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Abstract 

Background: In the field of genomics and personalized medicine, it is a key issue 
to find biomarkers directly related to the diagnosis of specific diseases from high-
throughput gene microarray data. Feature selection technology can discover biomark-
ers with disease classification information.

Results: We use support vector machines as classifiers and use the five-fold cross-
validation average classification accuracy, recall, precision and F1 score as evaluation 
metrics to evaluate the identified biomarkers. Experimental results show classification 
accuracy above 0.93, recall above 0.92, precision above 0.91, and F1 score above 0.94 
on eight microarray datasets.

Method: This paper proposes a two-stage hybrid biomarker selection method based 
on ensemble filter and binary differential evolution incorporating binary African vul-
tures optimization (EF-BDBA), which can effectively reduce the dimension of microarray 
data and obtain optimal biomarkers. In the first stage, we propose an ensemble filter 
feature selection method. The method combines an improved fast correlation-based 
filter algorithm with Fisher score. obviously redundant and irrelevant features can be 
filtered out to initially reduce the dimensionality of the microarray data. In the second 
stage, the optimal feature subset is selected using an improved binary differential 
evolution incorporating an improved binary African vultures optimization algorithm. 
The African vultures optimization algorithm has excellent global optimization abil-
ity. It has not been systematically applied to feature selection problems, especially for 
gene microarray data. We combine it with a differential evolution algorithm to improve 
population diversity.

Conclusion: Compared with traditional feature selection methods and advanced 
hybrid methods, the proposed method achieves higher classification accuracy and 
identifies excellent biomarkers while retaining fewer features. The experimental results 
demonstrate the effectiveness and advancement of our proposed algorithmic model.
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Background
In bioinformatics, DNA microarray technology can obtain a large number of gene 
expressions at once time, but only a few of these genes are directly relevant to the diag-
nosis and prediction of specific diseases, which we refer to as biomarkers. It is important 
to investigate how biomarkers can be discovered and modeled for classification. How-
ever, gene microarray data has the characteristics of high dimensionality, few samples 
and high redundancy that traditional machine learning models cannot be directly used 
for microarray data mining, so researchers usually use feature selection technology to 
discover biomarkers in gene microarray data [1]. The purpose of feature selection is to 
select a low dimensional feature subset that can distinguish specific diseases [2]. Accord-
ing to different evaluation criteria, feature selection methods can usually be divided into 
three categories, namely filter method, wrapped method, and embedded method.The fil-
ter method uses general statistical attributes to individually evaluate each feature. The 
wrapped method usually uses evolutionary or biological heuristic algorithms to guide 
the search process, and the accuracy calculated by a specific classifier is used to evalu-
ate the selected feature subset. The embedded method integrates the feature selection 
mechanism into the training process of the learning model and automatically selects fea-
tures during model training [3]. Although the filter method has a low computational cost 
and fast running speed, it ignores the feature interaction and the performance of the 
selected feature on the classification algorithm. The wrapped method can achieve the 
highest classification accuracy, but the amount of calculation is large. The classification 
accuracy of the embedded method is better than the filter method but not as good as 
the wrapped method, and the time complexity is better than the wrapped method but 
not as good as the filter method, and the learning model used is highly dependent on the 
parameters [4].

According to the current study, a single feature selection method cannot effectively 
identify significant features. However, the application of hybrid feature selection meth-
ods to extract the most informative genes has achieved good results [5]. The hybrid 
method can be a combination of two different methods such as the filter method and 
the wrapped method, two methods of the same criterion, or two feature selection 
approaches [6]. Compared with the single feature selection method, the hybrid method 
provides better accuracy and computational complexity and it is not easy to overfit [7]. 
Recently, many excellent hybrid feature selection algorithms have been used to select 
biomarkers in microarray data. These methods combine the advantages of different fea-
ture selection techniques to efficiently discover feature subsets.

Almutiri et  al. proposed a feature selection method based on chi-square statistic 
and support vector machine (SVM) with recursive feature elimination (SVMRFE). In 
the first stage, chi-square was used to calculate the correlation between genes and 
category labels, and the top 10% genes in the correlation degree were used as candi-
date subsets, and SVMRFE was used to further select 10 genes with rich classifica-
tion information. The experimental results proved that the classification results are 
improved compared to the methods in previous studies [8]. Al-Wajih et al. proposed 
a memetic method called HBGWOHHO, which mixes the binary gray wolf optimizer 
and harris hawks optimization, and uses the sigmoid function to convert the con-
tinuous search space into a binary space. And a wrapped-based k-nearest is used to 
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evaluate the quality of the selected features [9]. Anter et al. designed a hybrid crow 
search optimization algorithm that fuses chaos theory and fuzzy c-means algorithm, 
called CFCSA, for the feature selection problem of medical diagnosis [10]. Mahapa-
tra et  al. proposed a two-staged hybrid arrangement of model, called mRMR-SSA. 
In the first stage, a preliminary dimensionality reduction of the dataset is performed 
using the filter method mRMR, and the resulting feature subset is input into the 
wrapped method SSA in the next stage. Measure model performance using classifiers 
such as XGBoost, AdaBoost, Random Forest, and Logistic Regression. [11]. Alomari 
et al. proposed a two-stage gene selection method based on the min-Redundancy and 
max-Relevance and Bat algorithm [12]. Pino et al. proposed an algorithm, called Gbc, 
which uses a combination of genetic algorithm and bee colony algorithm to search for 
the optimal solution [13]. Yu et al. proposed a hybrid biomarker discovery algorithm, 
called ILRC. First, the features were clustered to remove redundant features in sub-
clusters. Then, all remaining features are iteratively evaluated using ILR. Reorder the 
features according to the accumulated weights to get the final result [14]. El-Hasnony 
proposed a hybrid feature selection algorithm based on butterfly optimization algo-
rithm and particle swarm optimization algorithm. The proposed method is evaluated 
using the COVID-19 dataset. Compared with previous methods, the results show 
that this method has advantages in improving performance accuracy and minimiz-
ing the number of selected features [15]. Wang et al. proposed a hybrid feature selec-
tion method named MMPSO. By combining feature ranking methods and heuristic 
search methods, the best subsets that can be used for higher classification accuracy 
are obtained. The superiority of this approach was demonstrated by analyzing ten 
datasets obtained from the UCI Machine Learning Repository with a biological data-
set containing gene expression information about liver hepatocellular carcinoma 
samples [16]. Wu et al. proposed a hybrid improved binary quantum particle swarm 
optimization algorithm, called HI-BQPSO, for feature selection problems. Combining 
the filter method with the improved quantum-behavior particle swarm optimization 
algorithm greatly reduces the dimensionality of the data [17]. Dong et al. proposed a 
feature selection algorithm model based on granularity information and tested how 
the granularity level affects the classification accuracy and the size of the selected 
feature subset through experiments [18]. Gao et al. proposed a hybrid method based 
on information gain and SVM to select biomarkers, and they obtained better clas-
sification accuracy [19]. Wu et  al. proposed two-stage sequential minimum optimi-
zation to reduce the computational cost of large-scale training data, and proposed 
two-stage differential learning particle swarm optimization to ensure the accuracy of 
under-sampled data [20]. Vanitha et al. used SVM and gene selection methods based 
on mutual information to classify gene expression data, which effectively improved 
the classification accuracy [21]. Sadeghian et al. proposed a three-stage feature selec-
tion method, named EIT-bBOA. In the first stage, The method uses the minimal 
redundancy-maximum new classification information method to remove 80 percent 
of irrelevant and redundant features. In the second stage, the best feature subset is 
selected using the designed information gain binary butterfly optimization algorithm. 
Finally, a similarity based ranking method is used to obtain the final feature subset 
[22].
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However, we discover that the following problems usually exist in the current 
research on hybrid feature selection algorithms:

