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Abstract 

Background:  The human microbiome plays a critical role in maintaining human 
health. Due to the recent advances in high-throughput sequencing technologies, 
the microbiome profiles present in the human body have become publicly avail-
able. Hence, many works have been done to analyze human microbiome profiles. 
These works have identified that different microbiome profiles are present in healthy 
and sick individuals for different diseases. Recently, several computational methods 
have utilized the microbiome profiles to automatically diagnose and classify the host 
phenotype.

Results:  In this work, a novel deep learning framework based on boosting Graph-
SAGE is proposed for automatic prediction of diseases from metagenomic data. The 
proposed framework has two main components, (a). Metagenomic Disease graph 
(MD-graph) construction module, (b). Disease prediction Network (DP-Net) module. 
The graph construction module constructs a graph by considering each metagenomic 
sample as a node in the graph. The graph captures the relationship between the sam-
ples using a proximity measure. The DP-Net consists of a boosting GraphSAGE model 
which predicts the status of a sample as sick or healthy. The effectiveness of the pro-
posed method is verified using real and synthetic datasets corresponding to diseases 
like inflammatory bowel disease and colorectal cancer. The proposed model achieved 
a highest AUC of 93%, Accuracy of 95%, F1-score of 95%, AUPRC of 95% for the real 
inflammatory bowel disease dataset and a best AUC of 90%, Accuracy of 91%, F1-score 
of 87% and AUPRC of 93% for the real colorectal cancer dataset.

Conclusion:  The proposed framework outperforms other machine learning and deep 
learning models in terms of classification accuracy, AUC, F1-score and AUPRC 
for both synthetic and real metagenomic data.
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Background
The human body is the habitat for trillions of diverse and complex microbes (microbiota 
or microbiome). These microbes reside in various body sites (skin, gut, ear, mouth, nose, 
stool etc.) and play a vital role in (a) shaping and controlling human health, (b) develop-
ing the human immune system and (c) affecting human metabolism [1]. The most abun-
dant and the largely studied microbes are found in the human gut. Research works have 
found that the dysbiosis of the human gut microbiome can cause many host diseases 
like inflammatory bowel disease (IBD), colorectal cancer (CRC), obesity, diabetes, and 
liver cirrhosis [2]. Recently, due to the emergence of various next generation sequencing 
techniques, huge amounts of human microbiome sequence data are available. This in 
turn has become the motivation for developing computational methods to identify the 
relationships between bacterial composition and functions with the diseases.

The microbiome sequence data is used to characterize the microbiome profiles for a 
deeper analysis. Many tools such as QIIME [3], MetaPhlAn [4] are available for taxon-
omy profiling of the human microbiome sequence data. These tools provide the relative 
abundance of each taxonomic group or the operational taxonomic units (OTUs) present 
in the microbiome sequence data. Thus, a sample in the human microbiome metagen-
omic dataset is described by the abundance of the OTUs. This abundance of the differ-
ent taxa of microbiomes are used as meaningful indicators for the disease status of each 
host sample [5].

Due to the availability of vast amounts of human metagenomic data, machine learn-
ing (ML) and deep learning (DL) techniques are being used to analyze and identify the 
relationships between different microbes and the relationship between microbes and 
host diseases. Recently, many works have been published in automatic disease predic-
tion using human gut microbiome metagenomic data with ML and DL techniques [6–
10]. These works essentially used ML algorithms like support vector machine (SVM), 
random forest (RF), deep forest (DF), extreme gradient boosting (XGB), multilayer per-
ceptron (MLP), and DL methods like convolutional neural network (CNN) and autoen-
coders. The ML and DL methods have achieved relatively moderate results as they suffer 
due to high dimension of the metagenomic datasets. Thus, there is still room for improv-
ing the classification performance of these models.

Researchers have always tried to improve and optimize classification models to achieve 
better accuracy. Ensemble learning is a widely used technique to improve the classifica-
tion accuracy [11]. It could also help with metagenomic datasets where a single classifier 
model might not obtain superior performance due to the huge dimension of the data-
sets. It aggregates two or more base classifiers to improve the predictive performance of 
the combined classifier. Thus, it overcomes the weakness of a single weak base classifier.

Though several ML and DL models are used for metagenomic disease prediction, it 
could be noted that the graph neural network (GNN) models such as Graph SAmple 
and aggreGatE (GraphSAGE) [12] and graph convolutional network (GCN) [13] have 
not been applied for this purpose. One possible reason might be that the metagenomic 
data lack the inherent graph structure, as GNNs require graph structured data as input. 
The previous works on metagenomic disease classification using ML and DL methods 
have used the abundance of the OTUs present in the human microbiome metagenomic 
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sample as the features for the disease prediction problem. However, these works have 
failed to model the relationship between the samples in the dataset for disease classifica-
tion purpose in the form of a graph.

Inspired by ensemble learning and GCNs, this work proposes a novel framework for 
automatic metagenomic disease prediction. The proposed framework involves three 
steps. Firstly, the distance matrix is calculated from the OTU table. Secondly, a metagen-
omic disease graph (MD-graph) is constructed using the distance matrix. The MD-graph 
models the samples as the nodes. The edges between the graph nodes are constructed 
based on the assumption that similar samples exhibit similar features. Finally, the Dis-
ease prediction Network (DP-Net) module is constructed with ensemble of GraphSAGE 
models. The DP-Net is used to predict the sample phenotype.

All things considered, the proposed framework put forward the following 
contributions. 

(a)	 An ensemble model based on GraphSAGE for disease prediction using human gut 
microbiome metagenomic data.

(b)	 A novel graph construction method to construct the MD-graph from the gut 
microbiome metagenomic data.

(c)	 The efficiency of the proposed framework is studied by applying it to two different 
real disease datasets like IBD, and CRC. Also the model’s performance is assessed 
using synthetic datasets.

Related work

This section aims to review the works done in disease prediction with human gut 
metagenomic data using ML and DL methods. The study done in [10] performed a com-
prehensive study by applying classical ML methods like SVM and RF for disease predic-
tion to six metagenomic datasets spanning five diseases (type 2 diabetes (T2D), obesity, 
liver cirrhosis, CRC and IBD).

Subsequent to this, the work conducted in [14] analyzed various ML algorithms like 
SVM, RF, XGB, DF and an autoencoder pre-trained deep neural network (AutoNN) for 
disease prediction from metagenomic data. The work applied the ML and DL algorithms 
to six disease datasets to predict the sample status as healthy or sick. The authors used 
two features such as k-mer abundances and OTU abundances.

