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Abstract 

Background: Inflammatory mediators play havoc in several diseases including the 
novel Coronavirus disease 2019 (COVID-19) and generally correlate with the severity of 
the disease. Interleukin-13 (IL-13), is a pleiotropic cytokine that is known to be associ-
ated with airway inflammation in asthma and reactive airway diseases, in neoplastic 
and autoimmune diseases. Interestingly, the recent association of IL-13 with COVID-19 
severity has sparked interest in this cytokine. Therefore characterization of new mol-
ecules which can regulate IL-13 induction might lead to novel therapeutics.

Results: Here, we present an improved prediction of IL-13-inducing peptides. The 
positive and negative datasets were obtained from a recent study (IL13Pred) and 
the Pfeature algorithm was used to compute features for the peptides. As compared 
to the state-of-the-art which used the regularization based feature selection tech-
nique (linear support vector classifier with the L1 penalty), we used a multivariate 
feature selection technique (minimum redundancy maximum relevance) to obtain 
non-redundant and highly relevant features. In the proposed study (improved IL-13 
prediction (iIL13Pred)), the use of the mRMR feature selection method is instrumental 
in choosing the most discriminatory features of IL-13-inducing peptides with improved 
performance. We investigated seven common machine learning classifiers including 
Decision Tree, Gaussian Naïve Bayes, k-Nearest Neighbour, Logistic Regression, Support 
Vector Machine, Random Forest, and extreme gradient boosting to efficiently classify 
IL-13-inducing peptides. We report improved AUC, and MCC scores of 0.83 and 0.33 on 
validation data as compared to the current method.

Conclusions: Extensive benchmarking experiments suggest that the proposed 
method (iIL13Pred) could provide improved performance metrics in terms of sensitiv-
ity, specificity, accuracy, the area under the curve - receiver operating characteristics 
(AUCROC) and Matthews correlation coefficient (MCC) than the existing state-of-the-
art approach (IL13Pred) on the validation dataset and an external dataset comprising of 
experimentally validated IL-13-inducing peptides. Additionally, the experiments were 
performed with an increased number of experimentally validated training datasets to 
obtain a more robust model. A user-friendly web server (www. soodl ab. com/ iil13 pred) 
is also designed to facilitate rapid screening of IL-13-inducing peptides.
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Background
Cytokine storm, characterized by hyperproduction of pro-inflammatory cytokines 
such as IL-1, IL-2, IL-6, IFN-gamma, IL-13, IL-17, TNF-alpha etc. is considered one 
of the physio-pathological aspects correlated with the novel Coronavirus disease 2019 
(COVID-19) disease severity [1–3]. Further in-vitro experimental studies validated by 
in-vivo data supported by insights obtained from single cell RNA-sequencing have dem-
onstrated that inflammatory mediators in the serum of COVID-19 patients induced 
endothelial dysfunction and are highly correlated with COVID-19-associated endothe-
liopathy attesting to the pathological role of inflammatory cytokines in the disease [4, 5].

Interleukin (IL)-13 is one of the cytokines that has been recently associated as drivers 
of COVID-19 severity [6]. The role of IL13 in COVID-19 severity was also confirmed 
by other independent studies [7, 8]. IL-13 is a pleiotropic cytokine that is secreted by 
T-Helper 2 (Th-2) cells, basophils, mast cells, eosinophils, and natural killer cells 
[9]. Similar to IL-4, this cytokine plays role in Th-2-mediated immunity that includes 
responses to allergic reactions and parasitic infections. In fact, IL-13 causes class switch-
ing to IgG4 and IgE antibodies in naïve human B cells [10] and it is shown to play an 
indispensable role in the expulsion of gastrointestinal nematodes [11]. It is found to be 
an important mediator in airway inflammation seen in asthma and reactive airway dis-
eases [12]. Independent and distinct from IL-4, IL-13 is also produced by Th1 and Th17 
cells and is involved in adaptive immune responses including Th1 and Th17 inflamma-
tory responses [13]. The fact that IL-13 is highly expressed in Hodgkin/Reed-Sternberg 
(H/RS) tumor cells [14] and blood cells of patients with autoimmune rheumatic diseases 
[15] indicates its role in the pathogenesis of neoplastic and autoimmune diseases. The 
role of IL-13 has been investigated in several bacterial and viral diseases. Elevated lev-
els of IL-13 were observed in mice following Chlamydia muridarum infections [16]. 
It was further observed that IL-13 knock-out mice suffered from less disease severity, 
inflammation and bacterial load as compared to the wild-type mice infected with Chla-
mydia muridarum. Interestingly, elevated levels of IL-13 and IL-18 were also reported 
in patients with severe Dengue Hemorrhagic Fever suggesting that these cytokines play 
a critical role in the shift from Th1 to Th2 responses among them [17]. Another study 
reported that exogenous treatment of IL-13, IL-6, and IFN-g led to exacerbating pulmo-
nary abnormality of enterovirus-infected mice [18].

Owing to the importance of IL-13 in COVID-19 severity and in regulating several 
vital biological processes, new molecules that can modulate the cytokine should be 
exploited. Recently, a tool (IL13Pred) was developed by Jain et al. [19] that aimed to 
classify IL-13-inducing peptides from the peptides that did not have the property to 
induce IL-13. The benchmark dataset included 343 experimentally validated IL-13-in-
ducing peptides that were obtained from the immune epitope database [20]. How-
ever, further processing including the removal of duplicate peptides resulted in a list 
of 313 experimentally validated IL-13-inducing peptides. The negative datasets used 
by the authors included 2908 non-IL-13 inducing peptides and it was also obtained 
from the same database. Once the datasets were prepared, the authors then used the 
Pfeature algorithm to compute 9151 features of each peptide. The feature selection 
was then performed using the linear support vector classifier with the L1 penalty 
(SVC-L1) feature selection method which resulted in the identification of 95 relevant 
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features. Once the features were identified, a decision tree-based algorithm was used 
to rank the features. The IL-13 prediction tool was then used to predict IL-13-induc-
ing peptides.