• Researchers usually use a single filter method to perform initial dimensionality 
reduction on microarray data. This method lacks stability and ignores the interac-
tion between features, potentially filtering out excellent features.

• Although these studies can achieve high classification accuracy, they do not pay 
attention to controlling the number of retained features, which may contain 
redundant features.

• Microarray data has continuity, but the situation in which the spatial search pro-
cess is in a discrete state is generally ignored.

In the previous work, we proposed a two-stage hybrid feature selection method, 
named MMBDE [23]. In the first stage, mRMR was used to perform initial dimen-
sionality reduction on the original data. In the second stage, an improved binary 
differential evolution algorithm was used to select the optimal feature subset, and 
identify excellent biomarkers. We validate the effectiveness of MMBDE on Leukemia, 
Lymphoma, Colon and Prostate datasets, and the experimental results show that the 
method can identify biomarkers closely related to disease.

In this paper, we further improve the MMBDE algorithm and propose a new two-
stage feature selection method. In the first stage, an ensemble filter method is used 
to perform preliminary dimensionality reduction on the microarray data to obtain a 
stable and excellent candidate feature pool. In the second stage, the binary differential 
evolution algorithm was further improved, and the African vulture optimization was 
added to it to improve the performance of the algorithm. Experimental results dem-
onstrate that the propose method in this paper outperforms MMBDE on most data-
sets. The main contributions of our paper are the following:

• An ensemble filter method that combines an improved fast correlation-based filter 
method with fisher score is proposed. It can perform preliminary dimensionality 
reduction on microarray data and provide an excellent candidate feature pool for 
downstream wrapped method.

• A hybrid wrapped method, BDBA, is proposed, which is binary differential evolu-
tion incorporating binary African vultures optimization. And a segmental adap-
tive fitness calculation method is designed. High classification accuracy can be 
obtained while retaining a small number of features.

• The evolution operator of binary differential evolution algorithm is improved. 
The African vultures optimization algorithm (AVOA) is binarily quantized, and 
its best vulture selection strategy is improved. so that they can deal with feature 
selection problems in discrete spaces.

The rest of this paper is organized as follows. The “Results” part provides experimen-
tal results with analysis and comparison. The “Discussion” part describes fully the 
proposed two-stage feature selection algorithm. Finally, the “Conclusion” parts con-
cludes this paper.
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Results
Evaluation and analysis of ensemble filter method

To demonstrate the effectiveness of the proposed ensemble filter method, we make the 
single fisher score method and the mRMR method used in MMBDE as comparative 
experiments. Specifically, three feature selection methods are used on eight datasets, 
then each method yields eight feature pools. To ensure fairness, we make each method 
obtain the same dimensionality of the feature pool on the same dataset. Since the 
dimensionality of the feature pool obtained by the ensemble filter method is unpredict-
able, while the remaining two methods can intercept a subset of features with specified 
dimensionality based on feature ranking. Therefore, we use the feature pool dimension 
obtained by the ensemble filter method as a criterion. The specific dimensional infor-
mation is shown in Fig. 1. Then, for each dataset, four traditional methods are used to 
measure the quality of the feature pools obtained by the three filter methods. The four 
traditional methods include Lasso regression, random forest, Linear regression, and chi-
square test. This is done by retaining the top ten feature subsets in each feature pool 
using each of the four traditional methods. Then, a SVM is used on the data correspond-
ing to each feature subset to obtain a five-fold cross-validation classification accuracy. 
Finally, the performance of the three filtering methods is measured by the average clas-
sification accuracy. The specific experimental results are shown in Fig. 2.

Among the eight datasets, our ensemble filter method outperformed fisher score on five 
datasets. On the Lymphoma, Gastric1 and Prostate datasets, the average classification accu-
racy corresponding to the feature pool obtained by ensemble filter method was significantly 
higher than fisher score, while on the Leukemia and Gastric2 datasets, the ensemble filter 
method outperforms fisher score by a small margin. Only on the Colon and ALL1 datasets, 
the feature pool filtered by fisher score is better than the ensemble filter method, while on 
the ALL_AML dataset, the fisher score advantage is not obvious. In general, the ensemble 
filter method outperforms fisher score alone on more than half of the datasets, and achieves 
an overall average classification accuracy 2% higher than the fisher score using the four tra-
ditional methods on eight datasets. We have carefully improved the mRMR algorithm in 

Fig. 1 The number of features retained by ensemble filter method on each of the eight public datasets. The 
fisher score and the improved mRMR retain the same number of features



Page 6 of 27Li et al. BMC Bioinformatics          (2023) 24:130 

MMBDE, so that it can obtain a higher quality feature pool. However, one obvious draw-
back of this algorithm is the very high time complexity, caused by the need to compute the 
correlation for each pair of features. From Fig. 2, we can see that the ensemble filter method 
does not perform as well as the improved mRMR on most of the datasets, but the execu-
tion efficiency of the ensemble filter method is far higher than the mRMR. Under the same 
conditions, the execution time of the improved mRMR method is at least 80 times longer 
than the ensemble filter method when the number of features in the dataset exceeds ten 
thousand. Our ultimate goal is to identify meaningful biomarkers. The wrapped method, 
as the major part of EF-BDBA, can effectively improve the overall classification accuracy of 
the algorithm. It is unnecessary to consume too much time on the filter method. Therefore, 
we use the ensemble filter method in EF-BDBA instead of the improved mRMR method.