An automated software called MetaDP was developed by the study of [15] to per-
form data analysis of amplicon-sequenced metagenomic data for disease classification. 
The disease addressed in this work was intestinal bowel syndrome (IBS), and SVM was 
used as the classifier. In a similar work in [16], an ML framework called MicroPheno 
was proposed to classify host phenotypes as healthy or disease using metagenomic data. 
The Micropheno framework predicted Crohn’s disease using SVM and RF classifiers. In 
[17], SVM and MLP were used for classifying a given metagenomic sample into IBD or 
healthy class. The work combined two types of features such as the OTU abundances 
and gene group abundance and finally developed a hybrid classifier.
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In [18], a DL model called metaNN was proposed to classify the host phenotype into 
IBD or healthy with an IBD dataset. This work used two neural networks (NN) models 
like MLP and a CNN, along with sample augmentation using statistical methods and 
microbe abundance profiles. The authors observed that data augmentation improved the 
classification performance of both ML and DL models. Also, results indicated that DL 
models are better than ML models as they perform automatic feature engineering.

In [19] a new method called met2Img was proposed to represent metagenomic data 
as images. The authors used T-distributed Stochastic Neighbor (t-SNE) embeddings for 
generating synthetic images from abundance data. Then, a CNN was used to classify 
five diseases. By converting each sample feature as images, the CNN could efficiently 
retrieve the patterns present in the sample. In another work by the same authors [20], a 
CNN was used for classifying samples from a CRC dataset from different cohorts such 
as Chinese, Austrian, American, German, and French into sick or healthy samples. A 
NN model called TaxoNN was proposed in [21], which utilized an ensemble of CNNs 
for disease prediction. TaxoNN applied the model on two disease datasets such as T2D 
and cirrhosis. The model incorporated a stratified approach to group the entire OTUs 
into phylum clusters, and different CNNs were trained within each cluster. Finally, the 
features obtained from each cluster were concatenated, which improved the classifica-
tion accuracy of TaxoNN.

A CNN based model proposed in [9] implemented a new layer called phylo-conv layer 
to discriminate the subclasses of IBD. Patristic distance was used to find neighbors of 
taxa from the phylogenetic tree. Then, the phylogenetic tree OTUs were embedded in 
a euclidean space using multi-dimensional scaling. CNN was used to apply convolution 
over k nearest neighbors of the OTUs in the dataset. The proposed CNN reported prom-
ising results when compared with state-of-the-art ML algorithms. Another recent study 
by [8] proposed a model called pophy-cnn, which was built using a CNN to predict the 
host phenotype of sample from four different disease datasets. The biological informa-
tion of taxa present in a sample is obtained from the phylogenetic tree. This informa-
tion and the relative abundance value were embedded in a 2-dimensional matrix. Then, 
a 2-dimensional CNN was used for classification. The authors claimed that their model 
got significant improvement in performance when applied on nine disease datasets.

Table  1 presents a summary of the review done on the disease classification in 
metagenomic data. According to the literature, many works have used both ML and DL 
methods. Most of the works used CNN as the DL method for classifying metagenomic 
samples. There are few works which used GCN and variational auto encoders (VAE) for 
feature extraction and reduction from genomic data [22–25]. However, to the best of our 
knowledge, we observed that GNNs, such as GraphSAGE, have not been widely applied 
in the area of microbiome analysis to predict diseases. Moreover, none of the existing 
works have converted the OTU data into a graph and utilized the success rate of Graph-
SAGE in node classification.

In this work, the metagenomic data is converted to a graph called MD-graph using a 
novel graph construction method and a boosting GraphSAGE is used to predict the class 
label of samples in the dataset.
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Methods
Disease prediction from metagenomic samples is the task of predicting if a given sample 
is healthy or sick based on the microbiome profile. The architecture of the proposed dis-
ease prediction framework is illustrated in Fig. 1. Given metagenomic samples, the aim 

Table 1  Summary of work done on disease classification in metagenomics data using ML/DL 
methods

Reference ML/DL approach(es) 
used

Diseases considered Input features Remarks/observations

[10] SVM, RF T2D, CRC, cirrhosis, IBD, 
obesity

OTU abundance RF with feature selection 
outperformed basic RF 
and SVM classifiers with 
best AUC of 74%, 88.1%, 
94.6%, 89.3%, 65.6% with 
T2D, CRC, cirrhosis, IBD, 
and obesity datasets 
respectively.

[14] SVM, RF, XGB, DF, 
AutoNN

T2D, CRC, cirrhosis, IBD, 
obesity

OTU abundance, k-mer 
frequency

The proposed AutoNN 
model achieved the best 
accuracy of 66.3% using 
OTU feature on T2D 
dataset.

[15] SVM IBS OTU abundance The software package 
called metaDP can be 
used for classifying other 
disease samples.

[16] SVM, RF Crohn’s disease k-mer frequency The best F1-score of 
76% was achieved by 
RF classifier with k-mer 
feature.

[17] SVM, MLP IBD OTU abundance gene 
group abundance

The proposed hybrid 
classifier achieved an 
AUC of 80%

[18] MLP, CNN IBD OTU abundance The model achieved the 
best AUC of 89% with 
MLP by using data aug-
mentation technique.

[19] CNN T2D, IBD, cirrhosis, CRC, 
obesity

OTU abundance The model achieved 
the best accuracy of 
84.2% and 66.3% for IBD 
and obesity datasets 
respectively.

[20] CNN CRC​ OTU abundance The model achieved the 
best AUC of 75.7% with 
CNN .

[21] CNN T2D, cirrhosis. OTU abundance The ensemble CNN 
achieved 76.2% AUC on 
T2D dataset and 91.1% 
on cirrhosis dataset

[9] CNN IBD OTU abundance The model ph-CNN 
achieved the best 
Matthews Correlation 
Coefficient (MCC) of 92%

[8] CNN IBD, T2D, obesity, cir-
rhosis

OTU abundance, phy-
logenetic relationship

The model PopPhy-
CNN achieved the best 
F1-score of 58.7% for 
Obesity dataset.
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of this framework is to learn the mapping between the human gut metagenomic samples 
and their labels using a boosting GraphSAGE and later use this knowledge to predict if 
a given metagenomic sample is healthy or sick. The framework consists of three stages, 
such as computation of the distance matrix, construction of the MD-graph and the label 
prediction using the DP-Net. The following sections define the problem and explain 
each stage of the proposed framework.

The input dataset

The dataset in the form of an OTU table, along with the class labels, is given as input 
to the framework. For each sample in the dataset, the OTU table captures the species 
level relative abundance profiles (OTUs). The OTUs are considered as the features 
of a sample. Let N be the total number of samples in a dataset. Then, the set of sam-
ples in a dataset is denoted as {s1, s2, . . . , sN } . A sample si in a dataset be denoted as 
si = (fi, yi) where f i is the feature vector of si and yi is the class label of si . The feature 
vector f i of a sample si is of length f (i.e.) each sample contains a f-dimensional feature 
vector. Let the feature vector f i of a sample si be [fi1, fi2, . . . , fif ] . Thus, the datasets are 
of dimension N × f  matrix. In this work, the proposed framework is evaluated using 
both real and synthetic datasets.

