
Open Access

© The Author(s) 2023, corrected publication 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of
this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Syama et al. BMC Bioinformatics 2023, 24(1):126
https://doi.org/10.1186/s12859-023-05251-x

BMC Bioinformatics

Automatic disease prediction from human
gut metagenomic data using boosting
GraphSAGE
K. Syama1, J. Angel Arul Jothi1* and Namita Khanna2

Abstract

Background: The human microbiome plays a critical role in maintaining human
health. Due to the recent advances in high-throughput sequencing technologies,
the microbiome profiles present in the human body have become publicly avail-
able. Hence, many works have been done to analyze human microbiome profiles.
These works have identified that different microbiome profiles are present in healthy
and sick individuals for different diseases. Recently, several computational methods
have utilized the microbiome profiles to automatically diagnose and classify the host
phenotype.

Results: In this work, a novel deep learning framework based on boosting Graph-
SAGE is proposed for automatic prediction of diseases from metagenomic data. The
proposed framework has two main components, (a). Metagenomic Disease graph
(MD-graph) construction module, (b). Disease prediction Network (DP-Net) module.
The graph construction module constructs a graph by considering each metagenomic
sample as a node in the graph. The graph captures the relationship between the sam-
ples using a proximity measure. The DP-Net consists of a boosting GraphSAGE model
which predicts the status of a sample as sick or healthy. The effectiveness of the pro-
posed method is verified using real and synthetic datasets corresponding to diseases
like inflammatory bowel disease and colorectal cancer. The proposed model achieved
a highest AUC of 93%, Accuracy of 95%, F1-score of 95%, AUPRC of 95% for the real
inflammatory bowel disease dataset and a best AUC of 90%, Accuracy of 91%, F1-score
of 87% and AUPRC of 93% for the real colorectal cancer dataset.

Conclusion: The proposed framework outperforms other machine learning and deep
learning models in terms of classification accuracy, AUC, F1-score and AUPRC
for both synthetic and real metagenomic data.

Keywords: Metagenomics, Disease prediction, Ensemble GNN, GraphSAGE, Machine
learning, Deep learning

*Correspondence:
angeljothi@dubai.bits-pilani.ac.in

1 Department of Computer
Science, Birla Institute
of Technology and Science
Pilani Dubai Campus, Dubai
International Academic City ,
Dubai, UAE
2 Department of Biotechnology,
Birla Institute of Technology
and Science Pilani Dubai
Campus, Dubai International
Academic City , Dubai, UAE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05251-x&domain=pdf

Page 2 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

Background
The human body is the habitat for trillions of diverse and complex microbes (microbiota
or microbiome). These microbes reside in various body sites (skin, gut, ear, mouth, nose,
stool etc.) and play a vital role in (a) shaping and controlling human health, (b) develop-
ing the human immune system and (c) affecting human metabolism [1]. The most abun-
dant and the largely studied microbes are found in the human gut. Research works have
found that the dysbiosis of the human gut microbiome can cause many host diseases
like inflammatory bowel disease (IBD), colorectal cancer (CRC), obesity, diabetes, and
liver cirrhosis [2]. Recently, due to the emergence of various next generation sequencing
techniques, huge amounts of human microbiome sequence data are available. This in
turn has become the motivation for developing computational methods to identify the
relationships between bacterial composition and functions with the diseases.

The microbiome sequence data is used to characterize the microbiome profiles for a
deeper analysis. Many tools such as QIIME [3], MetaPhlAn [4] are available for taxon-
omy profiling of the human microbiome sequence data. These tools provide the relative
abundance of each taxonomic group or the operational taxonomic units (OTUs) present
in the microbiome sequence data. Thus, a sample in the human microbiome metagen-
omic dataset is described by the abundance of the OTUs. This abundance of the differ-
ent taxa of microbiomes are used as meaningful indicators for the disease status of each
host sample [5].

Due to the availability of vast amounts of human metagenomic data, machine learn-
ing (ML) and deep learning (DL) techniques are being used to analyze and identify the
relationships between different microbes and the relationship between microbes and
host diseases. Recently, many works have been published in automatic disease predic-
tion using human gut microbiome metagenomic data with ML and DL techniques [6–
10]. These works essentially used ML algorithms like support vector machine (SVM),
random forest (RF), deep forest (DF), extreme gradient boosting (XGB), multilayer per-
ceptron (MLP), and DL methods like convolutional neural network (CNN) and autoen-
coders. The ML and DL methods have achieved relatively moderate results as they suffer
due to high dimension of the metagenomic datasets. Thus, there is still room for improv-
ing the classification performance of these models.

Researchers have always tried to improve and optimize classification models to achieve
better accuracy. Ensemble learning is a widely used technique to improve the classifica-
tion accuracy [11]. It could also help with metagenomic datasets where a single classifier
model might not obtain superior performance due to the huge dimension of the data-
sets. It aggregates two or more base classifiers to improve the predictive performance of
the combined classifier. Thus, it overcomes the weakness of a single weak base classifier.