Evaluation and analysis of BDBA method

In this subsection, we analyze the adaptive crossover factor parameter α of the BDBA 
method, and compare our method with the traditional binary difference evolution 
method.

Fig. 2 Compare the quality of candidate feature pools obtained by our ensemble filter method, fisher score 
and improved mRMR. Use Lasso regression, random forest, Linear regression, and chi-square test to perform 
feature selection in the two feature pools respectively, and then use the SVM classification model to perform 
five-fold cross-validation on the feature data selected by each model. Finally, the average classification 
accuracy obtained by the four models is used as the evaluation standard
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Comparison of adaptive cross factor parameter at different stages

In BDBA, the adaptive cross factor α is the only parameter with adjustable space in the 
evolution operator. Through comparative experimental analysis of α with different stage 
values, using classification accuracy and number of retained features as evaluation crite-
ria, we found that α = 0.9 performed the best overall. The specific experimental results 
are shown in Table 1.

In Table  1, the bold indicates the highest classification accuracy obtained by BDBA 
when α is taken at different values on the same dataset. When α = 0.9 , BDBA has the 
highest classification accuracy on the six datasets, and the number of retained features is 
relatively small, and the overall performance is the best. However, it is worth noting that 
as α decreases, the number of features retained by the algorithm does not increase on all 
datasets. It is only due to the difficulty of population mutation that the proposed muta-
tion operator cannot effectively control the number of features retained. It increases the 

Table 1 Influence of adaptive cross factor parameter on BDBA

Parameter Datasets Features Accuracy

α = 1 Colon 5 0.9333

ALL1 4 0.9923

ALL_AML 3 0.9581

Leukemia 4 0.9714

Lymphoma 3 0.9778

Gastric1 3 0.9510

Gastric2 3 0.9673

Prostate 4 0.9210

α = 0.9 Colon 3 0.9346
ALL1 4 1.0000
ALL_AML 4 0.9857

Leukemia 3 0.9714
Lymphoma 3 0.9778

Gastric1 4 0.9717
Gastric2 4 0.9840
Prostate 4 0.9405

α = 0.5 Colon 7 0.9179

ALL1 5 1.0000

ALL_AML 6 0.9714

Leukemia 5 0.9714
Lymphoma 4 1.0000
Gastric1 8 0.9648

Gastric2 5 0.9840

Prostate 8 0.9214

α = 0.1 Colon 5 0.9192

ALL1 9 1.0000

ALL_AML 6 0.9867
Leukemia 10 0.9581

Lymphoma 3 0.9778

Gastric1 8 0.9645

Gastric2 7 0.9840

Prostate 4 0.9210
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probability that the optimal individual dimension on some datasets becomes larger. In 
addition, it is not that the more features are retained, the higher the classification accu-
racy will be, because it is very likely that the increased features are redundant features 
without classification information. Taking extreme contrasts α = 1 and α = 0.1 as exam-
ples, as the number of iterations increases, CR decreases in the intervals (1, 0.23) and 
(0.1, 0.023), respectively. When α = 0.1 , it is difficult for individuals to mutate. Since 
more individuals are retained when the population is randomly initialized, the number 
of retained features is larger compared to α = 1 , as shown in the results on the ALL1 
and Leukemia. However, because our proposed segmental adaptation fitness calculation 
method also controls the number of features, datasets such as Lymphoma and Prostate 
do not seem to be affected by α . The reason why the result is the best when α = 0.9 is 
that individual variation is not difficult, and compared with α = 1 , the risk of prema-
ture maturity of the algorithm is reduced, so the classification accuracy is higher and the 
number of retained features is less.

Comparison with traditional binary differential evolution method

Since the differential evolutionary algorithm is not suitable for dealing with discrete-
space optimization-seeking problems, the traditional binary differential evolution 
method uses a sigmoid function to discretize the solution set. To ensure the fairness of 
the comparison experiments, the values of the common parameters (maximum number 
of iterations G and population size NP) of our BDBA and traditional binary differential 
evolution method were kept consistent. In addition, the scaling factor F and crossover 
factor CR of the traditional binary differential evolution method take the common value 
of 0.5.

As can be seen in Table 2, the traditional binary differential evolution method retains 
an excessive number of features. It performs less well than BDBA on the Colon, ALL_
AML, Gastric1 and Prostate datasets.The classification accuracy of traditional binary 
differential evolution method is the same as BDBA on the ALL1 dataset, but the number 
of selected features is much larger than BDBA. The traditional binary differential evo-
lution method had slightly better classification accuracy than BDBA on the Leukemia, 

Table 2 Classification accuracy of BDBA and traditional binary differential evolution (traditional BDE) 
on microarray data

Datasets Traditional BDE BDBA

Features Accuracy Features Accuracy

Colon 49 0.9333 3 0.9346

ALL1 59 1.0000 4 1.0000

ALL_AML 59 0.9867 4 0.9875

Leukemia 68 1.0000 3 0.9714

Lymphoma 45 1.0000 3 0.9778

Gastric1 57 0.9645 4 0.9717

Gastric2 61 1.0000 4 0.9840

Prostate 61 0.9314 4 0.9405
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Lymphoma and Gastric2 datasets, but the number of retained features was at least 15 
times higher than that of BDBA.

Evaluation and analysis of EF‑BDBA method

In this subsection, we evaluate and analyze EF-BDBA. Firstly, we test its performance 
using the classical evaluation criteria, secondly, we compare it with four traditional 
feature selection methods. Thirdly compare EF-BDBA with advanced feature selection 
methods. Finally, we do statistical analysis on the biomarkers identified by EF-BDBA.

Performance evalution of EF‑BDBA

Since BDBA performs best overall when α = 0.9 , we evaluate the performance of EF-
BDBA at α = 0.9 . We test the performance of EF-BDBA using SVM-based five-fold 
cross-validation classification accuracy, recall, precision and F1 score as evolution met-
rics. The specific results are shown in Table 3.

