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Abstract 

Background:  Characterizing the topology of gene regulatory networks (GRNs) is a 
fundamental problem in systems biology. The advent of single cell technologies has 
made it possible to construct GRNs at finer resolutions than bulk and microarray data-
sets. However, cellular heterogeneity and sparsity of the single cell datasets render void 
the application of regular Gaussian assumptions for constructing GRNs. Additionally, 
most GRN reconstruction approaches estimate a single network for the entire data. This 
could cause potential loss of information when single cell datasets are generated from 
multiple treatment conditions/disease states.

Results:  To better characterize single cell GRNs under different but related conditions, 
we propose the joint estimation of multiple networks using multiple signed graph 
learning (scMSGL). The proposed method is based on recently developed graph signal 
processing (GSP) based graph learning, where GRNs and gene expressions are mod-
eled as signed graphs and graph signals, respectively. scMSGL learns multiple GRNs by 
optimizing the total variation of gene expressions with respect to GRNs while ensuring 
that the learned GRNs are similar to each other through regularization with respect to a 
learned signed consensus graph. We further kernelize scMSGL with the kernel selected 
to suit the structure of single cell data.

Conclusions:  scMSGL is shown to have superior performance over existing state of 
the art methods in GRN recovery on simulated datasets. Furthermore, scMSGL success-
fully identifies well-established regulators in a mouse embryonic stem cell differentia-
tion study and a cancer clinical study of medulloblastoma.

Keywords:  Gene regulatory networks, Single cell, Graph signal processing, Graph 
learning

Background
Gene expression arises from a network of regulatory interactions between transcription 
factors, co-factors and signaling molecules [1, 2]. Elucidating the topology of this under-
lying transcriptomic network is essential for understanding the mechanisms that govern 
complex biological processes in human physiology and pathology. Identifying the differ-
ences in transcriptional regulation between normal and disease states helps in reveal-
ing the specific biological and biochemical pathways relevant to disease mechanisms and 
progression [3, 4].
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A major focus area in clinical research lies in studying the changes in gene coexpres-
sion networks across different tissues, cell types/states, and conditions. For example, in 
the extensively studied breast cancer datasets from the cancer genome atlas, there are 
four main subtypes of breast cancer [5]. The variation between these subtypes holds the 
key to inferring how genes transcriptionally regulate each other and how their expres-
sions and interactions change across subgroups. In addition one would expect the gene 
relationships corresponding to different subtypes to be similar to each other since they 
originate in the same tissue, but also posses crucial differences since they are in different 
stages of disease progression [6–8]. Thus, instead of estimating a single network for all 
the subtypes, constructing class-specific graphical models for different conditions will 
provide a more robust and deeper understanding of group-specific characteristics.

Recent advances in next generation sequencing technologies have made it possible to 
profile the transcriptomes of individual cells, hence capturing expressions of thousands 
of genes at a cellular resolution. Dozens of algorithms have been proposed for the recon-
struction of gene regulatory networks from single cell RNA sequencing (scRNA-seq) 
datasets [9, 10]. This has further enabled novel insights into the transcriptional regu-
lation underlying various biological processes, including cancer progression [11] and 
embryonic development [12]. Most of these algorithms, however estimate a single gene 
regulatory network, assuming the data samples to be identically and independently dis-
tributed; hence ignoring the presence of natural subgroups that may be present within 
the data. Given the assumption of a grouped dataset, one should be able to apply these 
algorithms to estimate networks from each subgroup separately; but this procedure of 
independent group-wise network estimation will fail to model the shared structures 
between the subgroups, eventually leading to information loss. Therefore, there is a 
pressing need to develop joint graph estimation models that would allow information 
borrowing across subgroups while retaining subgroup specific heterogenity.

Multiple algorithms have been proposed for joint estimation of networks from high 
dimensional data. Most of these methods assume that the data has a Gaussian distri-
bution. Seminal papers by [6, 13] paved the way for penalized estimation of multiple 
Gaussian graphical models, and demonstrated the use of lasso based penalty functions 
for better estimation across multiple groups. Later, Danaher et  al. [6] proposed the 
fused graphical lasso and the group graphical lasso penalties for better estimation. These 
methods however are not directly applicable to single cell datasets. Despite many advan-
tages, scRNA-seq datasets are undermined by a series of technical limitations, such as 
drop-out events (expressed genes undetected by scRNA-seq) and a high level of noise, 
which renders void the assumption of gaussianity [14–16]. Few methods have been pro-
posed for joint estimation of multiple networks from scRNA-seq datasets. Mukherjee 
et  al. [17] developed PIPER, a penalized local Poisson graphical model [18] for joint 
estimation of multiple networks in scRNA-seq datasets. One of the main limitations of 
PIPER is that the Poisson distribution has one single parameter characterizing both the 
mean and the standard deviation. Single cell datasets would be better characterized by 
a negative binomial distribution which has a separate dispersion parameter or a zero 
inflated negative binomial distribution which could account for the excessive zeroes. To 
account for the non-Gaussian nature of the scRNA-seq datasets, Wu et al. [19] proposed 
a modification of the joint Gaussian copula graphical model based on the Gaussian 
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copula transformation proposed in [20]. To facilitate estimation of Kendall’s τ correla-
tion matrix in the presence of dropouts they propose a modified Kendall’s τ metric that 
only utilizes the completely observed values, and excludes the missing values. Dong et al. 
[21] proposed a three step hybrid joint estimation strategy that relies on (a) integrated 
application of a Bayesian zero inflated Poisson based model imputation strategy and 
single cell imputation technique McImpute [22, 23], (b) data Gaussianization [24] and 
eventually (c) joint estimation of a Gaussian graphical model [6]. Contrary to [17], the 
last two proposed approaches estimate graphical models for continuous data and rely on 
a data transformation step for making the data continuous.