In any machine learning (ML) system, the choice of the correct features is instru-
mental in building an effective and discriminative decision system. We wished to 
explore a more effective feature selection technique as compared to the SVC-L1 
thereby leading to a further improvement of IL-13-inducing peptide prediction. 
Therefore, we propose an improved predictor of IL-13-inducing peptides which we 
named as iIL13Pred (improved IL-13 Prediction). The overall design of iIL13Pred is 
depicted in Fig. 1. All the positive and negative datasets were obtained from IL13Pred. 
Similar to the existing study, we also used the Pfeature algorithm to compute features 
of IL-13 and non-IL-13 inducing peptides. In our recent study (Periwal et  al. man-
uscript communicated), we have observed the superiority of minimum redundancy 
maximum relevance (mRMR) feature selection over the SVC-L1 method. In compari-
son to SVC-L1, mRMR selects the non-redundant and highly relevant features that 
give a high performance when combined with diverse classification methods. Thus we 
implemented mRMR feature selection approach in this study.

Fig. 1 Overall architecture of the iIL13Pred design: The positive (IL-13 inducing peptides) and negative 
dataset (non-IL-13 inducing peptides) were obtained from IL13Pred (Jain et al. [19]).The positive and 
negative datasets were divided into 80:20 as training and testing data. The compositional features of Pfeature 
algorithm were used to compute features of IL-13 and non-IL-13 inducing peptides. Non-redundant and 
highly relevant feature selection tool mRMR was used to identify highly discriminatory and non-redundant 
features. Seven machine learning classifiers with five-fold internal cross validation was performed followed 
by an external validation on testing datasets. Best classifiers was then used to evaluate independent 
experimentally validated IL-13 inducing peptides. Abbreviations:IL-13, Interleukin-13; iIL13Pred, improved IL-13 
prediction; mRMR, minimum redundancy maximum relevance; ML, Machine Learning; DT, Decision Tree; 
RF, Random Forest; SVM, Support Vector Machine; LR, Logistic Regression; GNB, Gaussian Naïve Bayes; KNN, 
k-Nearest Neighbour; XGB, eXtreme Gradient Boosting
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Considering the importance of IL-13 in several biological processes, we aimed to build 
up an improved model of IL-13-inducing peptide prediction by relying on effective fea-
ture selection approach i.e. mRMR. In the proposed study, experimentally validated 
IL-13-inducing peptides (positive dataset) and non-IL-13-inducing peptides (nega-
tive dataset) were obtained from the IL-13 Pred tool [19]. A total of 9151 features for 
each peptide were generated from the compositional module of the Pfeature algorithm. 
Unlike IL-13 Pred, we used the mRMR feature selection method to identify highly dis-
criminatory and non-redundant features. Ninety-five features were selected and were 
used to build machine learning classifiers as suggested in the baseline paper. Experi-
ments with other feature set sizes were also performed. Similar to the IL13Pred, we also 
used seven machine learning classifiers including Decision Tree, Gaussian Naïve Bayes, 
k-Nearest Neighbour, Logistic Regression, Support Vector Machine, Random Forest, 
and eXtreme Gradient Boosting to efficiently classify IL-13-inducing peptides. We show 
that the improved IL-13 prediction (iIL13Pred) tool achieves better sensitivity and accu-
racy with nearly all the machine learning classifiers as compared to the existing method. 
Thus we propose that iIL13Pred can be used for efficient prediction of IL-13-inducing 
peptides.

Material and Methods
Benchmark datasets

Since IL13Pred is the most recent tool that aims to predict IL-13-inducing peptides, 
hence we used the same dataset in this study [19]. For the sake of comparison, all the 
datasets including the positive and negative datasets used in this study were obtained 
from the original study [19]. The positive dataset included 313 IL-13-inducing peptides 
whereas the negative dataset included 2908 non-IL-13-inducing peptides.

Feature extraction

Accurate classification of peptide sequences relies on the generation of appropriate fea-
tures. Similar to IL13Pred, we used the Pfeature algorithm to compute various features 
of both the IL-13 and non-IL-13 inducing peptides. The composition-based module of 
Pfeature algorithm was used to compute 9151 features for each peptide. Various descrip-
tors of this module along with the number of features are described in Additional file 1: 
Table S1.

Feature selection

For a given peptide sequence, the Pfeature algorithm generates 9151 features, most of 
which might be redundant in nature. Therefore, the selection of appropriate and highly 
relevant features is critical for the accurate performance of the machine learning classi-
fier. Recently, we compared SVC-L1 and mRMR feature selection methods and observed 
the superiority of the mRMR feature selection method over the SVC-L1 method (Peri-
wal et. al. manuscript communicated). Thus, in the current work, we used the mRMR 
feature selection method to extract the most relevant features.
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mRMR feature selection

The presence of irrelevant and redundant features diminishes the generalization ability 
of a classification model. Hence, the identification of the features that are most relevant 
for classification is the major crucial step in building any machine learning model. The 
minimum redundancy maximum relevance (mRMR) feature selection method is one of 
the popular methods that are able to select the relevant features and remove the redun-
dant features simultaneously.