Fig. 1  Architecture of the proposed framework
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Real datasets

Human gut metagenomic datasets of two different diseases, such as IBD [26] and 
CRC [27] are used. The IBD dataset contains 1359 samples and 1025 features. Out 
of the total samples, 336 are sick and 1023 are healthy. The CRC dataset contains 229 
sick and 261 healthy samples with 319 features. The IBD dataset is affected by class 
imbalance. These are publicly available real datasets and are obtained using amplicon 
sequencing technique and contain the species level relative abundance.

Synthetic datasets

This work uses the technique implemented by [18] for generating synthetic data. 
It has been observed that the best fit to the OTU table obtained from amplicon 
sequence data is the negative binomial (NB) distribution [28]. Hence, in order to gen-
erate a synthetic dataset, a NB distribution is fitted for each class in the real dataset. 
The generated synthetic IBD data also follow the data imbalance in the real data. A 
detailed description of the datasets is given in Table 2.

Distance matrix computation

The next step in the proposed framework is the construction of the distance (dissimi-
larity) matrix. The distance matrix D is a N × N  matrix that captures the dissimilarity 
between the samples of the OTU table. The dissimilarity between the samples is based 
upon the feature values of the samples. Higher the dissimilarity between the samples, 
higher the dissimilarity value between them in the dissimilarity matrix and vice versa. 
An entry Dij in the distance matrix corresponds to the distance between samples si and 
sj in the OTU table. Since the distance between a sample and itself is 0, the diagonal ele-
ments of the distance matrix are 0. A row of the distance matrix di is a distance vector 
of sample si and is of length N (i.e.) di = [di1, di2, . . . , diN ] . Each element of the vector 
represents the distance of the sample si to every other sample sj in the OTU table where 
j = 1, 2, . . . ,N  . In this work, the Cosine dissimilarity and the Manhattan dissimilarity 
metrics were used to compute the distance between the samples of the IBD and CRC 
datasets respectively. The choice of the dissimilarity metric used in this work for the 
datasets is found experimentally.

Table 2  Description of the datasets used

Disease Number of sick 
samples

Number of healthy 
samples

Number of features Reference

Real dataset

IBD 336 1023 1025 [26]

CRC​ 229 261 319 [27]

Synthetic dataset

IBD_synthetic 3024 9207 1025

CRC_synthetic 1145 1305 319
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Distance threshold computation

A distance threshold t is used in this work to determine if two graph nodes are neigh-
bors. The distance threshold defines the maximum value for the distance between two 
graph nodes to become neighbors (i.e.) if the distance between two MD-graph nodes 
is less than or equal to the threshold t then, they are neighbors otherwise they are not 
neighbors. In this work, to begin with, we use the median of the values (m) of the dis-
tance matrix as the threshold value t. The reason behind selecting the median value as 
the threshold is that the median of a set of values mark the middle value. Moreover, 
choosing the median value resulted in inclusion of reasonable amount of neighbors (that 
is less than the maximum number of neighbors for a graph node) for all the graph nodes 
for all the datasets. If we do not use a distance threshold, then every graph node is con-
sidered as the neighbor of every other graph node. In that case, the resulting MD-graph 
would be too dense. The graph may also capture unnecessary relationships between 
nodes.

Neighbor threshold computation

The neighbor threshold τ denotes the maximum number of neighbors for each MD-
graph node. It is used in this work in order to eliminate the problem of standalone graph 
nodes and graph nodes with high degree. Standalone graph nodes are those graph nodes 
that do not have any neighbors. This situation may arise when a graph node’s distance 
with all its neighbors is greater than the distance threshold. Graph nodes with high 
degree are those graph nodes having too many neighbors. This situation may arise when 
a graph node’s distance with all its neighbors is lesser than the distance threshold. For a 
given metagenomic disease dataset, the maximum number of neighbors of each MD-
graph node τ is fixed as some percentage of the total number of samples in a dataset 
(Perc_val) and is given by Eq. 1. Hence, this value will vary from dataset to dataset. The 
optimal value of τ for each dataset is determined experimentally by varying the Perc_val 
parameter.

While setting the value for τ for a dataset, the data imbalance problem is also considered. 
Imbalanced datasets are those datasets where the frequency of some class labels in the 
dataset is very less. For an imbalanced dataset, two neighbor thresholds τsick and τhealthy 
are used. For a balanced dataset, a single neighbor threshold τ is used. This is necessary 
to avoid unwanted edges between a sick node and a healthy node. Let τsick denote the 
number of neighbors of a sick node and is fixed as some percentage of the total number 
of sick samples in the imbalanced dataset (Perc_val) and is given by Eq.  2. Let τhealthy 
denote the number of neighbors of a healthy node and is fixed as some percentage of 
the total number of healthy samples in the imbalanced dataset (Perc_val) and is given 
by Eq. 3. The optimal value of τsick and τhealthy for the imbalanced datasets is also deter-
mined experimentally. Since, the IBD dataset exhibit class imbalance problem, in this 
work, we use two separate neighbor thresholds for this dataset.

(1)τ =
Perc_val ∗ No. of samples in the dataset

100
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Metagenomic disease graph (MD‑graph) construction

After obtaining the distance matrix, the next step is to construct the MD-graph 
for a dataset. This is a challenging task because unlike the previous work where the 
GNNs have been applied on datasets with inherent graph structure, this work aims 
to apply GraphSAGE to metagenomic disease datasets that lack graph structure. The 
graph structure is imposed to the raw OTU table as follows: The samples in a data-
set {s1, s2, . . . , sN } are assumed to be the nodes {v1, v2, . . . , vN } of the MD-graph G. The 
distance matrix D is used to construct the edges between the MD-graph nodes. The 
assumption is that similar graph nodes exhibit similar features and hence will belong 
to the same class (healthy/sick). Hence, in the MD-graph G an edge is present between 
similar graph nodes vi and vj . Once the dataset is modeled as a MD-graph, the adja-
cency matrix A is obtained from it. In this work, the MD-graph is an unweighted, undi-
rected graph with N nodes. The steps in the MD-Graph construction are detailed in the 
following subsections.