It can be seen from Table 3 that the proposed method can achieve high classification 
accuracy, recall, precision and F1 Score on different datasets. All four evaluation indica-
tors on ALL1 can reach the maximum value of 1. Overall, on the eight datasets, BDBA 
can achieve classification accuracy above 0.93, recall above 0.92, precision above 0.91, 
and F1 score above 0.94.

To further demonstrate the convergence and usability of EF-BDBA, we take the opti-
mal feature subset obtained on the Leukemia as an example. The fitness changes of the 
optimal individual in each generation during the iterative process is shown in Fig. 3. It 
can be seen that the algorithm tends to converge after 500 iterations and obtains the 
highest fitness.

Comparison with traditional feature selection method

In the comparison experiment with the traditional feature selection method, we control 
the traditional method and EF-BDBA to select the feature subset of the same dimen-
sion, use the SVM as the classification model and the average classification accuracy of 
the five-fold cross-validation as the evaluation index. Experimental results indicate the 
stability and effectiveness of EF-BDBA. The specific experimental results are shown in 
Fig. 4.

Table 3 Performance evaluation of EF-BDBA(α = 0.9)

Datasets Accuracy Recall Precision F1 score

Colon 0.9346 0.9250 0.9778 0.9463

ALL1 1.0000 1.0000 1.0000 1.0000

ALL_AML 0.9857 1.0000 0.9667 0.9818

Leukemia 0.9714 1.0000 0.9429 0.9667

Lymphoma 0.9778 1.0000 0.9667 0.9818

Gastric1 0.9717 0.9714 0.9713 0.9709

Gastric2 0.9840 0.9692 1.0000 0.9840

Prostate 0.9405 0.9800 0.9106 0.9437
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As can be seen from Fig. 4, with the same number of retained features, our proposed 
method outperforms the other four traditional methods on all datasets. Compared with 
the average classification accuracy of the other four traditional methods on each dataset, 

Fig. 3 The change of the best individual fitness of each generation in the iterative process of 
EF-BDBA(α = 0.9 ) on the Leukemia dataset

Fig. 4 Comparison of EF-BDBA(α = 0.9 ) and traditional feature selection methods. Lasso regression, random 
forest, linear regression, and chi-square test were used to select the same number of features as BDBA, 
respectively, and then the SVM classification model was used to perform five-fold cross-validation on the 
feature data selected by each model
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the classification accuracy of our method is improved by 13.21% on Colon, 16.53% on 
ALL1, 20.40% on ALL_AML, 17.31% on Leukemia, 22.23% on Lymphoma, 3.33% on Gas-
tric1, 8.54% on Gastric2, and 27.14% on Prostate.

Comparison with advanced feature selection algorithms

This section compares our method with recently published hybrid feature selection algo-
rithms in terms of the number of selected features and classification accuracy on three 
widely available public microarray datasets. The detailed comparison results are shown 
in Table 4.

As can be seen from Table  4, our method has advantages in both the number of 
retained features and the classification accuracy. Although the classification accuracy of 
[27] is similar to that of our method on the Colon and ALL_AML datasets, the num-
ber of features retained is twice that of our method. The MMBDE method [23] we pro-
posed earlier outperformed obviously the method proposed in this paper only on the 
Colon dataset. On the Prostate and Lymphoma, the classification accuracy obtained by 
our method is 2.81% and 2.22% higher than MMBDE, respectively. Therefore, we can 
still consider the proposed method to be effective and advanced compared to published 
methods.

Table 4 Comparison with advanced feature selection algorithms

Datasets Methods ACC Features

Prostate Wu [17] 0.9160 24.8

Jinthanasatian [24] 0.8743 5

Sun [25] 0.8840 4

Annavarapu [26] 0.8736 8.3

Khani [27] 0.9216 5

Wang [28] 0.9040 9

Xie [23] 0.9124 4

Our method 0.9405 4

Colon Wu [17] 0.8833 24.8

Sun [25] 0.8380 3

Khani [27] 0.9347 6

Wang [28] 0.8570 11.1

Sun [29] 0.8426 5

Xie [23] 0.9500 4

Our method 0.9346 3

ALL_AML Annavarapu [26] 0.9794 3.5

Khani [27] 0.9822 8

Our method 0.9857 4

Leukemia Sun [25] 0.9290 9

Wang [28] 0.9610 8.3

Sun [29] 0.8889 4

Xie [23] 0.9724 5

Our method 0.9714 3
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Statistical analysis of selected biomarkers

In this subsection, we further analyze the features selected by the proposed method, to 
verify whether the features have the potential as biomarkers from a statistical point of 
view. The features selected by this method on the ALL1 and Prostate datasets at α = 0.9 
were used as examples for our analysis. Table 5 shows the Prob IDs of the four features 
selected in each of the two datasets and the corresponding Gene names after the conver-
sion by the GPL platform. Where P-value is the quantitative representation of the results 
after the T-test for independent samples, * means P < 0.05 , ** means P < 0.01 , and *** 
means P < 0.001 . The calculation method of T-test is shown in Eq. 1. FC (Fold Change) 
represents the fold of difference between different samples. The FC is not considered 
statistically significant, and its value is closer to 1, indicating less variability. The calcula-
tion method of FC is shown in Eq. 2.

Where f̄ipos denotes the mean value of feature fi in the positive sample, f̄ineg denotes the 
mean value of feature fi in the negative sample. S2ipos and S2ineg denote the variance of fea-

ture fi in the positive and negative samples, respectively. npos and nneg denote the num-
ber of samples in the positive and negative samples, respectively.