Recent work in graph signal processing (GSP) extends classical signal processing con-
cepts to data defined on nodes of a graph, i.e. graph signals [25]. GSP based graph learn-
ing (GL) approaches infer the graph structure from the observed graph signals based on 
assumptions made about the relation between the signals and the unknown graph [26]. 
Since graph signals are represented explicitly in the graph frequency domain, GSP based 
GL has more flexibility in modeling signals compared to previous network inference meth-
ods, such as statistical models reviewed above for GRN inference. Therefore, in this work, 
we focus on GSP based GL for the joint inference of multiple GRNs, where gene expres-
sions from cells are considered as graph signals on the unknown GRNs. Existing GL algo-
rithms [27–30] have two important shortcomings for multiple GRN learning. First, they 
cannot learn signed graphs, which is a more suitable model for GRNs as they include acti-
vating and inhibitory edges. Second, with the exception of [30], they can only learn a single 
graph. Thus, they are not applicable to the joint inference of multiple GRNs problem.

In this paper, we present a multiple signed graph learning algorithm (scMSGL) for 
joint inference of GRNs from multiple classes (conditions/disease states). Based on the 
method developed in [31], scMSGL learns multiple GRNs by deriving an optimization 
problem using three assumptions: (i) expressions of genes connected with activating 
edges are similar to each other, (ii) expressions of genes connected with inhibitory edges 
are dissimilar to each other, and (iii) GRNs corresponding to the different datasets are 
related to each other. Thus, scMSGL optimizes the total variation of graph signals to 
learn signed graphs while ensuring that the learned signed graphs are similar to each 
other through regularization with respect to a learned signed consensus graph. The pro-
posed method has several advantages over existing approaches. First, it performs joint 
GRN inference taking advantage of the shared information across datasets while not 
making any specific parametric assumptions about the data. Second, during application 
to single cell data, scMSGL is kernelized as in [31] to take the structure of scRNA-seq 
data into account. For instance, it can employ proportionality measures to reflect rela-
tive rather than absolute abundance or zero-inflated Kendall’s tau to handle drop-outs 
[32]. Finally, the proposed method learns an additional consensus graph, which captures 
the common structure across all graphs.

Methods
Graphs

A weighted undirected graph can be denoted as G = (V ,E,W) where V is the node set 
with |V | = n , E is the edge set and W is the adjacency matrix with Wij the weight of 
the edge between nodes i and j. G is an unsigned graph, if edge weights are constrained 
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to only positive values. Combinatorial Laplacian matrix of the unsigned graph G is 
L = D−W where D is the diagonal matrix with node degrees, i.e. Dii =

∑n
j=1Wij . The 

Laplacian matrix is positive semi-definite, thus its eigendecomposition is L = V�V
⊤ 

where � is the diagonal matrix of eigenvalues. We assume the eigenvalues of L are 
ordered such that 0 = �11 ≤ �22 ≤ · · · ≤ �nn.

If the edge weights are allowed to take on negative values, G is a signed graph. A 
signed graph G can be decomposed into two unsigned graphs, G+ = (V ,E+,W+) 
and G− = (V ,E−,W−) , where W+

ij = Wij ( W−
ij = |Wij| ) if Wij > 0 ( Wij < 0 ), and 0, 

otherwise.

Graph signals

A graph signal over an unsigned graph G is a function x : V → R and can be represented 
by a vector x ∈ R

n where each xi is the signal value on node i. Graph Fourier transform 
(GFT) of x can be defined using the spectrum of L as its eigenvalues and eigenvectors 
provide a notion of frequency, i.e., small eigenvalues correspond to low frequencies and 
large ones to high frequencies [25, 33]. GFT of x is defined as x̂ = V

⊤
x and inverse GFT 

is x = Vx̂ . Thus, x is the linear combination of eigenvectors of L with the coefficients 
determined by x̂ . If most of the energy of x̂ is concentrated in the entries correspond-
ing to the small eigenvalues, x has a low-frequency representation in the graph Fourier 
domain. On the other hand, if its energy is concentrated in the entries corresponding to 
large eigenvalues, it has a high-frequency representation. The total variation of x with 
respect to G can then be quantified as:

whose small(large) values indicate that x has low(high) frequency representation on G.
For a graph signal x defined on a signed graph G, total variation can be quantified 

based on the decomposition of G into G+ and G− . Namely, let L+ and L− be the Lapla-
cian matrices of G+ and G− , then we define two total variation values for x : tr(x⊤L+x) 
and tr(x⊤L−x).