Edge construction

The distance matrix D, the neighbor threshold τ , τsick and τhealthy , the distance threshold 
t and an empty adjacency matrix A of size N × N  are given as the input to the MD-
graph construction algorithm. The algorithm inserts edges between a graph node vi and 
its neighbors as follows:

Let τi denote the current maximum number of neighbors of a graph node vi and is 
initially set to 0. The initial value of t is set to ′m′ , where m is the median of values in the 
distance matrix of the corresponding dataset. The distance vector of the node vi is sorted. 
Let d

′

i denote the sorted distance vector of graph node vi (i.e) d
′

i = [d
′

i1, d
′

i2, . . . , d
′

iN ] . 
Every element of the sorted distance vector is then compared with the distance thresh-
old t. An edge is drawn between graph nodes vi and vj iff the distance between a graph 
node vi and its neighbor vj denoted as d

′

ij is less than or equal to the distance threshold t 
and the current maximum number of neighbors of the node is less than or equal to τ and 
is given by Eq. 4.

The value of τi is incremented by 1 as soon as an edge is inserted between a graph node 
and its neighbor. This procedure is repeated for all the graph nodes.

(2)τsick =
Perc_val ∗ No. of sick samples in the dataset

100

(3)τhealthy =
Perc_val ∗ No. of healthy samples in the dataset

100

(4)Aij =
1, if (d

′

ij ≤ t) ∩ (τi ≤ τ )

0, otherwise
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The above procedure can be applied to graph nodes of imbalanced dataset. However 
the condition to insert an edge is given by Eqs. 5 and 6 for sick and healthy graph nodes 
respectively.

Algorithm  1 shows the edge construction process for both balanced and imbalanced 
datasets.

Edge refinement

We observe that the above edge construction procedure at times result in a MD-graph 
where few graph nodes have less than the specified number of neighbors (sparse nodes). 
In some cases we also observed few standalone nodes in the MD-graph. The edge refine-
ment step is used to handle standalone and sparse graph nodes.

Let S denote the set of all standalone and sparse graph nodes obtained after the edge 
construction process. In order to ensure that every node v ∈ S has the specified number 
of neighbors, we gradually increase the threshold value t in steps and invoke the edge 
construction process on the graph node v until it acquires 

(a)	 τ neighbors if the dataset is balanced (or)
(b)	 τsick neighbors if the dataset is imbalanced and v is a sick graph node (or)
(c)	 τhealthy neighbors if the dataset is imbalanced and v is a healthy graph node

At every step, the t value is incremented by δ as given by Eq. 7.

where, δ = (maxval −m)/5 where, maxval is the maximum value of the distance matrix 
and m is the median of the distance matrix values.

Adding the feature vectors to MD‑graph nodes

After the edge refinement step we obtain the MD-graph. For the purpose of Graph-
SAGE, the graph nodes are assumed to contain features. In this work, the OTU feature 
vector f i of a sample si in the dataset is considered as the feature vector of the corre-
sponding MD-graph node vi . Similarly, the label yi of a sample si in the dataset is consid-
ered the label of the MD-graph node vi . The feature vectors of all graph nodes constitute 
the initial feature matrix F0 ∈ R

N×f  of the MD-graph.
The algorithm for the edge refinement and adding the feature vectors to MD-graph 

nodes is illustrated in Algorithm 2.

(5)Aij =

{

1, if (d
′

ij ≤ t) ∩ (τi ≤ τsick)

0, otherwise

(6)Aij =

{

1, if (d
′

ij ≤ t) ∩ (τi ≤ τhealthy)

0, otherwise

(7)t = t + δ
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Disease prediction network (DP‑Net)

GraphSAGE

The GraphSAGE model utilizes the inherent structure of the graph structured data to 
generate feature representations of graph nodes. The node feature representations are 
helpful for prediction and graph analysis tasks. GraphSAGE uses an inductive approach, 
where the model discovers rules from the train samples, which are then applied to the 
test samples. Also, GraphSAGE has two improvements to the original GCN. Firstly, 
unlike the full graph training used in GCN, GraphSAGE uses a small batch training 
method by sampling the neighbors of a graph node. Secondly, the algorithm imple-
ments different aggregator functions for aggregating the features of the neighbors. Thus, 
GraphSAGE generates feature representation for each node by sampling and aggregating 
the features of nodes in its neighborhood. This is based on the idea that nodes in the 
same neighborhood should have similar features.

A GraphSAGE model is made up of several graph convolution layers. A graph con-
volution layer k ∈ {1, 2, · · K } , where, K is the total number of graph convolution layers 
in the GraphSAGE model. Each graph convolution layer has a set of parameters like 
a sample number ( Sk ), a neighborhood value (k), a weight matrix ( Wk ), and a non-
linear function ( σ ). The sample number denotes the number of neighbor nodes to be 
considered while generating node feature representations. The neighborhood value 
depends upon the number of the graph convolution layer. For the first graph convolu-
tion layer, the neighborhood value is 1. For the second graph convolution layer, the 
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neighborhood value is 2, and so on. Finally, for the last graph convolution layer, the 
neighborhood value is K.

The GraphSAGE algorithm operates on a graph G where each node in G is asso-
ciated with a feature vector f  . It involves both forward and backward propagation. 
During forward propagation, the information relating to a node’s local neighborhood 
is collected and used to compute the node’s feature representation.

The forward propagation iterates over the search depth K. At each graph convolu-
tion layer k ∈ {1, 2, · · K } the following steps are done for all the graph nodes. 

(a)	 Choose a target node, v ∈ V  , where V is the set of all nodes in the graph. Sample 
the neighborhood of the target node using the sample number and the neighbor-
hood value of the graph convolution layer. This will result in a sampled neighbor-
hood N(v). Then, aggregate the features of all the nodes in the sampled neighbor-
hood using a differentiable aggregator function AGGRk to form the aggregated 
neighborhood representation hkN (v) , of node v. This is denoted by Eq. 8. 

 where u is one of the nodes from the sampled neighborhood of node v and hk−1
u  

represents the previous layer feature representation of node u. In this work, the 
Mean aggregator function is used to aggregate information from neighborhood 
nodes. The mean aggregator takes the elementwise mean of the vectors in a nodes 
sampled neighborhood. Figure  2 illustrates the sampling and the aggregation of 
node features by GraphSAGE model.

(b)	 Concatenate the previous layer representation of the target node hk−1
v  with the 

aggregated neighborhood representation. Apply the linear transformation to the 
concatenated representation using a weight matrix Wk associated with the layer. 
Pass the linear transformed representation to a nonlinear activation function σ to 

(8)hkN (v) = AGGRk

({

hk−1
u , ∀u ∈ N (v)

})

Fig. 2  Architecture of the GraphSAGE model: The left side of the figure is a simple graph structured data 
and the right side of the figure shows the aggregation process of the target node. This architecture shows a 
two-layer GraphSAGE with a sample number of 3
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obtain the new feature representation of the target node ( hkv ). The operations done 
at this step is given by Eq. 9. 