According to the results in Table  5, for ALL1 data, in the M21624 group, Neg was 
higher than the average level of Pos, and the difference between the two groups was 
−  40.58(1.546, −  0.03814), and the difference was statistically significant ( t = 17.266 , 
P < 0.001 ). In the GNPDA1 group, Neg was higher than the average level of Pos, the 
difference between the two groups was 0.3423(0.2026, 0.5918), and the difference was 
statistically significant ( t = 10.726 , P < 0.001 ). In the GLUL group, Neg was higher than 
the average level of Pos, and the difference between the two groups was 0.5380(0.9568, 

(1)t fi =
f̄ipos − f̄ineg

S2ipos/npos + S2ineg /nneg

(2)FC =
f̄ipos

f̄ineg

Table 5 Statistical information of selected characteristics on ALL1 and Prostate datasets using the 
proposed method

Where P-value is the quantitative representation of the results after the T-test for independent samples

* means P < 0.05

** means P < 0.01

*** means P < 0.001

Datasets Prob ID Gene Name P‑value FC

ALL1 1110_at M21624 5.23417E−35 (***) − 40.58

34332_at GNPDA1 1.80973E−19 (***) 0.3423

40522_at GLUL 1.55101E−13 (***) 0.5380

33243_at TNFAIP8 5.03201E−12 (***) 0.3276

Prostate 38203_at KCNN1 0.0158853 (*) 1.120

40282_s_at CFD 1.52365E−11 (***) 1.646

32570_at HPGD 0.000855335 (***) 0.9161

1060_g_at NTRK3 0.000113525 (***) 1.467
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1.778), and the difference was statistically significant ( t = 8.277 , P < 0.001 ). In the 
TNFAIP8 group, Neg was higher than the average level of Pos, the difference between 
the two groups was 0.3276(0.2577, 0.7877), and the difference was statistically significant 
( t = 7.630 , P < 0.001).

For Prostate data, in the KCNN1 group, Neg was lower than the average level of Pos, 
the difference was 1.120(1.133, 1.012), and the difference was statistically significant 
( t = −2.453 , P = 0.016 ). In the CFD group, Neg was lower than the average level of Pos, 
the difference between the two groups was 1.646(1.944, 1.181), and the difference was 
statistically significant ( t = −7.614 , P < 0.001 ). In the HPGD group, Neg was lower than 
the average level of Pos, and the difference between the two groups was 0.9161(− 0.8336, 
− 0.9099), and the difference was statistically significant ( t = −3.438 , P = 0.001 ). In the 
NTRK3 group, Neg was lower than the average level of Pos, and the difference between 
the two groups was 1.467(0.7215, 0.4917), and the difference was statistically significant 
( t = −4.019 , P < 0.001).

Figures 5 and 6 show the expression and heat map of the four genes on both positive 
and negative samples, with Figs. 5a and 6a representing the ALL1 dataset and Figs. 5b 
and  6b representing the Prostate dataset. As can be seen from the results, the features 

Fig. 5 The boxplot of the features selected by the proposed method on positive and negative samples, 
where a represents ALL1 dataset and b represents Prostate dataset

Fig. 6 The heat map of the features selected by the proposed method on positive and negative samples, 
where a represents ALL1 dataset and b represents Prostate dataset
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selected by the proposed method are significantly different on positive and negative 
samples and can effectively differentiate between positive and negative samples with sta-
tistical significance and potential ability to diagnose disease.

In order to visualize the features selected by the proposed method more clearly, we 
selected three features on each dataset for 3D visualization, and the results are shown in 
Fig. 7. Figure 7a represents the ALL1 dataset and Fig. 7b represents the Prostate dataset. 
The three axes represent different features, and different colors represent different sam-
ples. It can be seen that in the three-dimensional space, the features selected by the pro-
posed method have significant differences in the expression of different samples, which 
indicates that these features can effectively distinguish positive and negative samples and 
have diagnostic significance.

Figure  8 shows the correlation analysis of the features selected by the proposed 
method. We use the Spearman correlation coefficient as an example for the analysis, and 
it can be seen from the results that none of the features selected by the proposed method 
are significantly correlated in the ALL1 dataset, while on the prostate dataset, only one 

Fig. 7 The 3D visualization results of the three features selected by the proposed method, where a 
represents ALL1 dataset and b represents Prostate dataset. The red and black balls represent positive and 
negative samples, respectively

Fig. 8 Correlation analysis was performed using Spearman’s correlation coefficient for the four selected 
features, where a represents ALL1 dataset and b represents Prostate dataset
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set of features is correlated and the rest are not significantly correlated, which proves 
that the features selected by the proposed method have a low redundancy.

Discussion
From Fig.  2, it can be seen that in most of the datasets, comparing with the single 
fisher score method, the quality of the feature pool obtained by the ensemble filter 
method is better. The ensemble filter method proposed considers inter-class distance 
and intra-class distance, while measuring the correlation between features and class 
labels, redundancy and complementarity between features. Dedicated to filtering irrel-
evant features, it provides an excellent feature pool for downstream wrapped methods.

From Table 3, it can be seen that on the eight public datasets, our method obtained 
high scores on four conventional metrics. As can be seen from Fig. 4, compared with 
the traditional feature selection methods, the proposed method has an advantage 
among all the eight public datasets. Meanwhile, as shown in Table  4, our method 
achieves higher classification accuracy with fewer features than the advanced feature 
selection methods in recent years. It implies that the prediction of the corresponding 
diseases can be well achieved with fewer target biomarkers.

In Table 5, we statistically validate the potential of the selected features as biomark-
ers. In Figs. 5, 6, 7 and 8, we further verified the effectiveness of these features. It can 
be seen from the figures that the feature subset we identified can effectively distin-
guish between positive and negative samples. On the whole, the proposed method 
can effectively identify excellent feature subset, namely valuable biomarkers, and the 
experimental results demonstrate the efficiency of the proposed method.

While our method obtains excellent results, it also has certain limitations. From 
Fig.  2, it can be seen that the advantage of the ensemble filter method is not obvi-
ous in some datasets. It may be due to the fact that we utilize prior knowledge in 
the improved fast correlation-based filter (FCBF) algorithm. This is subjective to a 
certain extent, which affects the quality of the feature pool. In addition, our proposed 
method is a single-objective feature selection method, which combines the number 
of retained features with the classification accuracy as an fitness function. Compared 
with the multi-objective feature selection algorithm, the design of the single-objective 
algorithm has a slight impact on the stability of the results.

In the future work, we will continue to improve the measurement mechanism of the 
ensemble filter method. It avoids subjective factors on the quality of the feature pool and 
makes the method more robust and stable. Meanwhile, we will also study the multi-objec-
tive feature selection algorithm based on EF-BDBA, in which the number of selected fea-
tures and the classification accuracy are used as two independent objectives to search for 
the optimal solution, thereby obtaining more stable and meaningful biomarkers.

Conclusion
In this paper we propose a two-stage mixed feature selection algorithm for gene 
microarray data. In the first stage, an ensemble filter feature selection method is 
designed to perform preliminary dimensionality reduction on the microarray data, 
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so as to provide an excellent candidate feature pool for the downstream wrapped 
method. In the second stage, we designed a hybrid warpped method. Integrating the 
improved binary differential evolution algorithm and the binary African vulture opti-
mization algorithm effectively balances the exploration and exploitation capabilities 
of the algorithm. The optimal feature subset with high classification accuracy and 
small dimension can be selected from the candidate feature pool. The experimental 
results demonstrate the effectiveness and advanced of our proposed algorithm model.