Single view signed graph learning

Given a set of graph signals {xi ∈ R
n}

p
i=1 that are defined on an unknown unsigned graph 

G, Dong et al. [27] proposed to learn the structure of G with the assumption that signals 
admit low-frequency representation in the graph Fourier domain of G. Thus, G can be 
learned by minimizing (1) with respect to L as follows:

where X ∈ R
n×p is the data matrix whose columns are xi’s, 

L = {L : Lij = Lji ≤ 0 ∀i �= j, L1 = 0} is the set of valid Laplacian matrices. The first 
term in (2) measures the total variation of the graph signals. The second term is the 
Frobenius norm of L and controls the density of the learned graph. Finally, the last con-
straint is added to prevent the trivial solution L = 0.

In [31], (2) is extended to learn an unknown signed graph G based on the assumption 
that the graph signals admit (i) low-frequency (smooth) representation over G+ , and (ii) 

(1)tr(x⊤�x) = tr(x⊤V�V
T
x) = tr(x⊤Lx),

(2)minimize
L∈L

tr(X⊤
LX)+ α�L�2F subject to tr(L) = 2n,
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high-frequency (nonsmooth) representation over G− . Smoothness and non-smoothness 
of the graph signals with respect to signed graphs are defined as follows: (1) Signal values 
on nodes that are connected with positive edges are similar to each other; (2) Signal val-
ues on nodes that are connected with negative edges are dissimilar to each other. These 
assumptions imply that if genes i and j are connected by an activating edge, their gene 
expressions should be similar, i.e low-frequency. On the other hand, if i and j are con-
nected by an inhibitory edge, their expressions should be dissimilar, i.e., high frequency. 
These assumptions are biologically reasonable and have been validated in [31]. Based 
on these assumptions, the signed graph G is learned by minimizing tr(X⊤

L
+
X) with 

respect to L+ and maximizing tr(X⊤
L
−
X) with respect to L− . This leads to the following 

optimization problem:

where K+ = XX
⊤ , K− = −XX

⊤ and we used the cyclic property of trace opera-
tion, i.e. tr(X⊤

LX) = tr(XX⊤
L) . L

+ and L
− are constrained to be in the set 

C = {(L+,L−) : L+ij = 0 if L−ij �= 0 and L−ij = 0 if L+ij �= 0} to ensure that they are not 
non-zero at the same indices.

The optimization problem in (3) can be kernelized to exploit various (nonlinear) rela-
tions between graph signals. Kernelization is important for GRN inference as it is unclear 
which association measure between gene expressions is best for various scRNA-seq data 
analysis [32]. Therefore, (3) is kernelized by changing XX⊤ with any positive semi-defi-
nite kernel matrix. In [31], three kernels are considered: correlation coefficient (r), pro-
portionality measure ( ρ ) [34] and zero-inflated Kendall’s tau ( τzi ) [35]. These kernels are 
considered because r is a commonly used metric for network inference, ρ is found as the 
best performing measure in [32] and τzi can handle the dropouts in scRNA-seq.

Multiview signed graph learning

Let {Xi}Ni=1 be a given set consisting of N matrices. Xi ∈ R
n×pi is a data matrix con-

structed from pi graph signals defined on an unknown signed graph Gi = (V ,Ei,Wi) 
with |V | = n . It is assumed that Ei ’s and associated edge weights are different but similar 
to each other. Based on this assumption, when learning Gi’s, one can have better perfor-
mance by borrowing information across graphs. For example, when analyzing scRNA-
seq expressions from different disease states/conditions, the datasets generated from 
the varying groups are generally assumed to share a common gene-coexpression struc-
ture. Thus, jointly learning cell-type specficic graphs can improve inference by allowing 
information sharing across cell-types. To this end, we propose an optimization problem 
(scMSGL) that learns Gi ’s simultaneously. In the proposed approach, the learned Gi ’s are 
regularized to be close to a consensus graph G, which is also learned by combining infor-
mation from Gi’s. Thus, the proposed formulation ensures that information is shared 
across graphs when learning Gi’s. Furthermore, the structure of G reflects the common 
connections shared across Gi’s, whose inference may be beneficial if one is interested in 
learning the common gene-coexpression structure over the different cell-types/disease-
stage subgroups.