(c)	 Normalize the node representation to prevent gradient explosion. This is given by 
Eq. 10. 

where 
∥

∥hkv
∥

∥

2
 is the vector norm of the target node feature representation.

At the end of the forward propagation, the feature representations of the nodes are 
passed through a softmax layer which predicts the class labels for the nodes. The loss 
function computes the error using the predicted labels and actual labels. During the 
backward propagation, the gradient descent algorithm is used to optimize the weight 
matrix and the parameters in the aggregation function.

Boosting GraphSAGE

The DP-Net comprises of a boosting GraphSAGE model. The boosting GraphSAGE 
model uses multiple GraphSAGE models as the base estimators and the AdaBoost [29] 
algorithm to perform semi-supervised node classification.

It comprises of two phases: Initialization phase and Iterative phase. During the ini-
tialization phase the original dataset X is split into a train set Xtrain , test set Xtest and a 
validation set Xval in the ratio of 70:15:15. Initially, the weight ( wi ) of a sample ( si ) in the 
train set is assigned as 1N  , where i = 1, 2, · · · ,N  and N is the total number of samples 
in the train set. The iterative phase comprises of M boosting rounds. At each boosting 
round, bootstrap samples of size N are drawn from the train set. These samples are used 
to train the base GraphSAGE at that round. Once the base GraphSAGE at a boosting 
round is learned, the train set is supplied as input to the model, which predicts the class 
labels of all the samples in the train set. The predictions are used to calculate the error 
rate and the importance of the base GraphSAGE. It should be noted that if the error rate 
is high then, the importance of the base GraphSAGE is low and vice versa. The impor-
tance of the base GraphSAGE is then used to update the weights of the samples in the 
train set for the next boosting round. Thus, the boosting GraphSAGE model works by 
assigning adaptive weights to each sample in the train set (i.e) the weights of the samples 
are changed at each boosting round. The sample weights also play an essential role in 
drawing the bootstrap samples (i.e.) the higher the weight of a sample, the higher the 
probability of the sample being included in the bootstrap. Formally, the steps in boosting 
GraphSAGE algorithm can be explained as follows

Initialization phase

(a)	 The entire dataset is split into train and test set, where the train set is used to train 
the M base GraphSAGEs in the boosting GraphSAGE model sequentially.

(b)	 The weight vector w is initialized as wi =
1
N ∀i = 1, 2, · · · ,N

(9)hkv = σ

(

Wk · CONCAT
(

hk−1
v , hkN (v)

))

(10)hkv =
hkv

∥

∥hkv
∥

∥

2

, ∀v ∈ V
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Iterative phase

For each base GraphSAGE m ∈ {1, 2, · ·M}

(a)	 Draw bootstrap sample Xm of size N from Xtrain.
(b)	 Train the base GraphSAGE using Xm.
(c)	 Predict the class labels of all the samples in Xtrain using the base GraphSAGE.
(d)	 Calculate the error ǫ . The error is the sum of the weights of each of the misclassified 

samples in Xtrain by the current base GraphSAGE. The error of the base Graph-
SAGE ǫm is computed using Eq. 11. 

 where the wm
i  is the weight of sample si at iteration m, I(.) is the indicator function 

which returns 1 if the sample si is misclassified; otherwise it returns 0.
(e)	 If ǫm exceeds 0.5, discard the current base GraphSAGE and go to step (a) of Itera-

tive phase.
(f )	 Calculate the weight αm of the base GraphSAGE according to Eq. 12. 

(g)	 Update the weights of the samples in Xtrain using Eqs. 13 and 14

(h)	 Normalize the weights of all the samples.

The trained boosting GraphSAGE can be used to predict the category of a test sample 
( xtest ). The prediction depends on the weighted majority voting and is given by Eq. 15.

where H is the final strong boosting GraphSAGE classifier, H(xtest) is the prediction 
made by H for the test sample, hm is the trained base GraphSAGE model at boosting 
round m and hm(xtest) is the prediction made by hm for the test sample. According to the 
Eq. 15 the prediction of every base GraphSAGE weighted by its importance is summed 
up. The sign of the sum determines the final class label of the test sample. Figure 3 shows 
the schematic representation of boosting GraphSAGE

Experimental setup
This section presents the implementation details, the experiments conducted, the 
parameter settings and the evaluation metrics.

(11)ǫm =

∑N
i=1 w

m
i I(.)

∑N
i=1 w

m
i

(12)αm =
1

2
ln
1− ǫm

ǫm

(13)wm+1
i = wm

i · eαm , ∀i = 1, 2, · · · ,N

(14)wm+1
i = wm

i · e−αm , ∀i = 1, 2, · · · ,N

(15)H(xtest) = sign

(

M
∑

m=1

αmhm(xtest)

)
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Implementation details

The proposed framework is written in Python3 programming language using Anaconda-
Spyder environment. The libraries used in this work are Keras in TensorFlow version 
2.9.2, Sklearn version 1.0.2, Pytorch version 1.13. The code is executed on an Ubuntu 
machine with 16 GB RAM, Intel i7 processor and a dedicated 4 GB NVIDIA GEFORCE.

Experiments

The proposed boosting GraphSAGE model is learned using semi-supervised train-
ing. During training, the node representations for the train nodes are generated by the 
model. Also, the parameters and the aggregator functions are learned by the model. The 
model validation is done with the validation data. At the time of testing, the model uses 
the learned parameters and aggregator functions for generating the embeddings for test 
nodes. These embeddings are used by the model to predict the test node labels. In order 
to comprehensively investigate the effectiveness of the proposed model, the following 
experiments are conducted on all the datasets: 

(a)	 Comparison of the proposed model with other ML, DL and ensemble models. The 
models used for comparison are as follows:

•	 ML models: SVM [30], MLP [31]
•	 Ensemble ML models: RF [32], DF [33], XGB [34]
•	 GNN models: single GCN [13], single GraphSAGE

Fig. 3  Architecture of boosting GraphSAGE: The top part of the figure illustrates the training phase where 
the base GraphSAGEs are learned. The bottom part of the figure illustrates the testing phase where the 
predictions of the individual trained base GraphSAGEs are combined together using weighted majority 
voting to produce the final prediction by the ensemble
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•	 Ensemble GNN models: Bagging GCN, Boosting GCN, Bagging GraphSAGE, 
Boosting GraphSAGE

	  Boosting GCN uses multiple base GCN models and the same adaptive boost-
ing technique used by the boosting GraphSAGE model to train base GCN 
models. Bagging GCN and Bagging GraphSAGE use the bagging technique [35] 
to ensemble base GCN and GraphSAGE models respectively.

(b)	 Comparison of the proposed framework with previous work done on the datasets.

Parameter settings

This section explains how the values of certain parameters of the various models 
experimented in this work are fixed.