Though several ML and DL models are used for metagenomic disease prediction, it
could be noted that the graph neural network (GNN) models such as Graph SAmple
and aggreGatE (GraphSAGE) [12] and graph convolutional network (GCN) [13] have
not been applied for this purpose. One possible reason might be that the metagenomic
data lack the inherent graph structure, as GNNs require graph structured data as input.
The previous works on metagenomic disease classification using ML and DL methods
have used the abundance of the OTUs present in the human microbiome metagenomic

Page 3 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

sample as the features for the disease prediction problem. However, these works have
failed to model the relationship between the samples in the dataset for disease classifica-
tion purpose in the form of a graph.

Inspired by ensemble learning and GCNs, this work proposes a novel framework for
automatic metagenomic disease prediction. The proposed framework involves three
steps. Firstly, the distance matrix is calculated from the OTU table. Secondly, a metagen-
omic disease graph (MD-graph) is constructed using the distance matrix. The MD-graph
models the samples as the nodes. The edges between the graph nodes are constructed
based on the assumption that similar samples exhibit similar features. Finally, the Dis-
ease prediction Network (DP-Net) module is constructed with ensemble of GraphSAGE
models. The DP-Net is used to predict the sample phenotype.

All things considered, the proposed framework put forward the following
contributions.

(a) An ensemble model based on GraphSAGE for disease prediction using human gut
microbiome metagenomic data.

(b) A novel graph construction method to construct the MD-graph from the gut
microbiome metagenomic data.

(c) The efficiency of the proposed framework is studied by applying it to two different
real disease datasets like IBD, and CRC. Also the model’s performance is assessed
using synthetic datasets.

Related work

This section aims to review the works done in disease prediction with human gut
metagenomic data using ML and DL methods. The study done in [10] performed a com-
prehensive study by applying classical ML methods like SVM and RF for disease predic-
tion to six metagenomic datasets spanning five diseases (type 2 diabetes (T2D), obesity,
liver cirrhosis, CRC and IBD).

Subsequent to this, the work conducted in [14] analyzed various ML algorithms like
SVM, RF, XGB, DF and an autoencoder pre-trained deep neural network (AutoNN) for
disease prediction from metagenomic data. The work applied the ML and DL algorithms
to six disease datasets to predict the sample status as healthy or sick. The authors used
two features such as k-mer abundances and OTU abundances.

An automated software called MetaDP was developed by the study of [15] to per-
form data analysis of amplicon-sequenced metagenomic data for disease classification.
The disease addressed in this work was intestinal bowel syndrome (IBS), and SVM was
used as the classifier. In a similar work in [16], an ML framework called MicroPheno
was proposed to classify host phenotypes as healthy or disease using metagenomic data.
The Micropheno framework predicted Crohn’s disease using SVM and RF classifiers. In
[17], SVM and MLP were used for classifying a given metagenomic sample into IBD or
healthy class. The work combined two types of features such as the OTU abundances
and gene group abundance and finally developed a hybrid classifier.

Page 4 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

In [18], a DL model called metaNN was proposed to classify the host phenotype into
IBD or healthy with an IBD dataset. This work used two neural networks (NN) models
like MLP and a CNN, along with sample augmentation using statistical methods and
microbe abundance profiles. The authors observed that data augmentation improved the
classification performance of both ML and DL models. Also, results indicated that DL
models are better than ML models as they perform automatic feature engineering.

In [19] a new method called met2Img was proposed to represent metagenomic data
as images. The authors used T-distributed Stochastic Neighbor (t-SNE) embeddings for
generating synthetic images from abundance data. Then, a CNN was used to classify
five diseases. By converting each sample feature as images, the CNN could efficiently
retrieve the patterns present in the sample. In another work by the same authors [20], a
CNN was used for classifying samples from a CRC dataset from different cohorts such
as Chinese, Austrian, American, German, and French into sick or healthy samples. A
NN model called TaxoNN was proposed in [21], which utilized an ensemble of CNNs
for disease prediction. TaxoNN applied the model on two disease datasets such as T2D
and cirrhosis. The model incorporated a stratified approach to group the entire OTUs
into phylum clusters, and different CNNs were trained within each cluster. Finally, the
features obtained from each cluster were concatenated, which improved the classifica-
tion accuracy of TaxoNN.

A CNN based model proposed in [9] implemented a new layer called phylo-conv layer
to discriminate the subclasses of IBD. Patristic distance was used to find neighbors of
taxa from the phylogenetic tree. Then, the phylogenetic tree OTUs were embedded in
a euclidean space using multi-dimensional scaling. CNN was used to apply convolution
over k nearest neighbors of the OTUs in the dataset. The proposed CNN reported prom-
ising results when compared with state-of-the-art ML algorithms. Another recent study
by [8] proposed a model called pophy-cnn, which was built using a CNN to predict the
host phenotype of sample from four different disease datasets. The biological informa-
tion of taxa present in a sample is obtained from the phylogenetic tree. This informa-
tion and the relative abundance value were embedded in a 2-dimensional matrix. Then,
a 2-dimensional CNN was used for classification. The authors claimed that their model
got significant improvement in performance when applied on nine disease datasets.