Method
Datasets

Eight publicly available datasets used in the experiment are from the GEO (Gene Expres-
sion Omnibus) database https:// www. ncbi. nlm. nih. gov/ geo/ and http:// csse. szu. edu. cn/ 
staff/ zhuzx/ Datas ets. html, namely ALL1, ALL_AML, Colon, Leukemia, Lymphoma, 
Gastric1, Gastric2 and Prostate. These datasets are typical microarray data. The detailed 
dataset information is shown in Table 6. The number of features in each dataset is much 
larger than the number of samples. For example, the number of features exceeds 120 
times the number of samples in the Prostate dataset. Moreover, except for the Gastric1 
and Gastric2 datasets, the number of positive and negative samples in the rest of the 
datasets is not equal.

The overall framework of the proposed method

In this section, we mainly introduce the two-stage feature selection algorithm proposed 
in this paper. The overall framework of the algorithm is shown in Fig.  9. The original 
data is preprocessed before feature selection. The specific operations include deduplica-
tion, using Tukey’s test to detect outliers, and using the KNN model to fill in outliers 
and missing values. Then the z-score normalization is performed on the cleaned data 
to remove dimensional effects between different feature data. Next, a two-stage feature 
selection operation is performed on the preprocessed data. In the first stage, using the 
ensemble filter method integrating the improved fast correlation-based filter algorithm 
and fisher score to perform initial dimensionality reduction on the data, and the inter-
section of the two feature subsets selected by the improved fast correlation-based filter 
algorithm and fisher score is used as the candidate feature pool input to the downstream 
BDBA. In the second stage, the population is randomly initialized, BDBA is used to 

Table 6 Microarray data

Datasets Samples Features Category Distribution

Colon 62 2000 Tumor: 40, Normal: 22

ALL1 128 12,625 B-cell: 95, T-cell: 33

ALL_AML 72 7129 AML: 25, ALL: 47

Leukemia 72 7129 AML: 25, ALL: 47

Lymphoma 45 6937 ACL: 23, GCL: 22

Gastric1 144 22,283 N: 72, T: 72

Gastric2 124 22,283 N: 62, T: 62

Prostate 102 12,625 Tumor: 52, Normal: 50

https://www.ncbi.nlm.nih.gov/geo/
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html
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evolve the population, and then the classifier is used to evaluate the quality of individu-
als in the new generation population until the maximum number of iterations is reached, 
and the optimal feature subset is output.

The Pre‑processing method

The original data usually contains noise, which will inevitably affect the performance of the 
algorithm and cause errors in the experimental results. Therefore, we need to clean and 
standardize the data. In the data cleaning stage, the repeated features in the data are aver-
aged first, then Tukey’s test is used to detect outliers in the data, and the KNN model is 
used to fill in outliers and missing values. Then, z-score normalization is performed on the 
cleaned data to remove dimensional effects between different feature data.

The proposed ensemble filter method

The classic FCBF algorithm uses symmetric uncertainty (SU) to measure the correlation 
between features and class labels, and the redundancy between features. First, an appropri-
ate threshold is set to eliminate features with weak correlation to obtain a subset of candi-
date features. Then, in each round of iteration, the feature with the largest correlation in the 
candidate feature subset is taken out of the candidate set as a salient feature and added to 
the optimal feature subset. Next, the approximate Markov blanket principle is applied to 
eliminate other features in the candidate set with high redundancy with the salient features, 
until the candidate set is empty, then the final optimal feature subset is obtained [30]. Com-
pared with the traditional Correlation-Based Filter algorithm [31], FCBF does not need to 
calculate the correlation between each pair of features, so it greatly improves the efficiency 
of feature selection, but the algorithm ignores the complementarity between features, and 
SU is an entropy-based correlation measurement method, which is more suitable for pro-
cessing discrete data and cannot be directly applied to continuous gene microarray data. 

Fig. 9 The overall framework of the feature selection algorithm is described in this figure. The process 
includes data preprocessing, an ensemble filter method to perform initial dimensionality reduction of the 
data, and a hybrid wrapped method called BDBA to obtain the final optimal feature subset
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Therefore, we propose the improved FCBF algorithm, design a complementarity meas-
ure method based on Manhattan distance, and use the Pearson correlation coefficient 
[32] instead of SU for continuous microarray data to quantitatively estimate the correla-
tion between features and class labels, and the redundancy between features. Algorithm 1 
describes the process of the improved FCBF.

The complementarity between features is also called information collaboration or infor-
mation interaction, which indicates that the classification information that two features can 
provide by working together may be greater than the sum of the information contained in 
each of the two features [33]. It can be seen from Algorithm 1 that after removing redun-
dant features in each iteration, The imporoved FCBF will select the feature with the greatest 
complementarity with the salient feature from the feature set to be eliminated and add it to 
the complementary feature set. Inspired by the idea of instance similarity used by ReliefF 
algorithm, Sun proposed that more attention should be paid to the distance between an 
instance and its heterogeneous nearest neighbor in different feature spaces in order to ana-
lyze the classification and prediction ability after feature combination [34]. Inspired by Sun’s 
idea, in order to calculate the complementarity between two features, we first randomly 
select a sample Si in the sample space, and calculate the manhattan distance between Si and 
its heterogeneous nearest neighbor in two different feature dimensions, and the heteroge-
neous nearest neighbor is the heterogeneous sample adjacent to the Si index in the sample 
space. In order to ensure the stability of the obtained results, we randomly select n different 
samples for calculation, and then average the results. The calculation method of the com-
plementarity between features is shown in Eq. 3.

(3)C =

∑

dis

n
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In Eq. 3, C represents the degree of complementarity between the feature fp and the fea-
ture fq . dis represents the manhattan distance between the sample Si and its heterogene-
ous nearest neighbor Sj on the feature dimension fi and the feature dimension fj , which 
is calculated using Eq. 4. In Eq. 4, vip and viq represent the values of the sample Si on the 
feature dimensions fp and fq , respectively. vjp and vjq represent the values of the sample 
Sj on the feature dimensions fp and fq , respectively.

