and 
progression of atherosclerosis [23]. In the early stages of atherosclerosis, low-den-
sity lipoprotein (LDL) is retained in the intima and is modified by oxidases, lipolytic 
enzymes, protein hydrolases and reactive oxygen species to form a variety of risk-related 
molecular patterns, thereby acquiring immunogenicity [24]. Immunogenic LDL activates 
vascular endothelial cells, which chemotacticize various immune cells into the vessel 
wall, mainly monocytes and T cells [25]. Histological analysis of human atherosclerotic 
plaques showed that M1 macrophages were mainly distributed in the lipid core, whereas 
M2 macrophages were mainly distributed in the plaque region away from the lipid core 
[26]. In vitro mouse experiments showed that M1 macrophages promote plaque inflam-
mation, while M2 macrophages promote plaque inflammation regression [27]. We found 
C2 cluster had a higher M0 macrophages, and M1 macrophages, and loewer M2 mac-
rophages, suggesting C2 cluster had a higher inflammatory environment, which leads to 
the progression of the disease.

CD4 + T cells receive antigens presented by antigen-presenting cells and differentiate 
into different Th cells (Th1, Th2, Th9, Th17, Th22, Tfh) and Treg cells through immune 
responses, whose role in atherosclerosis is multifaceted. Secretion of IFN-γ by Th1 cells 
affects macrophage polarization by inhibiting VSMC proliferation, thereby inhibiting 
plaque stability [28]. In addition to IFN-γ, Th1 cells secrete IL-2, IL-3, tumor necro-
sis factor, and lymphotoxin, all of which activate macrophages, T cells, and other cells 
within the plaque, thereby accelerating the inflammatory response [29]. At the same 
time, CD8+ T cells act on VSMC and release some inflammatory factors that make the 
atherosclerotic plaque unstable as well as aggravate the inflammatory response [30].

Wang et  al. showed that CD68 (AUC = 0.80), PAM (AUC = 0.79), and IGFBP6 
(AUC = 0.81) could be used as diagnostic markers to identify unstable plaques effectively 
by using LASSO and RF [31]. Xu et  al. showed that C1QA (AUC = 0.83) and ITGB2 
(AUC = 0.83) could be used as diagnostic markers to identify unstable plaques effectively 
by using LASSO [32]. In this study, multiple machine learning methods (LASSO, RF, 
SVM-RFE) identified IL17C (AUC = 0.92) and ACOXL (AUC = 0.90) as novel diagnostic 
biomarkers for atherosclerosis, and verified in other datasets.

Interleukin-17C (IL-17C) is one of the important members of the IL-17 cytokine fam-
ily, which can be secreted by many types of cells or produced by the stimulation of path-
ogenic factors. IL-17C is mainly expressed in the mucosal surface of the gastrointestinal 
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and respiratory tracts as well as the skin barrier. In the gastrointestinal tract, IL-17C is 
secreted by enteroendocrine cells and cupped cells. In the skin, it is mainly expressed by 
keratinocytes, monocytes and endothelial cells [33, 34]. In this present study, the expres-
sion level of IL17C was significantly higher in AS than in the normal tissues, which was 
consistent with previous findings. IL-17C exerts a proatherogenic effect by recruiting 
Th17 cells to atherosclerotic plaques [35].

Acyl coenzyme A oxidase like gene is a member of the acyl coenzyme A oxidase fam-
ily. Paul et al. found that in mammals ACOXL is actively expressed at the transcriptome 
level, and that ACOXL is specifically expressed in the lung. ACOXL has a dehydroge-
nase activity of acyl coenzyme A and also catalyzes an important step in the β-oxidation 
pathway involving the oxidation of long-chain fatty acids [36]. Gillian et  al. identified 
ACOXL as a biomarker for the diagnosis of prostate cancer through transcriptomics and 
antibody analysis of the human prostate-specific proteome [37]. In this study, we found 
ACOXL can be used a diagnostic biomarkers for AS, and metabolic pathways play an 
important role in AS disease progression. Metabolic intermediates or oxidation products 
produced during metabolism, such as oxidized LDL, ceramide, TMAO, and cholesterol 
crystals, can also be recognized by macrophages and cause activation of inflammatory 
pathways in the body, thus further aggravating the inflammatory response of the vascu-
lature [38].

There are some limitations of our study. Although our analysis was based on a large 
sample, these cases were obtained retrospectively, and selection bias in the dataset 
may also affect the accuracy of the results. Large-scale prospective studies and in vivo, 
in vitro mechanistic studies are still needed to further confirm our results. In addition, 
some important clinical variables such as age, gender, and therapy information are miss-
ing in most of the datasets, we also need to combine more clinical characteristics to 
improve the prediction accuracy.

Conclusions
In conclusion, we identified IL17C and ACOXL were diagnostic genes of atherosclerosis 
and associated with higher incidence of ischemic events. These findings may provide a 
new strong scientific basis for the diagnosis and treatment of atherosclerotic.
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