Table 1 presents a summary of the review done on the disease classification in
metagenomic data. According to the literature, many works have used both ML and DL
methods. Most of the works used CNN as the DL method for classifying metagenomic
samples. There are few works which used GCN and variational auto encoders (VAE) for
feature extraction and reduction from genomic data [22–25]. However, to the best of our
knowledge, we observed that GNNs, such as GraphSAGE, have not been widely applied
in the area of microbiome analysis to predict diseases. Moreover, none of the existing
works have converted the OTU data into a graph and utilized the success rate of Graph-
SAGE in node classification.

In this work, the metagenomic data is converted to a graph called MD-graph using a
novel graph construction method and a boosting GraphSAGE is used to predict the class
label of samples in the dataset.

Page 5 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

Methods
Disease prediction from metagenomic samples is the task of predicting if a given sample
is healthy or sick based on the microbiome profile. The architecture of the proposed dis-
ease prediction framework is illustrated in Fig. 1. Given metagenomic samples, the aim

Table 1 Summary of work done on disease classification in metagenomics data using ML/DL
methods

Reference ML/DL approach(es)
used

Diseases considered Input features Remarks/observations

[10] SVM, RF T2D, CRC, cirrhosis, IBD,
obesity

OTU abundance RF with feature selection
outperformed basic RF
and SVM classifiers with
best AUC of 74%, 88.1%,
94.6%, 89.3%, 65.6% with
T2D, CRC, cirrhosis, IBD,
and obesity datasets
respectively.

[14] SVM, RF, XGB, DF,
AutoNN

T2D, CRC, cirrhosis, IBD,
obesity

OTU abundance, k-mer
frequency

The proposed AutoNN
model achieved the best
accuracy of 66.3% using
OTU feature on T2D
dataset.

[15] SVM IBS OTU abundance The software package
called metaDP can be
used for classifying other
disease samples.

[16] SVM, RF Crohn’s disease k-mer frequency The best F1-score of
76% was achieved by
RF classifier with k-mer
feature.

[17] SVM, MLP IBD OTU abundance gene
group abundance

The proposed hybrid
classifier achieved an
AUC of 80%

[18] MLP, CNN IBD OTU abundance The model achieved the
best AUC of 89% with
MLP by using data aug-
mentation technique.

[19] CNN T2D, IBD, cirrhosis, CRC,
obesity

OTU abundance The model achieved
the best accuracy of
84.2% and 66.3% for IBD
and obesity datasets
respectively.

[20] CNN CRC OTU abundance The model achieved the
best AUC of 75.7% with
CNN .

[21] CNN T2D, cirrhosis. OTU abundance The ensemble CNN
achieved 76.2% AUC on
T2D dataset and 91.1%
on cirrhosis dataset

[9] CNN IBD OTU abundance The model ph-CNN
achieved the best
Matthews Correlation
Coefficient (MCC) of 92%

[8] CNN IBD, T2D, obesity, cir-
rhosis

OTU abundance, phy-
logenetic relationship

The model PopPhy-
CNN achieved the best
F1-score of 58.7% for
Obesity dataset.

Page 6 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

of this framework is to learn the mapping between the human gut metagenomic samples
and their labels using a boosting GraphSAGE and later use this knowledge to predict if
a given metagenomic sample is healthy or sick. The framework consists of three stages,
such as computation of the distance matrix, construction of the MD-graph and the label
prediction using the DP-Net. The following sections define the problem and explain
each stage of the proposed framework.

The input dataset

The dataset in the form of an OTU table, along with the class labels, is given as input
to the framework. For each sample in the dataset, the OTU table captures the species
level relative abundance profiles (OTUs). The OTUs are considered as the features
of a sample. Let N be the total number of samples in a dataset. Then, the set of sam-
ples in a dataset is denoted as {s1, s2, . . . , sN } . A sample si in a dataset be denoted as
si = (fi, yi) where f i is the feature vector of si and yi is the class label of si . The feature
vector f i of a sample si is of length f (i.e.) each sample contains a f-dimensional feature
vector. Let the feature vector f i of a sample si be [fi1, fi2, . . . , fif] . Thus, the datasets are
of dimension N × f matrix. In this work, the proposed framework is evaluated using
both real and synthetic datasets.

Fig. 1 Architecture of the proposed framework

Page 7 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

Real datasets

Human gut metagenomic datasets of two different diseases, such as IBD [26] and
CRC [27] are used. The IBD dataset contains 1359 samples and 1025 features. Out
of the total samples, 336 are sick and 1023 are healthy. The CRC dataset contains 229
sick and 261 healthy samples with 319 features. The IBD dataset is affected by class
imbalance. These are publicly available real datasets and are obtained using amplicon
sequencing technique and contain the species level relative abundance.

Synthetic datasets

This work uses the technique implemented by [18] for generating synthetic data.
It has been observed that the best fit to the OTU table obtained from amplicon
sequence data is the negative binomial (NB) distribution [28]. Hence, in order to gen-
erate a synthetic dataset, a NB distribution is fitted for each class in the real dataset.
The generated synthetic IBD data also follow the data imbalance in the real data. A
detailed description of the datasets is given in Table 2.