The pearson correlation coefficient is used to quantify and estimate the correlation 
between features and category tags and the redundancy between features. The calculation 
method of the pearson correlation coefficient is shown in Eq. 5.

where r represents the correlation coefficient, and mx and my represent the mean of the 
vectors x and y, respectively. When calculating the correlation between features, x and y 
correspond to two different feature vectors, respectively. We refer to the specific opera-
tion of T-test when filtering features that are not related to class labels [35]. When calcu-
lating the correlation between features and class labels, x and y correspond to the vector 
fpos on positive samples and the vector fneg on negative samples, respectively. Due to the 
imbalance of samples in the dataset, the dimensions of fpos and fneg may be different, 
which cannot be calculated directly using Eq. 3. Therefore, we first approximately fill the 
unbalanced data through the SMOTE oversampling technique. The principle of SMOTE 
is to select a random sample Sj in its nearest neighbors for each minority class sample Si 
[36], and then synthesize a new minority class sample Sk through Eq. 6.

Since the greater the correlation between the positive and negative sample vectors of the 
feature, the smaller the correlation between the feature and the class label, and the range 
of the Pearson correlation coefficient is known to be between 0 and 1, so we use Eq. 7 to 
quantify the estimate correlations between features and class labels.

where rcf  represents the correlation between features and class labels, and rpn represents 
the correlation between the positive and negative sample vectors corresponding to the 
features obtained by Eq. 3. The larger the rcf  , the smaller the probability of being deleted 
as redundant features. In order to prevent the deletion of meaningful features by mis-
take, we set a weight coefficient of 0.8 for it.

In order to avoid the unstable results of a single correlation-based filter method, fisher 
score is also used to select the top 100 features in the dataset, and finally the intersection of 
the two feature subsets obtained by the improved FCBF and fisher score is provided to the 
downstream wrapped method. fisher score is an effective filter feature selection method. Its 
core concept is that the features with strong discriminative performance are shown as small 

(4)dis =
∣

∣vip − vjp
∣

∣+
∣

∣viq − vjq
∣

∣

(5)r =
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)
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2
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∣
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intra-class distances as possible, and inter-class distances as large as possible [37]. The cal-
culation method of fisher score is shown in Eq. 8.

In Eq. 8, Jfisher(x) represents the fisher score of feature x, SxB represents the inter-class 
variance of feature x on the dataset, the calculation method is shown in Eq. 9, Sxω repre-
sents the intra-class variance of feature x on the dataset, and the calculation method is 
as Eq. 8 shown. In Eq. 9, n represents the number of samples, ni represents the number 
of samples of the i-th type, mx

i  represents the mean of the i-th type of samples on the fea-
ture dimension x, and mx represents the mean of all samples on the feature dimension x. 
In Eq. 10, yx represents the value of the sample y on the feature dimension x.

The proposed hybrid wrapped method

Differential evolution was first proposed by Storn and Price in 1997 [38]. It is a popu-
lation-based meta-optimization algorithm with simple structure, fast convergence, and 
strong robustness. The evolution operator of the algorithm also has three main steps: 
mutation, crossover and selection. In order to achieve the goal of controlling the number 
of selected features and speeding up the convergence speed of the algorithm, this paper 
proposes an improved binary differential evolution algorithm (IBDE), redesigns the evo-
lution operator of the binary differential evolution algorithm, and proposes a segmental 
adaptive fitness calculation method. However, in the process of evolution, even if we try 
to balance the exploration and exploitation capabilities of the algorithm in the design of 
the crossover factor and the scaling factor, in order to control the number of retained 
features, the diversity of the early population is inevitably weakened, so we combine the 
AVOA with excellent global optimization ability.

AVOA simulates the foraging and navigation behavior of African vultures. The vul-
tures determine different foraging strategies based on the hunger level they feel. The 
algorithm can be divided into four independent stages: in the first stage, determine the 
best vulture; in the second stage, the hunger rate of the vultures is calculated; the third 
stage is the exploration stage, which includes updating the individual position in two 
ways: moving randomly or approaching the best vulture at a random distance; the fourth 
stage is the exploitation stage, including the transitional stage of updating individual 
positions in a siege-fight or rotating flight, and the later exploitation stage of approach-
ing outstanding individuals in a more drastic way. Details of the above movement strate-
gies are available in the paper [39].

(8)J fisher (x) =
SxB
Sxω
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It is worth noting that the individual position update in AVOA does not completely and 
independently enter the third and fourth stages in sequence, but adds a certain exploita-
tion mechanism in the early exploration process through the starvation rate, which avoids 
AVOA from falling into local optimality, and accelerates the convergence of the algorithm 
while ensuring that the AVOA does not diverge too much. In addition, the setting of the 
transition stage can make the population evolution proceed smoothly and improve the 
optimization performance of the algorithm. However, AVOA is more suitable for dealing 
with engineering problems of searching for optimal solutions in continuous space. Feature 
selection for microarray data is a solution optimization problem in discrete space, in which 
individuals need to be represented by binary vector codes (1 means the feature is selected, 0 
means the feature is not selected). Therefore, we propose a binary african vultures optimi-
zation algorithm (BAOVA) to binary quantify AVOA. In addition, the optimization process 
of AVOA can be briefly understood as the process of increasing the degree of approaching 
the best vulture. However, AVOA’s selection of the best vulture is limited to the two vul-
tures with the first and second fitness, which will have a negative impact on the algorithm’s 
early exploration ability. For this reason, in BAOVA, we use the opposition-based Learning 
(OL) method to obtain new individuals to select the best vultures for AVOA.

How to effectively combine IBDE with BAVOA and establish a stable, robust and efficient 
overall algorithm model is an important issue. BAVOA is used to enhance the exploration 
ability of the algorithm. In BDBA, if the proportion of BAVOA is too small, it will not be 
able to play its role effectively, and if the proportion of BAVOA is too large, it will affect the 
local development ability of BDBA, which will easily lead to slow algorithm convergence, 
and it is difficult to find excellent feature subset. We refer to the strategy of combining bat 
algorithm and differential evolution in the paper [40]. And we try to fuse BAVOA for IBDE 
when the condition g/G < 0.4 is satisfied, where G represents the maximum number of 
iterations and g represents the current number of iterations. The algorithm flow of BDBA is 
shown in Fig. 10. Referring to the good design of AVOA adding the exploitation mechanism 
in the exploration phase, we also use the same method to integrate IBDE and BAVOA, and 
retain the individual location update strategy in the exploration phase and transition phase 
of AVOA. BAVOA was conditionally added to the evolution of IBDE using the starvation 
rate SR designed in AVOA. The BDBA’s flowchart is shown in Fig. 10.