(3)
minimize
L+∈L,L−∈L

∑

s∈{+,−}

tr(Ks
L
s)+ αs�L

s�2F

subject to tr(Ls) = 2n ∀s, and (L+,L−) ∈ C,
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Let Li,+ and Li,− be the Laplacian matrices of the positive and negative parts 
of Gi , respectively. Similarly, define L+ and L− for the consensus graph G . Let 
L+ = {L1,+, . . . ,LN ,+,L+} and L− = {L1,−, . . . ,LN ,−,L−} . The optimization problem for 
jointly learning Gi ’s and G is then:

where Ki,+ = K
i , Ki,− = −K

i , and Ki is a kernel matrix constructed from Xi as described 
in “Single view signed graph learning” section. � · �F ,off  and � · �1,off  are the Frobenius 
norm and the ℓ1-norm of the off-diagonal entries, respectively. The first term in the sum-
mation measures the smoothness and non-smoothness of X over Gi,+ and Gi,− , respec-
tively. The second term controls the density of the learned Gi,+ ( Gi,− ) such that for larger 
values of α+ ( α− ), we learn denser graphs. The third term ensures that Gi,+ ( Gi,− ) are 
close to the positive (negative) part of consensus graph G with β+ ( β− ) controlling how 
close they should be. The last term is a regularizer that controls the sparsity of positive 
and negative parts of G with larger values of γ+ and γ− resulting in a sparser consensus 
graph. Finally, the constraints are the same as in (3). Algorithm 1 gives the workflow of 
scMSGL to learn multiple graphs jointly. See Additional file 1 for an ADMM based opti-
mization for (4).

Hyperparameter selection procedure

scMSGL requires the selection of six hyperparameters, three of which control the prop-
erties of the positive parts of the learned graphs while the remaining control the nega-
tive parts. As mentioned above, α+ ( α− ) and γ+ ( γ− ) control the edge density of positive 
(negative) parts of the learned Gi ’s and G, respectively. β+ ( β− ) controls how similar the 
learned Gi,+ ’s ( Gi,−’s) are to the consensus graph. We select these hyperparameters simi-
lar to that suggested in [6], where hyperparameter selection is guided to learn graphs 
with desired properties. Alternative to other model selection approaches, such as 

(4)

minimize
L+,L−

∑

s∈{+,−}

N∑

i=1

{
tr(Ki,s

L
i,s)+ αs�L

i,s�2F + βs�L
i,s − L

s�2F,off

}

+ γ+�L
+�1,off + γ−�L

−�1,off

subject to L
i,s ∈ L, tr(Li,s) = 2n, ∀i, ∀s ∈ {+,−}

(Li,+,Li,−) ∈ C ∀i,L+, L− ∈ L, (L+,L−) ∈ C,
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cross-validation or Bayesian information criterion, this approach can achieve a model 
that is interpretable and plausible in practice. Thus, we tune the hyperparameters such 
that the obtained graphs have a desired edge density and view similarity. In particular, 
assume that one wants the densities of positive and negative edges in the learned Gi ’s 
and G to be d+ and d− , respectively. Furthermore, assume that the pairwise similarity 
between Gi,+ and Gj,+ , ∀i �= j is desired to be c+ , where the similarity is quantified by the 
correlation coefficient. Similarly, let c− be the desired similarity amount for the nega-
tive edges of the graphs. Once d+ , d− , c+ , c− are fixed, we select the six hyperparameters 
accordingly. The values of d+ , d− , c+ , and c− are selected based on prior knowledge on 
the datasets under study as detailed in “Results” section.

Results
The performance of scMSGL is evaluated on both simulated and two real scRNA-seq 
datasets. For simulated data, learned graphs are compared to ground truth networks 
to quantify the performance of scMSGL. Signed version of area under precision recall 
curve (AUPRC) is used as the performance metric during this analysis. We report 
AUPRC ratio, which is the ratio of AUPRC value of scMSGL to that of a random predic-
tor. More details on how AUPRC is calculated can be found in Additional file 1. Simu-
lated data are used to benchmark the performance of scMSGL against scSGL and three 
GRN inference algorithms, GENIE3, GRNBOOST2 and PIDC, which are found to be 
the best performing algorithms for scRNA-seq data [10]. These methods and scSGL can 
only learn a single graph from each dataset at a time. Therefore, they are applied to each 
X
i separately and the learned graphs are compared to ground truth Gi’s. In addition, we 

benchmark against Joint Graphical Lasso with fused lasso penalty (JGL-Fused) method 
[6], which learns multiple related Gaussian graphical models, and Joint Gene Networks 
with scRNA-seq data (JGNsc) [21] algorithm, which jointly learns the graphs for multi-
ple classes of single cell data. Other single cell joint graph learning algorithms discussed 
in “Background” section [17, 19] have not been considered due to the absence of pub-
licly/on request available code.