Distance matrix computation

The next step in the proposed framework is the construction of the distance (dissimi-
larity) matrix. The distance matrix D is a N × N matrix that captures the dissimilarity
between the samples of the OTU table. The dissimilarity between the samples is based
upon the feature values of the samples. Higher the dissimilarity between the samples,
higher the dissimilarity value between them in the dissimilarity matrix and vice versa.
An entry Dij in the distance matrix corresponds to the distance between samples si and
sj in the OTU table. Since the distance between a sample and itself is 0, the diagonal ele-
ments of the distance matrix are 0. A row of the distance matrix di is a distance vector
of sample si and is of length N (i.e.) di = [di1, di2, . . . , diN] . Each element of the vector
represents the distance of the sample si to every other sample sj in the OTU table where
j = 1, 2, . . . ,N . In this work, the Cosine dissimilarity and the Manhattan dissimilarity
metrics were used to compute the distance between the samples of the IBD and CRC
datasets respectively. The choice of the dissimilarity metric used in this work for the
datasets is found experimentally.

Table 2 Description of the datasets used

Disease Number of sick
samples

Number of healthy
samples

Number of features Reference

Real dataset

IBD 336 1023 1025 [26]

CRC 229 261 319 [27]

Synthetic dataset

IBD_synthetic 3024 9207 1025

CRC_synthetic 1145 1305 319

Page 8 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

Distance threshold computation

A distance threshold t is used in this work to determine if two graph nodes are neigh-
bors. The distance threshold defines the maximum value for the distance between two
graph nodes to become neighbors (i.e.) if the distance between two MD-graph nodes
is less than or equal to the threshold t then, they are neighbors otherwise they are not
neighbors. In this work, to begin with, we use the median of the values (m) of the dis-
tance matrix as the threshold value t. The reason behind selecting the median value as
the threshold is that the median of a set of values mark the middle value. Moreover,
choosing the median value resulted in inclusion of reasonable amount of neighbors (that
is less than the maximum number of neighbors for a graph node) for all the graph nodes
for all the datasets. If we do not use a distance threshold, then every graph node is con-
sidered as the neighbor of every other graph node. In that case, the resulting MD-graph
would be too dense. The graph may also capture unnecessary relationships between
nodes.

Neighbor threshold computation

The neighbor threshold τ denotes the maximum number of neighbors for each MD-
graph node. It is used in this work in order to eliminate the problem of standalone graph
nodes and graph nodes with high degree. Standalone graph nodes are those graph nodes
that do not have any neighbors. This situation may arise when a graph node’s distance
with all its neighbors is greater than the distance threshold. Graph nodes with high
degree are those graph nodes having too many neighbors. This situation may arise when
a graph node’s distance with all its neighbors is lesser than the distance threshold. For a
given metagenomic disease dataset, the maximum number of neighbors of each MD-
graph node τ is fixed as some percentage of the total number of samples in a dataset
(Perc_val) and is given by Eq. 1. Hence, this value will vary from dataset to dataset. The
optimal value of τ for each dataset is determined experimentally by varying the Perc_val
parameter.

While setting the value for τ for a dataset, the data imbalance problem is also considered.
Imbalanced datasets are those datasets where the frequency of some class labels in the
dataset is very less. For an imbalanced dataset, two neighbor thresholds τsick and τhealthy
are used. For a balanced dataset, a single neighbor threshold τ is used. This is necessary
to avoid unwanted edges between a sick node and a healthy node. Let τsick denote the
number of neighbors of a sick node and is fixed as some percentage of the total number
of sick samples in the imbalanced dataset (Perc_val) and is given by Eq. 2. Let τhealthy
denote the number of neighbors of a healthy node and is fixed as some percentage of
the total number of healthy samples in the imbalanced dataset (Perc_val) and is given
by Eq. 3. The optimal value of τsick and τhealthy for the imbalanced datasets is also deter-
mined experimentally. Since, the IBD dataset exhibit class imbalance problem, in this
work, we use two separate neighbor thresholds for this dataset.

(1)τ =
Perc_val ∗ No. of samples in the dataset

100

Page 9 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

Metagenomic disease graph (MD‑graph) construction

After obtaining the distance matrix, the next step is to construct the MD-graph
for a dataset. This is a challenging task because unlike the previous work where the
GNNs have been applied on datasets with inherent graph structure, this work aims
to apply GraphSAGE to metagenomic disease datasets that lack graph structure. The
graph structure is imposed to the raw OTU table as follows: The samples in a data-
set {s1, s2, . . . , sN } are assumed to be the nodes {v1, v2, . . . , vN } of the MD-graph G. The
distance matrix D is used to construct the edges between the MD-graph nodes. The
assumption is that similar graph nodes exhibit similar features and hence will belong
to the same class (healthy/sick). Hence, in the MD-graph G an edge is present between
similar graph nodes vi and vj . Once the dataset is modeled as a MD-graph, the adja-
cency matrix A is obtained from it. In this work, the MD-graph is an unweighted, undi-
rected graph with N nodes. The steps in the MD-Graph construction are detailed in the
following subsections.