Parameter setting of BDBA method

Since improved binary AVOA uses the basic framework of AVOA, the parameters P1 
and P2 are consistent with AVOA. If the value of G is too large, it will waste computing 
resources. We set it to 500 under the condition that the algorithm converges. The larger 
the value of NP, the greater the population diversity, but too large NP will cause the algo-
rithm to converge slowly, which is not conducive to the local optimization of the algorithm. 
According to the size of the input feature pool, we set it to 30. The experimental parameters 
of BDBA are shown in Table 7.

Improved binary differential evolution

In the mutation stage of IBDE, we propose a new mutation operator, which can effec-
tively control the number of retained features and improve the convergence speed of the 
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algorithm. The calculation method of the difference vector diff gi  of the individual xgi  is 
shown in Eq. 11.

(11)diff
g
i,j =

{

0, if x
g
r1,j = x

g
r2,j

Fx
g
r1,j , otherwise

Fig. 10 Flowchart of BDBA. Randomly initialize the population. Then, in the first 40% of the iterative process, 
use the hunger rate strategy in AVOA to integrate BAVOA into IBDE, when the individual’s hunger rate SR < 1 , 
use BAVOA to update the individual, otherwise use IBDE to update the individual. During the last 60% of the 
iterative process, IBDE is used to evolve the population to find the optimal individual

Table 7 BDBA algorithm parameters

Parameters Values Description

G 500 The maximum number of iterations

NP 30 Population size

P1 0.6 The first probability parameter of 
the selection mechanism in BAVOA

P2 0.4 The second probability parameter 
of the selection mechanism in 
BAVOA

α 0.9 Adaptive cross factor parameter
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where xr1,j and xr2,j represent the values on the j-th dimension of the two individual 
vectors randomly selected in the g-th iteration. F is the inertial adaptive scaling factor, 
which is calculated by Eq. 12. In Eq. 12, fmin and fmax are the minimum and maximum 
values that can be achieved by F, respectively. Since the value in the individual vector is 
binary, diff∈ [0, F ] . In order to perform the downstream mutation operation, it is neces-
sary to control F ∈ [0, 1] . At the same time, in order to increase the randomness and not 
to choose or abandon a certain feature absolutely, we set the values of fmin and fmax to 
0.1 and 0.9, respectively. The F gradually decreases as the number of iterations increases. 
The larger F, the better for the global search, and the smaller F is for the local search. In 
this way, the ability of algorithm exploration and exploitaion can be balanced to a certain 
extent. The calculation method of the mutation vector ugi  of the individual xgi  is shown in 
Eq. 13.

In Eq. 13, xgr3.j represents the value of the j-th dimension in the random individual vector 
in the g-th iteration. pr is used to ensure that the final binary vector is close to 0 or 1. The 
calculation method of pr is shown in Eq. 14.

In the crossover stage, we propose an adaptive crossover factor, which aims to gradu-
ally improve the convergence ability of the algorithm during the evolution. The calculation 
method of CR is shown in Eq. 15.

where α is the adaptive cross factor parameter and G is the maximum number of iter-
ations. We can obtain the trial vector vgi  of individual xgi  by CR, and the calculation 
method is shown in Eq. 16.

It can be seen from Eq. 16 that the larger the CR, the higher the probability of an indi-
vidual accepting the variation. Conversely, the probability of rejecting the mutation and 
maintaining the individual as they are is higher. Finally, the selection operator decides 
whether to keep the target vector xgi  or the trial vector vgi  to enter the next iteration. The 
calculation of the selection operator is shown in Eq. 17.
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((

G− g + 1
)

/g
)

∗ (fmax − fmin)
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where f
(

v
g
i

)

 and f
(

x
g
i

)

 represent the fitness of the target vector x g
i  and the trial vector 

v
g
i  , respectively. In order to control the number of retained features, we not only use the 

five-fold cross-validation classification accuracy of SVM as the evaluation standard, and 
the number of retained features is added to the fitness function as an evaluation condi-
tion. The fitness function is calculated as shown in Eq. 18.

In Eq. 18, acc is the five-fold cross-classification accuracy rate obtained from the micro-
array data corresponding to the individual vector x, num is the number of retained 
features, L is the individual dimension, and β is the weight coefficient. After every 100 
iterations, the value of β also increases in sections. When the value is greater than 0.9, it 
indicates that the iteration has entered the final stage, so we should focus on improving 
the classification accuracy, and no longer need to control the number of retained fea-
tures, so let β = 0.

Improved binary African vultures optimization algorithm

OL can effectively make the offspring obtain better solutions [41]. We propose a random 
OL method to process the individual xfirst with the largest fitness, and the obtained new 
individual xnew is used to replace the individual with the second fitness in AVOA. The 
specific operation of the random OL method is to invert the random bits of xfirst , and the 
number of inverted bits is half of the dimension of xfirst . In this way, not only is the newly 
obtained individual better than xfirst in a certain probability, but also the obtained new 
individual is random, which is beneficial to improving the diversity of the population. 
Then, the best individual xbest is selected between the xfirst and xnew using Eq. 20.

where f (x first ) represents the fitness of xfirst , and the calculation method is shown in 
Eq. 18.

The method of AVOA algorithm to update the random position of vultures in the 
exploration stage is not suitable for the calculation of binary vectors, so we have 
improved it, as shown in Eq. 21.
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(18)f (x) =

{

acc− β(num/L), if β < 0.9
acc, otherwise

(19)β =
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+ 0.1
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In Eq.  22, x g
r1 and x g

r2 represent two individual vectors randomly selected in the g-th 
iteration.

As mentioned earlier, the vulture positions updated by AVOA get continuous solu-
tions, so we need to discretize these continuous solutions. The transformation is 
achieved by using the sigmoid function to compress the continuous decompression in 
each dimension. In order to better conform to the movement mechanism of the indi-
vidual during the transformation process, we perform a translation operation on the sig-
moid function. The calculation method is shown in Eq. 23.

where x g
i,j represents the value of the j-th dimension of the i-th individual in the g-th 

iteration. The solution obtained by the sigmoid function is still continuous, as shown in 
Eq. 24, in order to better binary quantize the continuous solution, we generally apply a 
random threshold on the basis of the sigmoid function to obtain the binary solution.
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