Identifying the optimum number of neighbors and the best dissimilarity measure for each 

dataset

The best dissimilarity measure for constructing the edges between the nodes in the 
MD-graph is selected by conducting experiments using one base GraphSAGE model. 
The optimum number of neighbors for a node for a dataset is based on some per-
centage of the total number of samples in the dataset. In order to find the optimum 
number of neighbors for each dataset, experiments are conducted by varying the 
percentage value (Perc_val) as 5, 10, 15, 20 and 25. Three dissimilarity measures are 
explored to find the best measure to compute the distance matrix for each dataset. A 
dissimilarity measure computes the dissimilarity between two graph nodes vi and vj . 
Let f i ∈ R

1×f  be the feature vector of vi and f j ∈ R
1×f  be the feature vector of vj . The 

dissimilarity measures between two graph nodes described by its features are defined 
as follows: 

(a)	 Euclidean distance: ED(vi, vj) =
√

∑f
k=1

(fik − fjk)2.

(b)	 Manhattan distance: ManDist(vi, vj) =
∑f

k=1

∣

∣fik − fjk
∣

∣.

(c)	 Cosine dissimilarity: 1− CS(vi, vj) where CS(vi, vj) =
fi·fj

�fi��fj�
.

The best dissimilarity measure out of the three measures (Manhattan, Euclidean, and 
Cosine) is selected based on the F1-score on the two real datasets. Figure 4 shows the 
F1-scores achieved by the GraphSAGE model on both real datasets for different dissimi-
larity measures and different values of perc_val parameter. As shown in Fig. 4a, the best 
F1-score of 92% for the IBD dataset is achieved when Cosine dissimilarity is used and 
the MD-graph constructed by restricting the number of neighbors as 10% of the total 
number of nodes. From Fig. 4b, it is evident that the best F1-score of 87% for the CRC 
dataset is achieved when Manhattan distance is used and the number of neighbors in 
the MD-graph is 10% of the total number of nodes. Thus, for the rest of this study, the 
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neighbor threshold is set as 10% for both the datasets. Also, the dissimilarity measure for 
the IBD and CRC datasets are set as Cosine and Manhattan respectively.

Identifying parameters for single GraphSAGE and single GCN models

An empirical study is conducted on real datasets to decide the values for some 
parameters for the single GraphSAGE and, the single GCN models. For the single 
GraphSAGE and the single GCN models, experiments are conducted to decide on 
the optimum number of convolution layers. Additionally, for the single GraphSAGE 
model experiments are conducted to decide on the sample number of the first graph 
convolution layer ( S1 ) and the sample number of second graph convolution layer ( S2 ). 
The optimum number of convolution layers for the single GraphSAGE and single 
GCN models are found by varying the number of convolution layers in [2, 3, 4, 5] and 

Fig. 4  F1-score values achieved by single GraphSAGE for different dissimilarity measures for different 
perc_val on both datasets. a IBD dataset and b CRC dataset
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recording the F1-scores obtained. To fix the best sample number for each convolution 
layer, a single 2-layer GraphSAGE model is used by varying S1 in [10, 25, 50, 75] and 
S2 in [5, 10, 25, 50]. The F1-score for each experiment is recorded.

The bar plot in Fig.  5a shows that the single GraphSAGE model achieves the best 
F1-score of 93% on IBD and 87% on CRC datasets respectively, with two convolution 
layers. Hence, for further experiments with ensemble GraphSAGE, the number of lay-
ers is set as 2 for both datasets. The bar plot in Fig. 5b shows that the single GraphSAGE 
model achieves the best F1 score of 93% on IBD and 87% on CRC datasets respectively 
when S1 equals to 10 and S2 equals to 5. Hence, for further experiments with ensem-
ble GraphSAGE, we set S1 as 10 and S2 as 5. Fig. 5c shows that the single GCN model 
achieves the best F1-score of 91% and 75% for IBD and CRC datasets respectively with 
two convolution layers. Hence, for further experiments on ensemble GCN, the number 
of layers of a single GCN model is fixed as 2. The values of other parameters of the graph 
models such as optimizer, learning rate, number of hidden units in each layer, activation 
function and loss function are fixed based on the analysis of these algorithms from lit-
erature [12, 18].

The parameters for the various GNN models are consolidated and presented in 
Table 3.

Determining the optimum number of base classifiers for the ensemble graph models

The optimum number of base classifiers for the ensemble graph models is determined 
experimentally. For the ensemble GraphSAGE and GCN models, the number of base 

Fig. 5  F1-score values achieved by GNN models
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classifiers is fixed by conducting experiments by varying the number of base classifiers in 
[5, 10, 15, 20, 25, 30, 35,40] for both the real datasets. Then, the F1-score obtained from 
each experiment is recorded. The results are presented in Tables 4 and 5. From Table 4, 
it could be observed that for the IBD dataset, the best-performing boosting GraphSAGE 
model is obtained when the number of base classifiers is set to 10, the best Bagging 
GraphSAGE is obtained with 10 base classifiers, the best Boosting GCN is obtained with 

Table 3  Details of parameter settings for GNN models

Parameters Bagging & boosting GraphSAGE Bagging & boosting GCN

Number of convolution layers 2 2

Number of hidden units in each convolution 
layer

32 32

Sample number for layer 1 10 –

Sample number for layer 2 5 –

Activation function - convolution layer ReLU ReLU

Activation function - output layer Softmax Softmax

Epochs 50 50

Optimizer Adam Adam

Learning rate 5.00E−03 5.00E−03

Loss function Categorical cross entropy Negative log likelihood

Table 4  F1-score of Ensemble GNN models for different number of base classifiers for the IBD 
dataset

The bold font indicates highest results

Number of base 
classifiers

Boosting 
GraphSAGE

Bagging 
GraphSAGE

Boosting GCN Bagging GCN

5 0.93 0.91 0.86 0.91

10 0.95 0.94 0.86 0.92

15 0.93 0.92 0.87 0.94
20 0.91 0.92 0.89 0.93

25 0.91 0.92 0.89 0.93

30 0.9 0.91 0.92 0.92

35 0.92 0.9 0.91 0.9

40 0.92 0.9 0.9 0.9

Table 5  F1-score of Ensemble GNN models for different number of base classifiers for the CRC 
dataset

The bold font indicates highest results

Number of base 
classifiers

Boosting 
GraphSAGE

Bagging 
GraphSAGE

Boosting GCN Bagging GCN

5 0.82 0.83 0.76 0.75

10 0.83 0.85 0.76 0.81

15 0.87 0.85 0.81 0.82

20 0.85 0.86 0.82 0.8

25 0.8 0.86 0.8 0.84
30 0.85 0.85 0.84 0.82

35 0.85 0.83 0.82 0.81

40 0.83 0.82 0.81 0.81
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30 base classifiers and the best bagging GCN is obtained with 15 base classifiers. For the 
CRC dataset, it could be observed from the Table 5 that the best boosting GraphSAGE is 
obtained with 15 base classifiers, the best Bagging GraphSAGE is obtained with 20 base 
classifiers, the best Boosting GCN is obtained with 30 base classifiers and the best bag-
ging GCN is obtained with 25 base classifiers. Hence, in all experiments, the above men-
tioned values are used as the number of base classifiers for the ensemble graph models.