The mRMR measure is denoted as

or

where

I(i, j) denotes the mutual information among two features i and j. I(i, c) denotes the 
mutual information of the feature i with respect to class c. S is the set of features. The 
aim of mRMR is to choose the feature set where the mutual information amongst the 
features is minimized and the mutual information of the feature w.r.t the class is maxi-
mized. Given two features, i and j, with marginal probabilities, p(i) and p(j), and joint 
probability p(i, j), the mutual information I(i, j) is given by:

For the feature, i w.r.t. the class c, with marginal probabilities, p(i) and p(c), and joint 
probability p(i, c), the mutual information I(i, c) is given by:

Classification models

Seven well-known classifiers are used in this study to build efficient decision models for 
the classification of IL-13 peptides: Decision Tree (DT), Gaussian Naïve Bayes (GNB), 
k-Nearest Neighbour (KNN), Logistic Regression (LR), Support Vector Machine (SVM), 
Random Forest (RF) and eXtreme Gradient Boosting (XGB). A decision tree-based clas-
sifier (DT) is a tree-based decision system where each branch represents the outcome 
of a test and the label at the leaf nodes identifies the class that is decided upon by the 
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classifier. The Gaussian Naïve Bayes classifier (GNB) is based on the Bayes theorem and 
follows Gaussian distribution while supporting continuous data. The K nearest neigh-
bour classifier (KNN) takes into consideration K data instances that are closest to the 
test sample and attributes the majority class to the test sample. Logistic Regression (LR) 
predicts the probability of the target variable using the S-shaped logistic function where 
the coefficients of the logistic regression algorithm are estimated using the maximum-
likelihood estimation. The support vector machine classifier (SVM) determines an opti-
mum decision boundary that maximizes the margin between the hyperplanes passing 
through the support vectors of the two classes. Various kernel functions facilitate the 
realization of non-linear decision boundaries in an SVM classifier. A random forest algo-
rithm (RF) is a collection of decision trees. Each participating tree is formed from a dif-
ferent training set and hence each has a unique performance. Based on the collective 
decision of the participating decision trees, the final decision of the random forest is 
reported. RF exhibits improved performance as compared to when only a single deci-
sion tree is modelled. The eXtreme Gradient Boosting (XGB) classifier is an ensemble 
approach based on the gradient boosting decision tree technique where the errors of 
the existing models are improved by newer models. It is a highly efficient and scalable 
method that avoids overfitting and offers high performance of unseen and novel data.

Internal cross‑validation and external validation

To train, test, and evaluate our prediction models, we used a similar approach as used by 
Jain et al. [19]. The dataset was split into a ratio of 80:20 to obtain training and validation 
datasets. After the data was split, our training dataset comprised 250 positive and 2326 
negative peptides whereas the validation dataset comprised 63 positive and 582 nega-
tive peptides. We used the 5-fold cross-validation and external validation technique. 
The parameter range for all the classifiers used for internal validation has been provided 
in Additional file 2: Table S2. The best parameters that were obtained during the 5-fold 
cross-validation were then used to test the external validation dataset. Various common 
performance metrics used for the evaluation of the classifiers included sensitivity, speci-
ficity, accuracy, area under the curve - receiver operating characteristics (AUCROC) and 
Mathews correlation coefficient (MCC).

Evaluation parameters

The most commonly used threshold-dependent and independent parameters including 
sensitivity, specificity accuracy, and AUCROC were used in this study. These parameters 
can be defined as follows:

TP = True Positive, FP = False Positive.
TN = True Negative, FN = False Negative.

Sensitivity = TP/(TP+ FN)

Specificity = TN/(TN+ FP)

Accuracy = (TP+ TN)/(TP+ FP+ TN+ FN)
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Area under the curve - Receiver Operating Characteristics (AUCROC) explains the 
efficiency of a classification model. It is calculated in threshold independent manner. 
Higher the AUC, the better the model in differentiating the positive and negative class. 
The MCC is the preferred performance metric in case of unbalanced data and gives a 
high score if most of the positive and negative predictions are correct [21].

Design of web‑based prediction tool

An intuitive web application was designed and developed to facilitate the prediction 
of IL-13 peptides. The application allows users to input a peptide sequence, which is 
then processed by a machine-learning algorithm. This tool predicts the IL-13 induction 
potential of the given peptide. The development of the application involved the use of 
multiple web technologies coupled with a proficient machine-learning algorithm. Flask, 
which is a leading Python web framework, was used to host this web application on an 
Amazon Web Services (AWS) instance.

To create an interactive front end for the application, we used HTML, CSS, and JavaS-
cript. HTML, which is also known as the building block of the web, was used to struc-
ture web pages. CSS, a design framework used for adding design to the web pages, and 
finally JavaScript, the scripting language of the web, was used to add interactivity to the 
web pages like form validations, drop-down menus, and other interactive elements that 
allowed users to interact with the machine learning algorithm. The next step involved 
integrating the machine learning model at the backend with the front end of the web 
application. This model was trained on a large dataset, and the results were saved in a 
file on the server to facilitate further predictions. A python program integrated with our 
Flask application could interact with the machine learning model and pass the generated 
predictions to the front end of the web application.

Apart from predicting the IL13-inducing potential of a given peptide, additional func-
tionalities of the webserver included design and peptide scan. The design module in iIL-
13Pred mutates a single amino acid of the peptide sequence at a time and then predicts 
the IL-13 induction potential of the resulting mutants. The protein scan module of iIL-
13Pred generates all the possible overlapping peptides and predicts the IL-13 induction 
potential of all the resulting peptides.

Results
Feature extraction and selection

Once the positive and negative datasets were curated, the Pfeature algorithm was used to 
compute 9151 features of each peptide sequence. We then used the mRMR feature selec-
tion method to identify the most relevant features. We performed experiments with the 
top 10, 20, 30,…95 features to build the machine learning models similar to the method-
ology used by Jain et al. [19]. For the sake of fair comparison with the state of the art, the 
results with 10, 20, 30,…95 features are presented in the Additional file 3: Table S3. To 
visually assert the discriminatory nature of the top ten features, we have plotted the box 
plots for each in Fig. 2. It can be observed that the features selected by mRMR tend to be 
highly discriminatory in nature. This strengthens the role of the features chosen by the 

MCC = ((TP ∗ TN)−(FP ∗ FN))/
√

(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)
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mRMR method and indicates that these are indeed effective in the improved classifica-
tion of IL-13-inducing peptides.