Edge construction

The distance matrix D, the neighbor threshold τ , τsick and τhealthy , the distance threshold
t and an empty adjacency matrix A of size N × N are given as the input to the MD-
graph construction algorithm. The algorithm inserts edges between a graph node vi and
its neighbors as follows:

Let τi denote the current maximum number of neighbors of a graph node vi and is
initially set to 0. The initial value of t is set to ′m′ , where m is the median of values in the
distance matrix of the corresponding dataset. The distance vector of the node vi is sorted.
Let d

′

i denote the sorted distance vector of graph node vi (i.e) d
′

i = [d
′

i1, d
′

i2, . . . , d
′

iN] .
Every element of the sorted distance vector is then compared with the distance thresh-
old t. An edge is drawn between graph nodes vi and vj iff the distance between a graph
node vi and its neighbor vj denoted as d

′

ij is less than or equal to the distance threshold t
and the current maximum number of neighbors of the node is less than or equal to τ and
is given by Eq. 4.

The value of τi is incremented by 1 as soon as an edge is inserted between a graph node
and its neighbor. This procedure is repeated for all the graph nodes.

(2)τsick =
Perc_val ∗ No. of sick samples in the dataset

100

(3)τhealthy =
Perc_val ∗ No. of healthy samples in the dataset

100

(4)Aij =
1, if (d

′

ij ≤ t) ∩ (τi ≤ τ)

0, otherwise

Page 10 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

The above procedure can be applied to graph nodes of imbalanced dataset. However
the condition to insert an edge is given by Eqs. 5 and 6 for sick and healthy graph nodes
respectively.

Algorithm 1 shows the edge construction process for both balanced and imbalanced
datasets.

Edge refinement

We observe that the above edge construction procedure at times result in a MD-graph
where few graph nodes have less than the specified number of neighbors (sparse nodes).
In some cases we also observed few standalone nodes in the MD-graph. The edge refine-
ment step is used to handle standalone and sparse graph nodes.

Let S denote the set of all standalone and sparse graph nodes obtained after the edge
construction process. In order to ensure that every node v ∈ S has the specified number
of neighbors, we gradually increase the threshold value t in steps and invoke the edge
construction process on the graph node v until it acquires

(a) τ neighbors if the dataset is balanced (or)
(b) τsick neighbors if the dataset is imbalanced and v is a sick graph node (or)
(c) τhealthy neighbors if the dataset is imbalanced and v is a healthy graph node

At every step, the t value is incremented by δ as given by Eq. 7.

where, δ = (maxval −m)/5 where, maxval is the maximum value of the distance matrix
and m is the median of the distance matrix values.

Adding the feature vectors to MD‑graph nodes

After the edge refinement step we obtain the MD-graph. For the purpose of Graph-
SAGE, the graph nodes are assumed to contain features. In this work, the OTU feature
vector f i of a sample si in the dataset is considered as the feature vector of the corre-
sponding MD-graph node vi . Similarly, the label yi of a sample si in the dataset is consid-
ered the label of the MD-graph node vi . The feature vectors of all graph nodes constitute
the initial feature matrix F0 ∈ R

N×f of the MD-graph.
The algorithm for the edge refinement and adding the feature vectors to MD-graph

nodes is illustrated in Algorithm 2.

(5)Aij =

{

1, if (d
′

ij ≤ t) ∩ (τi ≤ τsick)

0, otherwise

(6)Aij =

{

1, if (d
′

ij ≤ t) ∩ (τi ≤ τhealthy)

0, otherwise

(7)t = t + δ

Page 11 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

Page 12 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

Disease prediction network (DP‑Net)

GraphSAGE

The GraphSAGE model utilizes the inherent structure of the graph structured data to
generate feature representations of graph nodes. The node feature representations are
helpful for prediction and graph analysis tasks. GraphSAGE uses an inductive approach,
where the model discovers rules from the train samples, which are then applied to the
test samples. Also, GraphSAGE has two improvements to the original GCN. Firstly,
unlike the full graph training used in GCN, GraphSAGE uses a small batch training
method by sampling the neighbors of a graph node. Secondly, the algorithm imple-
ments different aggregator functions for aggregating the features of the neighbors. Thus,
GraphSAGE generates feature representation for each node by sampling and aggregating
the features of nodes in its neighborhood. This is based on the idea that nodes in the
same neighborhood should have similar features.

A GraphSAGE model is made up of several graph convolution layers. A graph con-
volution layer k ∈ {1, 2, · · K } , where, K is the total number of graph convolution layers
in the GraphSAGE model. Each graph convolution layer has a set of parameters like
a sample number (Sk), a neighborhood value (k), a weight matrix (Wk), and a non-
linear function (σ). The sample number denotes the number of neighbor nodes to be
considered while generating node feature representations. The neighborhood value
depends upon the number of the graph convolution layer. For the first graph convolu-
tion layer, the neighborhood value is 1. For the second graph convolution layer, the

Page 13 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

neighborhood value is 2, and so on. Finally, for the last graph convolution layer, the
neighborhood value is K.