Selected hyperparameter values

Hyperparameters of scMSGL are set as described in “Methods” section with 
d+ = d− = d and c+ = c− = c . We used the BEELINE [10] pipeline to run GENIE3, 
GRNBOOST2 and PIDC. GENIE3 and GRNBOOST2 employs random forest and gra-
dient boosting regressors, respectively and hyperparameters of these regressors are set 
to the default values used in GENIE3 and GRNBOOST2 toolboxes. PIDC uses mutual 
information to learn gene regulations and it requires a discretizer and an estimator for 
probability distribution estimation. We used the discretizer and estimator recommended 
by PIDC toolbox. scSGL requires α+ and α− , which are determined the same way as αs ’s 
of scMSGL, i.e., they are set to values such that learned graphs have desired edge densi-
ties of d+ = d− = d . JGL-Fused requires two parameters �1 and �2 , which are analogous 
to the parameter of scMSGL, αs and βs , respectively. Therefore, they are set the same 
way, i.e. we choose �1 and �2 such that the learned graphs’ desired edge densities satisfy 
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d+ + d− = 2d1 and view similarity of c+ = c− = c . Finally, JGNsc consists of three steps: 
imputation, Gaussian transformation and GRN inference with JFL-Fused method. The 
hyperparameters of the first two steps are set to the default values provided in JGNsc 
toolbox and �1 and �2 of JGL-Fused step are set as described above.2 Exact hyperparam-
eter values of all methods are provided in Table 1 of Additional file 1.

For all datasets, we use c = 0.5 . For simulated data, since benchmarking GRN infer-
ence methods (GENIE3, GRNBOOST2 and PIDC) learn fully connected graphs, we set 
d = 0.4 for fair comparison. For real data, we set d = 0.1 for ease of analysis. See Addi-
tional file 1 for a discussion on the sensitivity of scMSGL to the selection of d and c.

Simulated data

Data generation: To validate the performance of scMSGL, we simulate gene expression 
data from a multivariate zero-inflated negative binomial (ZINB) distribution. The ZINB 
distribution has been shown to accurately capture the characteristics of single cell data-
sets in several published studies [36, 37]. Given a known graph structure, we generate 
synthetic datasets using an algorithm developed by [38] and illustrated in [22, 31]. Two 
graph structures are considered for creating the baseline graph G with n = 100 genes: 
random graphs following an Erdős-Rényi (ER) model with an edge density of 0.1 and 
hub graphs following a Barabási-Albert (BA) model with a degree distribution that fol-
lows the power-law. We then convert G to a signed graph by randomly selecting half of 
the edges and assigning a negative sign to them while assigning a positive sign to the 
other half. Next, we generate N = 5 individual networks {Gi}

N
i=1 by adding 

0.9×

(
n
2

)
× η new edges to the baseline graph G. Half of the added edges are set as 

negative edges, while the other half are set as positive. The ZINB simulator is then used 
to generate datasets {Xi}

N
i=1 from the underlying graphs {Gi}

N
i=1 . The three parameters of 

the ZINB distribution; � , k and ω , which control its mean, dispersion and degree of zero-
inflation, respectively were determined using a real scRNA-seq dataset [39]. Each simu-
lation is repeated 10 times and the average performance over 10 realizations is reported. 
More details for data generation process can be found in Additional file 1.

Sensitivity to the number of cells: We first study the performance of the methods with 
varying number of cells when the dropout ratio is set to 0.26, η = 0.1 , i.e. 90% of the 
edges are common across views and the correlation kernel is used for both scSGL and 
scMSGL. From left panel of Fig.  1, it can be seen that for the different cell numbers, 
scMSGL has higher AUPRC ratios than methods that learn from a single dataset. This 
indicates that the proposed method incorporates valuable information across views, 
which improves the performance. scMSGL also performs better than both joint graph 
learning methods JGL-Fused and JGNsc. Although JGNsc is based on JGL-Fused, its 
performance is worse than JGL-Fused. This could be due to a change in the data struc-
ture owing to multiple imputation and data transformation steps, which form a part 

1  JGL-Fused does not allow edge densities of the negative and positive parts of the learned graph to be controlled sepa-
rately, therefore we learned a graph with edge density equal to 2d, which is the same edge density for scMSGL if the edge 
signs are not considered.
2  JGNsc [21] recommends to use Akaike information criterion for selection of �1 and �2 . In our analysis, we found this 
selection technique does not perform well and its time complexity was high.
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of the JGNsc algorithm. As expected, the performance of all methods improves with 
increasing number of cells. These observations hold for both random graph models.

Sensitivity to dropout ratio: In the second analysis, we evaluate the performance of 
the different methods with increasing dropout ratio while fixing the number of cells 
to 400 and η = 0.1 . Results are shown in the middle panel of Fig. 1 for both random 
graph models, with correlation kernel used for scSGL and scMSGL. Similar to cell 
sensitivity analysis, scMSGL performs better compared to all other methods irrespec-
tive of which graph model is used to generate the datasets. Except for PIDC, AUPRC 
ratios of all methods drop with increasing dropout ratio as expected. Performance of 
PIDC mostly remains the same. Since PIDC performs poorly at all drop-out levels, 
this result does not imply robustness against dropouts.