Machine‑learning based prediction models

We used seven different machine learning classifiers i.e. Decision Tree, Gaussian Naïve 
Bayes, k-Nearest Neighbour, Logistic Regression, Support Vector Machine, Random 
Forest and eXtreme Gradient Boosting. The best parameters obtained from the 5-fold 
internal cross-validation were then used to calculate the average sensitivity, specificity, 
accuracy, AUCROC, and MCC for the validation data. Similar to the methodology that 
was used in the existing method (IL13Pred), we evaluated several machine learning clas-
sifiers on the top 10, 20, 30,…95 features obtained using the mRMR feature selection 
method. A comparison of both the tools (proposed and the state of the art) revealed the 
following:

 i. The current method (IL13Pred) reported that among the seven ML classifiers, the 
RF classifier performed the best on 95 features with an AUCROC of 0.88 on train-
ing and 0.83 on validation data. We used the mRMR feature selection method and 
report an AUCROC score of 0.85 on training and 0.84 in the case of validation 
dataset with RF classifier. MCC is known to be the preferred metric in case of an 
unbalanced data [21]. We further report an improved MCC of 0.36 as compared to 
0.34 for the validation data obtained using the RF classifier (Fig. 3A–B and Table 1).

 ii. In addition to reporting the performance on the top 95 features, the current study 
[19] further shows that the XGB classifier outperformed all other classifiers with 
AUCROC of 0.83 and 0.80 in training and validation datasets respectively using 

Fig. 2 The boxplot representation of the top 10 features selected by the mRMR feature selection method 
indicates their discriminatory nature: The top 10 features selected by the mRMR feature selection method 
were plotted for IL-13 inducing and non-IL-13 inducing peptides. The features were found to be highly 
discriminatory as seen in the box plot of the top 10 features. Abbreviations: mRMR, minimum redundancy 
maximum relevance; BTC_S, Composition of Single bonds; CeTD_SS1, Composition of group 1 residues 
for secondary structure attribute; TPC_RQF, Composition of Arginine–Glutamine–Phenylalanine tripeptide; 
SER_I, Shannon entropy for residue Isoleucine; SER_L, Shannon entropy for residue Leucine; SER_T, Shannon 
entropy for residue Threonine; BTC_T, Composition of total bonds; CeTD_75_p_HB1, Number of group 1 
residues for hydrophobicity present in 75% quartile; AAC_H, Amino acid composition of Histidine; SER_P, 
Shannon entropy for residue Proline
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the top 10 features (Table  2). Using similar approaches, we also performed the 
experiments with our top 10 features and show an improvement in the results. We 
report an improved AUCROC of 0.84 and 0.83 in training and validation datasets 
respectively with the XGB classifier. Additionally, we report improved MCC scores 
of 0.34 and 0.33 on training and validation datasets as compared to the IL13Pred 
which reported MCC scores of 0.33 and 0.30 for testing and validation data respec-
tively (Fig. 3C–D and Table 2). The data suggest that our models are more efficient 
in classifying IL-13 inducing peptides as compared to the existing method. The 
selection of the most discriminatory features using the mRMR method is instru-
mental in the improved performance of all feature sets and all classifiers.

 iii. AUCROC indirectly assesses the performance of the classifier. A model with a 
larger value of AUC is usually considered as a better classifier in comparison to the 
one with a smaller value. The AUC score of seven machine learning models on the 
top 10 features was plotted in validation data. It was observed that XGB was found 
to be a better classifier followed by RF classifier. The supremacy of the XGB classi-
fier over the other classifiers is shown in the AUCROC plot (Fig. 4).

 iv. In order to further compare our models with IL13Pred, we performed all the 
experiments on 10, 20, 30, 40,…95 features. We show that our classifiers were 
superior in most of the cases as compared to the existing method (Additional file 3: 
Table S3) pointing toward the effectiveness of the features selected using mRMR 
feature selection technique. An improved average sensitivity, specificity, accuracy, 
AUCROC, and MCC was reported for 10, 20, 30,40,…95 features using DT, GNB, 
KNN, and SVC classifiers (Additional file 4: Fig. S1). In the case of LR, RF and XGB 
classifiers, an improved average sensitivity, specificity, accuracy, AUCROC and 
MCC was reported for 10,20,30,40, …95 features for the validation data (Fig. 5 and 
Additional file 4: Fig. S1). We observe a marginal dip in the training performance. 
This is attributed to the generalized performance of the proposed decision model. 

Fig. 3 Comparison of performance metrics of iIL13Pred and IL13Pred: A, B Comparison of performance 
metrics of RF classifier on top 95 features in training and validation datasets respectively in iIL13Pred and 
IL13Pred and C, D Comparison of performance metrics of XGB classifier on top 10 features in training and 
validation data respectively in iIL13Pred and IL13Pred. Abbreviations: iIL13Pred, improved IL-13 prediction; 
IL13Pred, IL-13 prediction; RF, Random Forest; XGB, eXtreme Gradient Boosting; AUCROC, Area under the 
curve - Receiver Operating Characteristics; MCC, Matthews correlation coefficient
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In ML, those models are preferred which although may have less training perfor-
mance as they are better generalized and give improved validation results. This is 
affirmed by the higher performance of the decision models on the validation data-
set.