The GraphSAGE algorithm operates on a graph G where each node in G is asso-
ciated with a feature vector f . It involves both forward and backward propagation.
During forward propagation, the information relating to a node’s local neighborhood
is collected and used to compute the node’s feature representation.

The forward propagation iterates over the search depth K. At each graph convolu-
tion layer k ∈ {1, 2, · · K } the following steps are done for all the graph nodes.

(a) Choose a target node, v ∈ V , where V is the set of all nodes in the graph. Sample
the neighborhood of the target node using the sample number and the neighbor-
hood value of the graph convolution layer. This will result in a sampled neighbor-
hood N(v). Then, aggregate the features of all the nodes in the sampled neighbor-
hood using a differentiable aggregator function AGGRk to form the aggregated
neighborhood representation hkN (v) , of node v. This is denoted by Eq. 8.

 where u is one of the nodes from the sampled neighborhood of node v and hk−1
u

represents the previous layer feature representation of node u. In this work, the
Mean aggregator function is used to aggregate information from neighborhood
nodes. The mean aggregator takes the elementwise mean of the vectors in a nodes
sampled neighborhood. Figure 2 illustrates the sampling and the aggregation of
node features by GraphSAGE model.

(b) Concatenate the previous layer representation of the target node hk−1
v with the

aggregated neighborhood representation. Apply the linear transformation to the
concatenated representation using a weight matrix Wk associated with the layer.
Pass the linear transformed representation to a nonlinear activation function σ to

(8)hkN (v) = AGGRk

({

hk−1
u , ∀u ∈ N (v)

})

Fig. 2 Architecture of the GraphSAGE model: The left side of the figure is a simple graph structured data
and the right side of the figure shows the aggregation process of the target node. This architecture shows a
two-layer GraphSAGE with a sample number of 3

Page 14 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

obtain the new feature representation of the target node (hkv). The operations done
at this step is given by Eq. 9.

(c) Normalize the node representation to prevent gradient explosion. This is given by
Eq. 10.

where
∥

∥hkv
∥

∥

2
 is the vector norm of the target node feature representation.

At the end of the forward propagation, the feature representations of the nodes are
passed through a softmax layer which predicts the class labels for the nodes. The loss
function computes the error using the predicted labels and actual labels. During the
backward propagation, the gradient descent algorithm is used to optimize the weight
matrix and the parameters in the aggregation function.

Boosting GraphSAGE

The DP-Net comprises of a boosting GraphSAGE model. The boosting GraphSAGE
model uses multiple GraphSAGE models as the base estimators and the AdaBoost [29]
algorithm to perform semi-supervised node classification.

It comprises of two phases: Initialization phase and Iterative phase. During the ini-
tialization phase the original dataset X is split into a train set Xtrain , test set Xtest and a
validation set Xval in the ratio of 70:15:15. Initially, the weight (wi) of a sample (si) in the
train set is assigned as 1N , where i = 1, 2, · · · ,N and N is the total number of samples
in the train set. The iterative phase comprises of M boosting rounds. At each boosting
round, bootstrap samples of size N are drawn from the train set. These samples are used
to train the base GraphSAGE at that round. Once the base GraphSAGE at a boosting
round is learned, the train set is supplied as input to the model, which predicts the class
labels of all the samples in the train set. The predictions are used to calculate the error
rate and the importance of the base GraphSAGE. It should be noted that if the error rate
is high then, the importance of the base GraphSAGE is low and vice versa. The impor-
tance of the base GraphSAGE is then used to update the weights of the samples in the
train set for the next boosting round. Thus, the boosting GraphSAGE model works by
assigning adaptive weights to each sample in the train set (i.e) the weights of the samples
are changed at each boosting round. The sample weights also play an essential role in
drawing the bootstrap samples (i.e.) the higher the weight of a sample, the higher the
probability of the sample being included in the bootstrap. Formally, the steps in boosting
GraphSAGE algorithm can be explained as follows

Initialization phase

(a) The entire dataset is split into train and test set, where the train set is used to train
the M base GraphSAGEs in the boosting GraphSAGE model sequentially.

(b) The weight vector w is initialized as wi =
1
N ∀i = 1, 2, · · · ,N

(9)hkv = σ

(

Wk · CONCAT
(

hk−1
v , hkN (v)

))

(10)hkv =
hkv

∥

∥hkv
∥

∥

2

, ∀v ∈ V

Page 15 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

Iterative phase

For each base GraphSAGE m ∈ {1, 2, · ·M}

(a) Draw bootstrap sample Xm of size N from Xtrain.
(b) Train the base GraphSAGE using Xm.
(c) Predict the class labels of all the samples in Xtrain using the base GraphSAGE.
(d) Calculate the error ǫ . The error is the sum of the weights of each of the misclassified

samples in Xtrain by the current base GraphSAGE. The error of the base Graph-
SAGE ǫm is computed using Eq. 11.

 where the wm
i is the weight of sample si at iteration m, I(.) is the indicator function

which returns 1 if the sample si is misclassified; otherwise it returns 0.
(e) If ǫm exceeds 0.5, discard the current base GraphSAGE and go to step (a) of Itera-

tive phase.
(f) Calculate the weight αm of the base GraphSAGE according to Eq. 12.