Fig. 1  Performance of different methods on various datasets quantified by AUPRC ratio. All datasets have 
100 genes. Left panel reports the results for varying number of cells. Middle one reports the results for 
varying dropout ratios. Right panel report results for varying degrees of view similarities, which is measured 
by the percentage of common edges across views in the ground truth graphs. Top plot shows the results for 
Erdős-Rényi model and the bottom plot shows the results for Barabási-Albert model
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Sensitivity to view similarity: Next, we study the effect of view similarity on the per-
formance of algorithms. Datasets are generated with varying η values while fixing the 
number of cells to 400 and the dropout ratio to 0.26. Results are reported in right panel 
of Fig. 1, where the correlation kernel is employed for scSGL and scMSGL. When view 
similarity is 90%, the best performing algorithm is scMSGL, while for lower view simi-
larity values JGL-Fused performs slightly better than scMSGL. The reason that JGL-
Fused performs better than scMSGL for smaller view similarity values could be due to 
the difference in the regularization terms used to impose similarity across views. JGL-
Fused uses a ℓ1 norm penalty, while we employ a squared Frobenius norm. Compared 
to fused lasso, squared Frobenius norm is susceptible to outliers, which can degrade the 
performance. The performance of single-view algorithms does not get affected by the 
changes in view similarity, as they learn each view independently. On the other hand, 
there is a drop in the performances of all joint graph learning methods with decreasing 
view similarity. This is an expected behaviour, since both methods assume the depend-
ence of views.

Kernel comparison: Formulation of scMSGL allows us to use various kernels. There-
fore, we study how the performance changes with respect to the kernel type. Datasets 
are created using the BA model and results are shown in Fig. 2 for varying number of 
cells, dropout ratios and view similarities. The best performing kernel is τzi , followed by 
the correlation kernel. When Figs. 1 and 2 are compared, scMSGL has higher AUPRC 
ratios than single-view approaches and JGNsc irrespective of the kernel choice. The 
change in the performance of τzi and ρ with varying cell numbers, dropout ratios and 
view similarity are very similar to that of the correlation. Finally, to better understand 
the effect of kernels, the performance of scMSGL without any kernels, i.e. Ki = X

i
X
i⊤ , 

is also reported. Figure 2 shows all kernels have significantly higher performance com-
pared to when no kernel is used, which indicates the importance of kernel usage in GRN 
inference.

Time complexity comparison: We compare the different methods based on their run 
time complexity. We generated datasets using BA model with varying number of cells 
and number of genes. Table 1 reports the run time of scSGL, scMSGL, JGL-Fused and 

Fig. 2  Performance of scMSGL without any kernel (first row) and with different kernels on datasets generated 
from BA model and studied in Fig. 1
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JGNsc in seconds. Run times of GENIE3, GRNBOOST2 and PIDC are not reported as 
they are shown to have higher time complexity than scSGL in [31]. Reported run times 
correspond to one run without hyperparameter search. Run time of scSGL is the total 
run time to infer all views.

In the first dataset, number of genes, dropout ratio and η are fixed to 100, 0.26, and 0.1, 
respectively and number of cells varies. Results for this dataset indicate that scMSGL 
is faster than joint graph learning methods JGL-Fused and JGNsc. JGL-Fused also uses 
an ADMM based optimization, however it needs singular value decomposition at each 
ADMM iteration. scMSGL does not need this expensive operation; thus, it runs much 
faster than JGL-Fused. scSGL is faster than scMSGL, which is expected as scMSGL opti-
mization takes longer time to converge due to added regularization terms and consen-
sus graph learning. Finally, all methods except JGNsc are observed to run faster with 
increasing number of cells, since the inference problem becomes easier with higher 
number of cells, which makes iterative optimization procedure used by all methods con-
verge faster. JGNsc runs slower with increasing number of cells, as its imputation step 
needs to handle a larger data matrix.

In the second dataset with increasing number of genes, the number of cells, dropout 
ration and η are fixed to 500, 0.26, and η = 0.1 , respectively. As before, scMSGL is faster 
than joint graph learning methods and is slower than scSGL. Increasing the number of 
genes is observed to increase run time complexity of all methods, as it makes the prob-
lem harder.