Parameters for ML, DL and ensemble models

All the ML models and ensemble ML models except RF are implemented using the 
default settings in their corresponding sklearn libraries. The RF model is constructed 
using the default settings from the random forest module in the sklearn library except 
for some parameters. The number of trees in this work is set to 200 and the criterion 
to to measure the quality of the a split is set to entropy.

Evaluation metrics

To evaluate the performance of the proposed model, the widely used metrics for 
binary classification are used in this work. Let True Positive (TP) be the number of 
sick samples that are correctly predicted as samples with disease by a classifier model, 
False Positive (FP) be the healthy samples that are incorrectly predicted as samples 
with disease, True Negative (TN) be the healthy samples that are correctly predicted 
as healthy samples and False Negative (FN) be the sick samples that are incorrectly 
predicted as healthy samples.

Then, Accuracy (ACC) is the ratio of total number of predictions that are correct to 
the total number of predictions made and is given by the Eq. 16.

Accuracy is not a good metric to use when the dataset has the class imbalance problem. 
So in this work F1-score is also used to evaluate the performance. It is the weighted har-
monic mean of recall and precision and is given by the Eq. 17.

Area under operator curve (AUC) is the area underneath the receiver operator curve 
(ROC) that calculates the model’s ability to discriminate samples between positive and 
negative classes. The value of AUC ranges between 0 and 1. AUC value 0 indicates a 
poor classification and AUC value 1 indicates a perfect classification.

In order to evaluate the performance of the model when working with imbalanced 
datasets, a useful metric called area under the precision-recall curve (AUPRC) is also 
used. AUPRC is the area under the precision-recall curve, drawn with recall on the 
x-axis and precision on the y-axis. If the model is able to identify all of the positive 
examples (sick samples) without accidentally marking any healthy samples as sick, then 
the model achieves a perfect AUPRC. AUPRC value of 0 indicates a poor model and 1 
indicates a perfect model.

(16)ACC =
TP + TN

TP + FP + TN + FN

(17)F1− score =
2 ∗ TP

2 ∗ TP + FN + FP
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Results and discussion
Comparison of the proposed model with other ML, DL and ensemble models

In this section, the capability of the boosting GraphSAGE method in classifying the 
metagenomic samples into sick and healthy class is compared with other ML, DL and 
ensemble models. The comparison is made according to the results achieved by each 
model in terms of the AUC, ACC, F1-score and AUPRC. Table 6 presents the sum-
mary of results achieved by all the models on real datasets. From the results it is evi-
dent that the boosing GraphSAGE model outperforms all the graph ensemble models, 
the single GraphSAGE, the single GCN, and other traditional ML and ensemble mod-
els in classifying the real disease datasets.

For the IBD dataset, the results show that ML models like SVM, RF, DF, XGB and 
MLP exhibit low F1-score. Among the ML models the SVM classifier achieves the 
best F1-score. One possible reason for the low performance of these classifiers can 
be the data imbalance. By analyzing the results of the single GNN models, the single 
GraphSAGE model outperforms the single GCN. In addition, the single GNNs out-
perform all the individual ML and ensemble ML models. Even though all the ensem-
ble GNN models significantly improve the performance, the boosting GraphSAGE 
outperforms all the other models for all considered evaluation metrics. The boosting 
GraphSAGE achieves the best performance with an AUC of 93%, an ACC of 95%, an 
F1-score of 95% and an AUPRC of 95%.

For the CRC dataset, it is evident from the results that all the individual ML and 
ensemble ML models face difficulty achieving good results even though the dataset 
is balanced. The poor results may be due to the small sample size and high dimen-
sionality of the dataset. From the results, it can be observed that SVM is the worst-
performing classifier. The XGB performs better when compared to individual ML 
and ensemble classifiers. When analyzing the GNN models, it is observed that all 
the GNN models (i.e.) the single and ensemble models outperform the individual 
ML and ensemble models. Out of the GNN models, the single GCN performs poorly. 
The boosting and bagging GCN perform better than the single GCN but their perfor-
mance is less than that of a single GraphSAGE model. However, the boosting Graph-
SAGE model achieves the best results, of 90% AUC, 91% ACC, 87% F1-score and 93% 
AUPRC.

Table 7 presents the summary of results achieved by all the models on synthetic data-
sets. The synthetic datasets have more samples than the real datasets and follow the 
same ratio of data imbalance as in the real dataset. As the number of samples increased 
in the synthetic dataset, the performance of all the models improved. From the results, 
it can be observed that for the IBD_synthetic dataset, the SVM classifier and all the 
variations of the GCN model (i.e., single GCN, boosting GCN, and bagging GCN) per-
form poorly when compared to other models with respect to ACC, AUC, F1-score 
and AUPRC. The RF classifier achieves good AUC but a reduced F1-score. Apart from 
SVM, RF and all the variations of the GCN models, other classifiers perform similarly 
on the IBD_synthetic dataset. The best AUC of 99% is achieved by RF, DF, MLP, XGB, 
and boosting GraphSAGE classifiers. The XGB classifier achieves the best ACC of 100%. 
However, DF, GraphSAGE, and boosting GraphSAGE classifiers also achieve a near-
est ACC value of 99%. The best F1-score of 99% is achieved by boosting GraphSAGE, 
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bagging GraphSAGE, and XGB classifiers. Similarly, the best AUPRC of 99% is achieved 
by DF, XGB, GraphSAGE, and boosting GraphSAGE classifiers.

The results of CRC_synthetic dataset show that the SVM, MLP and all the variations 
of the GCN model perform poorly when compared to the other models with respect 
to ACC, AUC, F1-score and AUPRC. The best AUC of 99% is achieved by boosting 
GraphSAGE, XGB, and RF classifiers. The boosting GraphSAGE achieves an ACC of 
98%, which is slightly lower than the ACC achieved by GraphSAGE and the DF classifier. 
Also, the best AUPRC of 99% is achieved by RF classifier. However, the best F1-score is 
achieved by RF, DF, and all variations of GraphSAGE classifiers including the boosting 
GraphSAGE.