(g) Update the weights of the samples in Xtrain using Eqs. 13 and 14

(h) Normalize the weights of all the samples.

The trained boosting GraphSAGE can be used to predict the category of a test sample
(xtest). The prediction depends on the weighted majority voting and is given by Eq. 15.

where H is the final strong boosting GraphSAGE classifier, H(xtest) is the prediction
made by H for the test sample, hm is the trained base GraphSAGE model at boosting
round m and hm(xtest) is the prediction made by hm for the test sample. According to the
Eq. 15 the prediction of every base GraphSAGE weighted by its importance is summed
up. The sign of the sum determines the final class label of the test sample. Figure 3 shows
the schematic representation of boosting GraphSAGE

Experimental setup
This section presents the implementation details, the experiments conducted, the
parameter settings and the evaluation metrics.

(11)ǫm =

∑N
i=1 w

m
i I(.)

∑N
i=1 w

m
i

(12)αm =
1

2
ln
1− ǫm

ǫm

(13)wm+1
i = wm

i · eαm , ∀i = 1, 2, · · · ,N

(14)wm+1
i = wm

i · e−αm , ∀i = 1, 2, · · · ,N

(15)H(xtest) = sign

(

M
∑

m=1

αmhm(xtest)

)

Page 16 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

Implementation details

The proposed framework is written in Python3 programming language using Anaconda-
Spyder environment. The libraries used in this work are Keras in TensorFlow version
2.9.2, Sklearn version 1.0.2, Pytorch version 1.13. The code is executed on an Ubuntu
machine with 16 GB RAM, Intel i7 processor and a dedicated 4 GB NVIDIA GEFORCE.

Experiments

The proposed boosting GraphSAGE model is learned using semi-supervised train-
ing. During training, the node representations for the train nodes are generated by the
model. Also, the parameters and the aggregator functions are learned by the model. The
model validation is done with the validation data. At the time of testing, the model uses
the learned parameters and aggregator functions for generating the embeddings for test
nodes. These embeddings are used by the model to predict the test node labels. In order
to comprehensively investigate the effectiveness of the proposed model, the following
experiments are conducted on all the datasets:

(a) Comparison of the proposed model with other ML, DL and ensemble models. The
models used for comparison are as follows:

• ML models: SVM [30], MLP [31]
• Ensemble ML models: RF [32], DF [33], XGB [34]
• GNN models: single GCN [13], single GraphSAGE

Fig. 3 Architecture of boosting GraphSAGE: The top part of the figure illustrates the training phase where
the base GraphSAGEs are learned. The bottom part of the figure illustrates the testing phase where the
predictions of the individual trained base GraphSAGEs are combined together using weighted majority
voting to produce the final prediction by the ensemble

Page 17 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

• Ensemble GNN models: Bagging GCN, Boosting GCN, Bagging GraphSAGE,
Boosting GraphSAGE

 Boosting GCN uses multiple base GCN models and the same adaptive boost-
ing technique used by the boosting GraphSAGE model to train base GCN
models. Bagging GCN and Bagging GraphSAGE use the bagging technique [35]
to ensemble base GCN and GraphSAGE models respectively.

(b) Comparison of the proposed framework with previous work done on the datasets.

Parameter settings

This section explains how the values of certain parameters of the various models
experimented in this work are fixed.

Identifying the optimum number of neighbors and the best dissimilarity measure for each

dataset

The best dissimilarity measure for constructing the edges between the nodes in the
MD-graph is selected by conducting experiments using one base GraphSAGE model.
The optimum number of neighbors for a node for a dataset is based on some per-
centage of the total number of samples in the dataset. In order to find the optimum
number of neighbors for each dataset, experiments are conducted by varying the
percentage value (Perc_val) as 5, 10, 15, 20 and 25. Three dissimilarity measures are
explored to find the best measure to compute the distance matrix for each dataset. A
dissimilarity measure computes the dissimilarity between two graph nodes vi and vj .
Let f i ∈ R

1×f be the feature vector of vi and f j ∈ R
1×f be the feature vector of vj . The

dissimilarity measures between two graph nodes described by its features are defined
as follows:

(a) Euclidean distance: ED(vi, vj) =
√

∑f
k=1

(fik − fjk)2.

(b) Manhattan distance: ManDist(vi, vj) =
∑f

k=1

∣

∣fik − fjk
∣

∣.

(c) Cosine dissimilarity: 1− CS(vi, vj) where CS(vi, vj) =
fi·fj

�fi��fj�
.