Case study 1: prediction of IL‑13 inducing peptides from SARS‑CoV‑2 proteins

Recently, IL-13 was reported to be associated with the severity of COVID-19. Therefore 
Jain et al. [19] obtained multiple sequences of SARS-CoV-2 and used the protein scan 
module of their web server to identify IL-13-inducing peptides encoded by SARS-CoV-2 
spike protein. The authors retrieved several SARS-CoV-2 sequences from five different 
countries and predicted 213 IL-13-inducing peptides. The authors further identified ten 

Fig. 4 ROC curve of seven machine learning models using top 10 features on validation data: The model 
built using XGB classifier (represented by pink solid line) shows the best AUC followed by RF classifier. The 
X-axis represents the false positive rate i.e. 1-Specificity while Y-axis represents the true positive rate i.e. 
Sensitivity. Abbreviations: ROC, Receiver Operating Characteristics; DT, Decision Tree; RF, Random Forest; SVM, 
Support Vector Machine; LR, Logistic Regression; GNB, Gaussian Naïve Bayes; KNN, k-Nearest Neighbour; XGB, 
eXtreme Gradient Boosting

Fig. 5 Comparison of the averages of all the performance measures of the features (10–95) for various ML 
parameters on training and validation datasets for A Random Forest training B Random Forest validation, C 
XGB Training and D XGB validation classifiers
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potential IL-13-inducing peptides in the SARS-CoV-2 spike protein. In order to com-
pare the performance of our model with IL13Pred, we tested the same ten major IL-
13-inducing peptides from the spike protein of SARS-CoV-2 and found that our model 
predicted a reduced probability of these peptides to induce IL-13 as compared to the 
current method (Table 3).

Case study 2: prediction of IL‑13 inducing peptides from spike protein of SARS‑CoV‑2 

and its variants

Since the start of the SARS-CoV-2 pandemic, the virus has been continuously mutating. 
The chance mutation among the viral proteins might lead to the possibility of gain or 
loss of functions. Therefore, Jain et al. [19] attempted to study the role of mutations in 
the IL-13 induction. The authors obtained the reference sequence of spike protein and 
then engineered highly prevalent mutations from SARS-CoV-2 variants including Alpha 
(B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) in the reference sequence. The authors 
then predicted the IL-13-inducing ability in these peptides. We performed similar 
experiments with our tool and observed that results obtained from IL13Pred were supe-
rior as compared to our results suggesting that our tool lagged behind in predicting IL-
13-inducing peptides from variants of the spike protein of SARS-CoV-2 (Table 4). It was 
observed that though our tool resulted in better results on the validation dataset, it did 
not perform well on the SARS-CoV-2 peptide data. We concluded that since none of the 
above-mentioned IL-13-inducing SARS-CoV-2 peptides were experimentally validated, 
so we sought to investigate our tool on an unseen external set comprising of experimen-
tally validated dataset.

Case study 3: prediction of experimentally validated IL‑13 inducing peptides

Since in both the above-mentioned case studies we were testing our tool on SARS-
CoV-2 data which was not experimentally validated at all, we could not rely on 
the prediction of our models. To validate the prediction efficiency of our tool, we 
sought to test our model on the experimentally validated IL-13-inducing peptides. 
In the current study, all the experimentally validated IL-13-inducing peptides were 
obtained from the immune epitope database that probably may have been accessed 

Table 3 Case study 1: potential IL-13 inducing peptides from SARS-CoV-2 spike protein

The higher values are highlighted in bold

S.No Peptide sequence Proposed study (probability) Jain et al. [19] 
(probability)

1 ELDSFKEELDKYFKN 0.06 0.39
2 LLTDEMIAQYTSALL 0.03 0.32
3 KQGNFKNLREFVFKN 0.05 0.30
4 EIDRLNEVAKNLNES 0.04 0.30
5 VNIQKEIDRLNEVAK 0.06 0.27
6 LYRLFRKSNLKPFER 0.22 0.25
7 NIQKEIDRLNEVAKN 0.11 0.23
8 KSTNLVKNKCVNFNF 0.12 0.22
9 VLTESNKKFLPFQQF 0.02 0.22
10 IQKEIDRLNEVAKNL 0.14 0.22
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in August–September 2021 [19]. Since the database is regularly updated, there might 
have been an addition of some more experimentally validated IL-13-inducing pep-
tides. We accessed the immune database in May 2022 and obtained some additional 
experimentally validated IL-13-inducing peptides (Table  5) that were not included 

Table 4 Case study 2: potential IL-13 inducing peptides from SARS-CoV-2 wild-type and mutated 
spike protein

The higher values are highlighted in bold

SARS‑
CoV‑2 
variants

Mutation Reference 
peptide

Mutated 
peptide

Score_R (probability) Score_M (probability)

Proposed 
study

Jain et al. 
[19]

Proposed 
study

Jain et al. 
[19]

Alpha 
(B.1.1.7)

A570D NKKFLPFQQF-
GRDIA

NKKFLP-
FQQFGRDID

0.03 0.05 0.04 0.11

KFLPFQQFGR-
DIADT

KFLPFQQF-
GRDIDDT

0.04 0.03 0.03 0.06

T716I SNNSIAIPTNFT-
ISV

SNNSIAIPIN-
FTISV

0.01 0.04 0.07 0.06

S980A NFGAISS-
VLNDILSR

NFGAISS-
VLNDILAR

0.02 0.04 0.02 0.06

GAISS-
VLNDILSRLD

GAISS-
VLNDI-
LARLD

0.04 0.03 0.06 0.08

VLNDILSRLD-
KVEAE

VLNDI-
LARLD-
KVEAE

0.07 0.03 0.04 0.07

LNDILSRLDKVE-
AEV

LNDILARLD-
KVEAEV

0.07 0.05 0.04 0.08

NDILSRLDKVE-
AEVQ

NDILARLD-
KVEAEVQ

0.05 0.04 0.05 0.09

D1118H TQRNFYEPQI-
ITTDN

TQRNFYEP-
QIITTHN

0.01 0.06 0.01 0.04

QRNFYEPQI-
ITTDNT

QRNFYEPQI-
ITTHNT

0.01 0.07 0.01 0.03

YEPQIITTDNT-
FVSG

YEPQI-
ITTHNTFVSG

0.01 0.04 0.01 0.06

Beta 
(B.1.351)