Analysis of scRNA‑seq data from mouse embryonic stem cell differentiation

Central to the differentiation process and many other cellular processes is the expres-
sion of right combination of genes or modules of genes. Accurate characterization of the 
co-expression networks for progenitor and multiple cell types can help in understanding 
the cascade of cellular state transitions [12]. In this section, we study the differentiation 
process of mouse embryonic stem cells (mESC) using single cell RNA sequencing data-
sets [40]. This data was generated using high-throughput droplet-microfluidic approach 
and was primarily used to study differentiation in mESC before and after leukemia 
inhibitory factor (LIF) withdrawal. Since LIF maintains pluripotency of mESC, LIF with-
drawal is considered to initiate the differentiation process. The dataset contains cells 
sampled from 4 states (or natural subgroups): before LIF withdrawal, day 0 and after 
the withdrawal for days 2, 4 and 7. The subgroups contain 933, 303, 683 and 798 cells, 

Table 1  Run time of scMSGL and benchmarking methods in seconds with respect to number of 
cells and genes

All methods run on the same computing cluster with compute nodes that have similar compute power. Run times of JGL-
Fused and JGNsc for 500 genes are not reported, we were not able to run them in a reasonable time limit (4 h)

Number of cells Number of genes

Method 50 100 300 500 50 100 300 500

scSGL-r 1.10 0.54 0.35 0.38 0.15 0.37 5.88 26.68

JGL-Fused 175.64 117.65 95.95 98.03 10.02 95.98 1703.66 –

JGNsc 196.76 160.37 233.06 373.15 130.13 373.06 2541.45 –

scMSGL-r 14.00 12.39 10.00 8.51 0.35 3.89 110.49 304.71
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respectively. This dataset has been previously analyzed using joint graphical estimation 
in [17, 19] and similar to them we only consider the 72 stem cell markers in our applica-
tion [41].3

We first estimated the subgroup specific and the consensus graphs. Based on the 
results of simulated data, we employ the zero-inflated Kendall’s tau kernel. Next, we cal-
culate the signed node degrees of each gene, i.e., D+

ii =
∑n

j=1W
+
ij  and D−

ii =
∑n

j=1W
−
ij  

from learned graphs G+ and G− . We then consider the genes with top signed degrees as 
hub genes whose signed degrees are reported in Fig. 3. The result confirms the impor-
tance of regulator genes NANOG, SOX2, POU5F1, ZFP42, UTF1 in early stages of dif-
ferentiation. NANOG has been reported to maintain pluripotency by inhibiting genes 
that activate differentiation to lineages associated with extraembryonic endoderm [43, 
44]. Figure  3 clearly shows that the number of inhibitory relationships associated with 
NANOG decreases as the ES cells proceed to a matured state. POU5F1 and SOX2 
also exhibit higher number of inhibitory relationships in the the first few days. SOX2, 
NANOG and POU5F1 are known to play a fundamental role in the self-renewal and 
pluripotency of mouse embryonic stem cells [45]. Reduction in expression of NANOG 
has been shown to be correlated with the induction of gene GATA4 which initiates dif-
ferentiation of pluripotent cells [46] and therefore GATA4 has been correctly identified 
as a hub gene in Days 2 and 4. Collectively, these results confirm the fundamental roles 
of SOX2, NANOG and POU5F1 in the pluripotency stage and how an eventual reduc-
tion in their expression initiates differentiation.

Fig. 3  Genes with the highest node degrees. Orange and blue bars indicate that the degree is calculated 
using activating and inhibitory edges, respectively. Only genes whose activating or inhibitory degrees is 
among the top 15 genes in any view are shown

3  The dataset was downloaded from GEO database [42] (with ID GSE65525). For the preprocessing steps, please refer to 
“Data analysis” subsection of the “Experimental procedures” section in [40]. The only preprocessing we performed was 
log-transformation to make count data continuous.
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Analysis of scRNA‑seq data from medulloblastoma

Medulloblastoma (MB) is a highly malignant cerebellar tumor mostly affecting young 
children [47]. Several studies have been done to pinpoint the genetic drivers in each of 
the four distinct tumor subgroups: WNT-pathway-activated, SHH-pathway-activated, 
and the less-well-characterized Group 3 and Group 4 [47]. Among these subgroups, 
Group 3 and Group 4 tumors account for the majority of the MB diagnoses, with Group 
3 MB having a metastatic diagnosis of approximately 50% . Transcription factors (TFs) 
MYC2 and OTX2 have commonly been identified as key oncogenic TFs in Group 3 and 
4 tumorogenesis. Dong et al. [21] used the joint single cell network algorithm to study 
the roles of MYC and OTX2 utilizing the MB scRNA-seq data set (GSE119926) by [39].4 
Using the same selected samples from a subset of 17 individuals that were grouped into 
three subsets Group 3, Group 4 and an intermediate cell type, we estimate the joint gene 
regulatory network for the three groups for ∼ 750 genes among which most are enzyme-
related genes from mammalian metabolic enzyme database [48]. Bulk profiling studies 
for MB cells have consistently observed overlapping transcriptional and epigenetic sig-
natures in Group 3 and Group 4 tumors suggesting shared developmental origins [39, 
49]. Based on this, we hypothesize that a joint analysis of the different MB cell-types 
would better capture the local functional interactions of MYC and OTX2 across differ-
ent tumor subtypes and would eventually help in delineating their global role in regulat-
ing metabolic processes in MB cells.