To sum up, the single GraphSAGE model is able to accurately discriminate the sick 
and healthy metagenomic samples in real and synthetic disease datasets. The sampling 
of neighbors and the aggregation of features from the sampled neighbors positively 
help the GraphSAGE model to get a better representation of the nodes and, thereby, 
effectively classify the nodes. Since, single GraphSAGE performs well, the ensemble 
GraphSAGE model improves the classification performance. Out of the two ensembles, 
bagging GraphSAGE and boosting GraphSAGE, the boosting GraphSAGE outperforms 
because the boosting GraphSAGE is able to tackle the misclassifications at each base 
classifier. However, it should be noted that for synthetic data, most of the ensemble ML 
models and the proposed model perform similarly. Comparing the results of ensemble 
ML models on real and synthetic datasets, the models achieve an increased performance 
in synthetic dataset because of the increased number of samples. But, still the proposed 
model is able to handle the data imbalance in both the real and the synthetic datasets. 
It could be observed from the results that the proposed model is not able to achieve the 
best ACC on both the synthetic datasets. However, it is evident that the performance of 
the proposed model exceeds all the other models for the real datasets.

Comparison with previous work done on the real datasets

To show the effectiveness of the proposed framework, a comparative analysis is con-
ducted with the previous works [18, 27, 36] on the real datasets. Among these works, 
[18] and [36] have reported the results on the real IBD dataset and [27] has used the real 
CRC dataset. The metaNN model [18] used a 3-layer MLP to classify the samples of the 
real IBD dataset. The graph embedding deep feedforward network (GEDFN) [36] imple-
mented feature selection using graph embedding and deep neural network to identify 
the best features for the real IBD dataset. [27] used a RF model for real CRC dataset clas-
sification. All these previous works have analyzed the results in terms of AUC value and 
hence this work compares the results in terms of AUC.

Figure 6 compares the AUC values achieved by the previous works and the proposed 
framework for the real IBD and the real CRC datasets. It can be seen from Fig. 6 that the 
proposed framework outperformed the previous works on both the datasets. The pro-
posed framework achieves an AUC of 93% on the IBD dataset. However, the metaNN 
and GEDFN achieved an AUC of 89% and 84% respectively. Similarly, for the CRC data-
set, the RF model obtained an AUC value of 84% while the proposed model achieves an 
AUC of 90%.
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In summary, the improved results of the proposed framework prove that the boosting 
GraphSAGE model can effectively generate a powerful representation for each node by 
gaining relevant information from its neighbors. The ensembling technique has helped 
to improve the classification performance by overcoming the challenge of high dimen-
sionality coupled with low sample size associated with metagenomic datasets. Addition-
ally, the results also favor the modeling of the metagenomic datasets in the form of a 
graph for the application of graph based models to yield better performance. Further-
more, it should be noted that the proposed framework achieves considerable results for 
highly imbalanced datasets such as IBD, where all the other models failed to achieve 
good results. One reason for the improved result is the MD-graph construction proce-
dure for the imbalanced dataset which has effectively addressed the imbalance problem 
by setting a different neighbor threshold for nodes from different classes. The different 
neighbor threshold helps the MD-graph to avoid unnecessary connections and to keep 
only the relevant relationship between the nodes.

Case study
The case study aims to analyze the effectiveness of the MD-graph construction module 
of the proposed framework in capturing the neighbors of a graph node for the two real 
datasets.

Two sick samples S2, S10 and two healthy samples S7, S16 are considered from the real 
IBD dataset and the abundance of the microbial biomarkers in these samples is analyzed. 
The microbial biomarkers for the IBD disease are identified from few biological stud-
ies as Clostridiales, Enterobacteriaceae, Eubacterium, and Ruminococcus [37, 38]. While 
examining the adjacency matrix of the MD-graph, it is observed that the graph construc-
tion module is able to identify the sick samples (S2, S10) as neighbors and the healthy 
samples (S7, S16) as neighbors. This is because the sick samples exhibit high abundance 
values for the microbial biomarkers in their microbiome profiles. Also, the healthy sam-
ples exhibit low abundance values for the microbial biomarkers in their microbiome pro-
files. Table 8 shows the abundance values of the biomarkers in the microbiome profiles 
of samples S2, S10, S7 and S16 from the IBD dataset.

Fig. 6  Comparison of AUC values with previous work done on the real IBD (left) and the real CRC datasets 
(right)
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Similarly, two sick samples S7, S10 and two healthy samples S8, S11 are considered 
from the real CRC dataset and the abundance of the microbial biomarkers in these sam-
ples is analyzed. The microbial biomarkers for the CRC disease are identified from a few 
biological studies as Peptostreptococcus, Streptococcus, Prevotella and Ruminococcus 
[39]. While examining the adjacency matrix of the MD-graph, it is observed that the sick 
samples (S7, S10) are identified as neighbors and the healthy samples (S8, S11) are iden-
tified as neighbors in the MD-graph. This is because the sick samples exhibit high abun-
dance values for the microbial biomarkers in their microbiome profiles. Also, the healthy 
samples exhibit low abundance values for the microbial biomarkers in their microbiome 
profiles. Table 9 shows the abundance values of the biomarkers in the microbiome pro-
files of samples S7, S10, S8, and S11 from the CRC dataset.

Conclusion
In this paper, we have developed a new framework consisting of boosting GraphSAGE 
model to analyze human gut microbiome metagenomic data to classify the disease sta-
tus as sick or healthy. In particular, the ability of GraphSAGE to work effectively on 
graph-based data is used for the binary classification task. We also proposed a novel 
graph construction approach using a dissimilarity measure for computing the dissimilar-
ity between the samples. The graph was constructed by considering the data imbalance 
present in the dataset, which helped the proposed model to achieve the best results on 
the highly imbalanced dataset. The experimental results using real metagenomic disease 
datasets and synthetic datasets show that the proposed framework outperformed most 
competing methods in classification performance. Also, from the results, we confirm 
that the proposed framework can be effectively used for disease prediction and person-
alized medicine for microbiome-related diseases. In future, the proposed framework can 
be applied to other metagenomic and medical datasets for disease prediction.

Table 8  Abundance of the microbial biomarkers in samples S2, S10, S7, and S16 of real IBD dataset

Biomarker Sick samples Healthy samples

S2 S10 S7 S16

Clostridiales 795 564 57 43

Enterobacteriaceae 5378 2150 41 26

Eubacterium 180 125 6 15

Ruminococcus 809 825 1 5

Table 9  Abundance of the microbial biomarkers in samples S7, S10, S8, and S11 of real CRC dataset

Biomarker Sick samples Healthy samples

S7 S10 S8 S11

Peptostreptococcus 933 715 8 3

Streptococcus 7161 6865 45 85

Prevotella 5258 3196 62 90

Ruminococcus 4554 3533 589 401
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