L18F LVLLPLVS-
SQCVNLT

LVLLPLVS-
SQCVNFT

0.05 0.06 0.05 0.04

LLPLVSSQCVN-
LTTR 

LLPLVS-
SQCVNFTTR 

0.01 0.07 0.01 0.02

D80A VSGTNGTKRFD-
NPVL

VSGTNGT-
KRFANPVL

0.01 0.05 0.01 0.12

GTNGTKRFDN-
PVLPF

GTNGTKR-
FANPVLPF

0.01 0.02 0.01 0.07

SGTNGTKRFD-
NPVLP

SGTNGTKR-
FANPVLP

0.01 0.09 0.01 0.02

Delta 
(B.1.617.2

T19R LVLLPLVS-
SQCVNLT

LVLLPLVS-
SQCVNLR

0.05 0.06 0.04 0.04

R158G FRVYSSANNCT-
FEYV

FGVYSSAN-
NCTFEYV

0.02 0.03 0.02 0.06

P618R TQTNSPRRARS-
VASQ

TQTNSR-
RRARSVASQ

0.01 0.02 0.02 0.08

QTNSPRRARS-
VASQS

QTNSR-
RRARS-
VASQS

0.02 0.02 0.02 0.08

D950N DSLSSTASALG-
KLQD

DSLSSTA-
SALGKLQN

0.05 0.05 0.04 0.06
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Table 5 Case study 3: prediction of experimentally validated IL-13 inducing peptides

S.No Peptide sequence Proposed study Proposed study Jain et al. [19] Jain et al. [19]
Score Prediction Score Prediction