Subgroup specific networks along with the consensus graph were estimated with zero-
inflated Kendall’s tau kernel. Table 2 shows that the average edge weight for the MYC 
network is considerably higher for Group 3 compared to Group 4 and the intermediate 
subgroup. Figure 4 further shows that Group 3 MYC network has stronger edge con-
nections and higher density in compared to the intermediate group. In Group 4, almost 
all the connections become activating except for Aldh3a2 and Eno2; which were found 
to be strongly downregulated in all the tumor subgroups confirming their role in can-
cer resistance [50, 51]. This varying network structure over the subgroups confirms the 
major role MYC plays in initiation, maintenance, and progression of Group 3 tumors 
[52]. In Fig. 4, it is shown that OTX2 has a denser network for Group 4 MB cells in com-
parison to the other groups. In Group 3 MB cells, OTX2’s connections to the metabolic 
genes are very distinct from the MYC’s. In addition, scMSGL detected relationships 
between OTX2 and metabolic genes PAICS and PPAT in Group 3 tumors. These genes 
related to the human purine biosynthesis pathways have been previously reported to be 
induced by MYC [53]. This confirms that OTX2 is functionally cooperating with MYC to 
regulate gene expression in medulloblastoma [52, 54]. Broadly these results suggest that 
MYC and OTX2 play significant roles in in the transcriptional regulation of the meta-
bolic genes and the mechanisms underlying MYC and OTX2 mediated MB maintenance 
and progression likely vary in different subgroups of MB cells.

4  A detailed overview of the MB scRNA-seq data generation and processing can be found in the “Methods” section of 
[39] under subsection “Human scRNA-seq data generation and processing”. We log-transformed the obtained datasets 
to make count data continuous.
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Conclusion
In this paper, we presented scMSGL for joint inference of multiple GRNs from 
scRNA-seq datasets having multiple classes. scMSGL learns functional relationships 
between genes across multiple related classes of single cell gene expression datasets 
under the assumption that there exists a shared structure across classes. The main 
novelty of our paper lies in the formulation of a highly efficient optimization frame-
work that extends the signed graph learning [31] approach to high dimensional data-
sets with multiple classes. The kernelization trick embedded within the algorithm 
renders it capable of handling sparse and noisy features; expected to demonstrate 
highly non-linear relationships. Furthermore, the estimation of the consensus graph 
may help in understanding the joint structure existing within the multiple classes. 
Using simulation studies, we demonstrated the superior performance of scMSGL over 
single view learning and existing joint learning methods for ER and BA graph models. 
In addition, performance was ascertained by varying a number of simulation param-
eters such as dropout levels, cell numbers and view similarity and scMSGL demon-
strated superior performance in all scenarios. Applying scMSGL to the mESC dataset, 
we robustly identified previously reported regulatory markers as the hub genes for the 

Fig. 4  Connections of MYC (top) and OTX2 (bottom) genes. Edge widths are proportional to connection 
weights. Orange and blue edge colors indicate that the connection is activating and inhibitory, respectively. 
Only the top one third of the connections in all views of the multiview graph are shown

Table 2  Node degree of MYC in learned graphs

Group 3 Intermediate Group 4

Total degree 5.436 3.334 4.180

Avg. edge weight 0.077 0.037 0.039
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different days and captured the progression of the differentiation process by analyz-
ing these changes in hubs over the days. For the medulloblastoma data, scMSGL effi-
ciently captured the significant roles that key oncology markers MYC and OTX2 play 
in the transcriptional regulation of metabolic genes.

There are various aspects of the proposed method that can be considered for 
improvement as future work. One challenge in implementing scMSGL is how to 
select the kernel function. This challenge can be addressed by combining information 
from multiple kernels during learning. An open problem in graph learning literature 
is hyperparameter selection, which is also a limitation of the proposed method. Cur-
rent work selects the hyperparameters by searching the values that would result in 
graphs with desired properties. Future work can improve the accuracy of the learned 
graphs through better hyperparameter selection and multi-kernel strategies. Compu-
tational complexity of scMSGL is quadratic with respect to the number of genes (sim-
ilar to scSGL) and linear in number of views. Therefore, its application to datasets 
with very large number of genes is not feasible. However, recent developments in GSP 
to scale GL to large-scale problems [55] can be exploited to scale scMSGL. Finally, 
additional sources of data that help in identifying direct interactions between TFs and 
target genes, can provide a way to filter out false positives. The current availability of 
single-cell epigenomic datasets has made it easier to further explore the regulatory 
relationship between TF and genes. Single-cell assay for transposase-accessible chro-
matin with sequencing (scATAC-seq), for example, allows the identification of DNA 
regulatory elements within accessible genomic DNA regions in single cells, hence 
enabling the identification of direct regulations in GRNs. Integration of multiomics 
profiles within the framework of scMSGL could be an interesting avenue for future 
research.
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