1 KKGELALFYLQEQINHFEEKPTKEMK-
DKIVAEMDTI

0.95 IL-13 0.98 IL-13

2 GYFADPKDPHKFYICSNWEAVHKD-
CPGNTRWNEDEETCT 

0.94 IL-13 0.92 IL-13

3 PDEVRRMMAEIDTDGDGFISF-
DEFTDFARANRGLVKDVSKIF

0.94 IL-13 0.92 IL-13

4 TNACSINGNAPAEIDLRQMRTVT-
PIRMQGGCGSCWAFSGVA

0.94 IL-13 0.92 IL-13

5 AAEDTPQDIADRERIFKRFDTNGDG-
KISSSELGDALKTLGSVTP

0.94 IL-13 0.96 IL-13

6 PEGFPFKYVKDRVDEVDHT-
NFKYNYSVIEGGPIGDTLEKISNEIK

0.94 IL-13 0.86 IL-13

7 FGISNYCQIYPPNANKIRE-
ALAQPQRYCR 

0.94* IL-13 0.94* IL-13

8 ATESAYLAYRNQSLDLAEQELVD-
CASQHGCHGDTIPRGIEYIQ

0.93 IL-13 0.90 IL-13

9 DTPQDIADRERGGSFDTNGDG-
KISSGGSTDGDGFISFDEFTDFARAN-
RGLVKDV

0.93 IL-13 0.98 IL-13

10 LHLSEQYKELEKTKSKELKEQILRELTI-
GENFMKGAL

0.93 IL-13 0.95 IL-13

11 EVDVPGIDPNACHYMKCPLVK-
GQQYDIKYTWIVPKIAPKSEN

0.93* IL-13 0.93* IL-13

12 REQSCRRPNAQRFGISNYCQIYPPN-
VNKIREALAQTH

0.93 IL-13 0.90 IL-13

13 WMHHNMDLI 0.93 IL-13 0.53 IL-13

14 KLQCVDLHV 0.92 IL-13 0.96 IL-13

15 LFPKVAPQAISSVENIEGNGGPGTIK-
KISFPEGFPFKYVKDRVDE

0.92 IL-13 0.90 IL-13

16 VHDDVVSMEYDLAYKLGDLHPNTH-
VISDIQDFVVEL

0.92 IL-13 0.96 IL-13

17 LSVGWISGQY 0.92 IL-13 0.31 IL-13

18 DAEFRHDSGYEVHHQKLVFFAED-
VGSNKGAIIGLMVGGVVIA

0.91 IL-13 0.82 IL-13

19 IYSTVASSL 0.90 IL-13 0.98 IL-13

20 NYEEAQTLSK 0.85 IL-13 0.82 IL-13

21 AKFVAAWTLKAAA 0.78 IL-13 0.72 IL-13

22 PITAKAIAASVG 0.55 IL-13 0.36 IL-13

23 EAALAAFAKIAE 0.54 IL-13 0.64 IL-13

24 EAALAKFAAIAE 0.54 IL-13 0.66 IL-13

25 EAALKAFAAIAE 0.54 IL-13 0.59 IL-13

26 LDVVCAMIEGAQG 0.53 IL-13 0.49 IL-13

27 SLGWATLVGEITAGNLLHTR 0.53 IL-13 0.27 IL-13

28 PRFIAVGYVDDTE 0.51 IL-13 0.11 IL-13

29 YDGSVVAINP 0.46 IL-13 0.24 IL-13

30 GTCLESLRRYLELGKERL 0.40 IL-13 0.38 IL-13

31 LVRYWISAFP 0.34 IL-13 0.58 IL-13

32 GPTHLFQPSLVLDMAKVLLD 0.30 IL-13 0.35 IL-13

33 IVDTISDFRAAIANYHYDAD 0.29 IL-13 0.26 IL-13

34 QNGRWISRDP 0.27 IL-13 0.21 IL-13

35 NNSYECDIPIGAGICASYQ 0.24 IL-13 0.17 IL-13

36 FARQAVWLRE 0.24 IL-13 0.33 IL-13
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by Jain et al. [19]. Since these peptides were characterized experimentally, hence we 
sought to benchmark both the tools (IL13Pred and iIL13Pred) on this dataset. The 
results thus obtained revealed that out of a total of 68 experimentally validated IL-
13-inducing peptides, our tool predicted 37 peptides to be IL-13 inducers with 
greater probability as compared to the IL13Pred which predicted 19 peptides to be 
IL-13 inducers with greater probability. It was also observed that three peptides were 
predicted to be IL-13 inducers with the same probability using both tools. Out of the 
68 experimentally validated IL-13-inducing peptides, our tool misclassified only 13% 
of the peptides (n = 9) as non-IL-13 inducers whereas the current method (IL13Pred) 
misclassified 16% of the peptides (n = 11) as non-IL-13 inducers. Additionally, the 

Table 5 (continued)

S.No Peptide sequence Proposed study Proposed study Jain et al. [19] Jain et al. [19]
Score Prediction Score Prediction

37 YTTGAVRQIFGDYKTTICGK 0.23 IL-13 0.08 IL-13

38 AENPRMEPRARWMEREGPEYW 0.22 IL-13 0.07 IL-13

39 IYNRNIVNRL 0.20 IL-13 0.19 IL-13

40 WNRKRISNCVADYSVLYNS 0.20 IL-13 0.13 IL-13

41 MEVGWYRSSFSRVVHLYRNGK 0.19 IL-13 0.10 IL-13

42 QAPEYRGRTELLKDAIGEGKVTLRI 0.18 IL-13 0.09 IL-13

43 GYKDGNEYI 0.18 IL-13 0.23 IL-13

44 NKIQDKVTIDGY 0.18 IL-13 0.06 IL-13

45 AALALLLLDRLNQLE 0.16 IL-13 0.07 IL-13

46 FEELIKFSFHTNVLEDNIGY 0.15 IL-13 0.20 IL-13

47 LRHNPGGPSSAVPLLLSYFQ 0.14 IL-13 0.07 IL-13

48 MESGEWVIKE 0.12 IL-13 0.10 IL-13

49 SGIPYIISYLHPGNTILHVD 0.10 IL-13 0.11 IL-13

50 SGIPYVISYLHPGNTVMHVD 0.10 IL-13 0.05 Non-IL-13

51 HWFVTQRNFYEPQII 0.09 IL-13 0.11 IL-13

52 HPGNTILHVDTIYNRPSNTT 0.09 IL-13 0.07 IL-13

53 VGGNYNYLYRLFRKSNLKP 0.09 IL-13 0.21 IL-13

54 FNNFTVSFWLRVPKVSASHLE 0.09 IL-13 0.08 IL-13

55 MEVGWYRSPFSRVVHLYRNGK 0.08 IL-13 0.07 IL-13

56 DESTESETEQAF 0.07 IL-13 0.04 Non-IL-13

57 MEVGWYRPPFSRVVHLYRNGK 0.07* IL-13 0.07* IL-13

58 HSLGKLLGRPDKF 0.07 IL-13 0.12 IL-13

59 AGFKGEQGPKGEP 0.06 IL-13 0.03 Non-IL-13

60 HSLGKWLGHPDKF 0.06 Non-IL-13 0.04 Non-IL-13

61 ISQAVHAAHAEINEAGR 0.05 Non-IL-13 0.03 Non-IL-13

62 NCTFEYVSQPFLMDL 0.04 Non-IL-13 0.05 Non-IL-13

63 NAGFNSNRANSSRSS 0.03 Non-IL-13 0.02 Non-IL-13

64 QYIKANSKFIGITEL 0.03 Non-IL-13 0.02 Non-IL-13

65 VHFFKNIVTPRTPPPSQGKGR 0.03 Non-IL-13 0.08 IL-13

66 KIYNRNIVNRLLGD 0.02 Non-IL-13 0.05 Non-IL-13

67 NTWTTCQSIAFPSK 0.01 Non-IL-13 0.02 Non-IL-13

68 NFSQILPDPSKPSKR 0.01 Non-IL-13 0.01 Non-IL-13

AVERAGE 0.424 0.389

All the peptides having a score of > = 0.06 are considered to be IL-13 inducing. The higher values are highlighted in bold

*Indicates the same score for both tools
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average prediction probability of our tool was (0.424) is greater as compared to the 
state-of-the-art (0.389) pointing towards the supremacy of our tool.

Case study 4: re‑construction of the improved IL‑13 prediction classifier by enhanced 

training dataset

In order to have a more robust approach and accurate model, we increased positive 
training datasets by including additional experimentally validated human IL-13-in-
ducing peptides obtained from the immune epitope database [20]. After removing the 
duplicates and retaining the peptides ranging from 8 to 35 amino acids, we were able to 
include 54 additional peptides in our positive dataset. The Pfeature algorithm was used 
to compute 9151 features of each peptide sequence. We then used the mRMR feature 
selection method to identify the most discriminatory features and performed experi-
ments only with the top 10 and 95 features to build the machine learning models to be 
consistent with the earlier baseline experiments [19]. With this dataset, we report an 
increase in the performance as tabulated in Table 6.

Discussion
IL-13 is shown to play a critical role in various biological processes. Several anti-IL-13 
drugs for the cure of asthma and atopic dermatitis are in clinical trials [22–24]. Thus 
identification and characterization of novel drug molecules that can regulate IL-13 
induction form an important area of research. Peptide-based drugs are rapidly becoming 
attractive due to their high specificity and low toxicity [25, 26]. Currently, there are more 
than a dozen peptide-based drug candidates that are in clinical trials [25]. Therefore 
extensive efforts are being put up into the prediction and validation of IL-13-inducing 
peptides. The prediction of IL-13-inducing peptides was taken up by a group recently 
and a tool named IL13Pred was published [19]. The positive and negative datasets 
included experimentally validated IL-13-inducing and non-inducing peptides respec-
tively. The study used the Pfeature algorithm to compute the features. Feature selection 
was performed by the SVC-L1 algorithm and an appropriate library from the python 
script was used for feature ranking. Seven machine learning classifiers i.e. Decision 
Tree, Gaussian Naïve Bayes, k-Nearest Neighbour, Logistic Regression, Support Vector 
Machine, Random Forest, and eXtreme Gradient Boosting were then used to classify IL-
13-inducing peptides. It was observed that among the seven machine learning classi-
fiers, the best parameters were obtained using RF on the top 95 features whereas XGB 
performed best on the top 10 features. A user-friendly web server based on the XGB 
classifier was further developed. In an effort to improve the efficacy of the prediction 
tool, in this work, we have introduced an effective feature selection method that selects 
relevant and non-redundant features for building an improved decision model.

Selection of an appropriate feature selection is an important and critical pre-requisite 
step for model building, especially for biological data that is usually heterogeneous and 
of and high dimension [27]. The mRMR feature selection tool has been shown to select 
optimal and highly discriminatory features. It has been successfully used to select opti-
mal features from the microarray datasets [28]. Radovic et  al. incorporated mRMR to 
select more discriminative features in multivariate temporal gene expression datasets 
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[29]. The potential of this tool was harnessed in building the prediction model of ovarian 
cancer survival [30]. Therefore, we sought to further improve the IL-13 prediction using 
a mRMR feature selection method.

In this study, extensive benchmarking was performed from the dataset obtained from 
the current study [19]. Following a similar procedure, features related to compositional 
descriptors were obtained from the Pfeature algorithm and seven common machine 
learning classifiers were used. The important contribution of our paper is the incorpora-
tion of the mRMR feature selection method and its effective performance on the experi-
mentally validated dataset. In this study, we used the mRMR feature selection method, 
as compared to the current method (IL13Pred) that used SVC-L1 for the same. All the 
experiments were performed on top 10, 20, 30,…95 features, and the results obtained 
were compared with that of IL13Pred. Jain et al. [19] reported that with the top 95 fea-
tures, the RF classifier outperformed the other classifiers with an AUCROC of 0.83 for 
the validation dataset. We show an improved AUCROC of 0.84 in the validation dataset. 
Additionally, our experiments resulted in an improved MCC of 0.36 on the validation 
dataset as compared to 0.34 from the existing method (IL13Pred). Jain et al. [19] further 
report that the XGB classifier with 10 features performed better with AUCROC of 0.83 
and 0.80 on training and validation data respectively. We obtained an AUCROC of 0.84 
and 0.83 on training and validation data with top 10 features thereby outperforming the 
existing method. We further report an improved MCC of 0.34 and 0.33 on training and 
validation datasets respectively as compared to 0.33 (training data) and 0.30 (validation 
data) reported by Jain et al. [19].

Although the existing tool was giving higher probability of IL-13-inducing peptides 
obtained from SARS-CoV-2 spike protein, however, the peptides used for the prediction 
were not experimentally validated (Case study 1 and 2). Therefore, to benchmark both 
tools, we obtained experimentally validated IL-13-inducing peptides from the immune 
epitope database. We show that our tool identified IL-13-inducing peptides with greater 
average prediction probability in comparison to the existing method (Case study 3). 
The XGB decision model with top 10 features performed better with the independent 
dataset. The strength of XGB decision model has also been demonstrated in the predic-
tion of the bioactive molecules [31]. Jeon et al. illustrated the strengths of the AdaBoost 
baseline models in the final prediction of cellular localization of long non-coding RNAs 
(lncRNAs) [32].

To build a strong classifier we captured experimentally validated human IL-13-induc-
ing peptides from the updated immune epitope database in a positive training dataset. 
Feature generation and feature selection were executed by the pfeature algorithm and 
mRMR selection tool. XGB model and RF classifiers were built on top 10 and 95 fea-
tures. Performance metrics of the classifier were found to be better here as compared to 
our baseline approach (Case study 4).

We implemented our results in the form of a web server to enable researchers to pre-
dict potential IL-13-inducing peptides for experimental validation. User can predict 
whether a particular peptide can induce IL-13, further they can also generate different 
mutant versions of a particular peptide sequence and test their IL-13-inducing ability. 
In addition, the web server also allows the user to generate all the possible overlapping 
peptides of a particular protein and to predict their IL-13-inducing ability.
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Several studies have utilized the properties of integrative machine learning frameworks 
in generating prediction models. Recent studies on the prediction of epigenetic modifica-
tions including DNA N6- methyladenine sites across several plant species indicate the 
potential of machine learning algorithms across plants and animal species [33, 34].

A limitation of this study is the availability of only a minuscule number of experimen-
tally validated IL-13-inducing peptides. In the future, we shall work with diverse species 
for the discrimination between IL-13-inducing and non-inducing peptides. The avail-
ability of large datasets can also fuel the development of deep-learning models that iden-
tify patterns among IL-13-inducing peptides.

Conclusions
IL-13 has been shown to be associated with the severity of several infectious diseases. 
Thus, the identification and characterization of novel IL-13-inducing molecules might lead 
to novel therapeutics. A recent study employed machine learning algorithms to classify 
IL-13-inducing peptides [19]. The present study was designed to further improve the pre-
diction of IL-13 peptides by including an effective feature selection method that selects 
the most relevant and non-redundant feature set. We also obtained high performance in 
an additional experimentally validated IL-13-inducing peptide dataset. The most efficient 
model is integrated with a user-friendly web server to enable scientists to predict the IL-
13-inducing potential of the peptides of interest which can then be tested experimentally.
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