The best dissimilarity measure out of the three measures (Manhattan, Euclidean, and
Cosine) is selected based on the F1-score on the two real datasets. Figure 4 shows the
F1-scores achieved by the GraphSAGE model on both real datasets for different dissimi-
larity measures and different values of perc_val parameter. As shown in Fig. 4a, the best
F1-score of 92% for the IBD dataset is achieved when Cosine dissimilarity is used and
the MD-graph constructed by restricting the number of neighbors as 10% of the total
number of nodes. From Fig. 4b, it is evident that the best F1-score of 87% for the CRC
dataset is achieved when Manhattan distance is used and the number of neighbors in
the MD-graph is 10% of the total number of nodes. Thus, for the rest of this study, the

Page 18 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

neighbor threshold is set as 10% for both the datasets. Also, the dissimilarity measure for
the IBD and CRC datasets are set as Cosine and Manhattan respectively.

Identifying parameters for single GraphSAGE and single GCN models

An empirical study is conducted on real datasets to decide the values for some
parameters for the single GraphSAGE and, the single GCN models. For the single
GraphSAGE and the single GCN models, experiments are conducted to decide on
the optimum number of convolution layers. Additionally, for the single GraphSAGE
model experiments are conducted to decide on the sample number of the first graph
convolution layer (S1) and the sample number of second graph convolution layer (S2).
The optimum number of convolution layers for the single GraphSAGE and single
GCN models are found by varying the number of convolution layers in [2, 3, 4, 5] and

Fig. 4 F1-score values achieved by single GraphSAGE for different dissimilarity measures for different
perc_val on both datasets. a IBD dataset and b CRC dataset

Page 19 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

recording the F1-scores obtained. To fix the best sample number for each convolution
layer, a single 2-layer GraphSAGE model is used by varying S1 in [10, 25, 50, 75] and
S2 in [5, 10, 25, 50]. The F1-score for each experiment is recorded.

The bar plot in Fig. 5a shows that the single GraphSAGE model achieves the best
F1-score of 93% on IBD and 87% on CRC datasets respectively, with two convolution
layers. Hence, for further experiments with ensemble GraphSAGE, the number of lay-
ers is set as 2 for both datasets. The bar plot in Fig. 5b shows that the single GraphSAGE
model achieves the best F1 score of 93% on IBD and 87% on CRC datasets respectively
when S1 equals to 10 and S2 equals to 5. Hence, for further experiments with ensem-
ble GraphSAGE, we set S1 as 10 and S2 as 5. Fig. 5c shows that the single GCN model
achieves the best F1-score of 91% and 75% for IBD and CRC datasets respectively with
two convolution layers. Hence, for further experiments on ensemble GCN, the number
of layers of a single GCN model is fixed as 2. The values of other parameters of the graph
models such as optimizer, learning rate, number of hidden units in each layer, activation
function and loss function are fixed based on the analysis of these algorithms from lit-
erature [12, 18].

The parameters for the various GNN models are consolidated and presented in
Table 3.

Determining the optimum number of base classifiers for the ensemble graph models

The optimum number of base classifiers for the ensemble graph models is determined
experimentally. For the ensemble GraphSAGE and GCN models, the number of base

Fig. 5 F1-score values achieved by GNN models

Page 20 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

classifiers is fixed by conducting experiments by varying the number of base classifiers in
[5, 10, 15, 20, 25, 30, 35,40] for both the real datasets. Then, the F1-score obtained from
each experiment is recorded. The results are presented in Tables 4 and 5. From Table 4,
it could be observed that for the IBD dataset, the best-performing boosting GraphSAGE
model is obtained when the number of base classifiers is set to 10, the best Bagging
GraphSAGE is obtained with 10 base classifiers, the best Boosting GCN is obtained with

Table 3 Details of parameter settings for GNN models

Parameters Bagging & boosting GraphSAGE Bagging & boosting GCN

Number of convolution layers 2 2

Number of hidden units in each convolution
layer

32 32

Sample number for layer 1 10 –

Sample number for layer 2 5 –

Activation function - convolution layer ReLU ReLU

Activation function - output layer Softmax Softmax

Epochs 50 50

Optimizer Adam Adam

Learning rate 5.00E−03 5.00E−03

Loss function Categorical cross entropy Negative log likelihood

Table 4 F1-score of Ensemble GNN models for different number of base classifiers for the IBD
dataset

The bold font indicates highest results

Number of base
classifiers

Boosting
GraphSAGE

Bagging
GraphSAGE

Boosting GCN Bagging GCN

5 0.93 0.91 0.86 0.91

10 0.95 0.94 0.86 0.92

15 0.93 0.92 0.87 0.94
20 0.91 0.92 0.89 0.93

25 0.91 0.92 0.89 0.93

30 0.9 0.91 0.92 0.92

35 0.92 0.9 0.91 0.9

40 0.92 0.9 0.9 0.9

Table 5 F1-score of Ensemble GNN models for different number of base classifiers for the CRC
dataset

The bold font indicates highest results

Number of base
classifiers

Boosting
GraphSAGE

Bagging
GraphSAGE

Boosting GCN Bagging GCN

5 0.82 0.83 0.76 0.75

10 0.83 0.85 0.76 0.81

15 0.87 0.85 0.81 0.82

20 0.85 0.86 0.82 0.8

25 0.8 0.86 0.8 0.84
30 0.85 0.85 0.84 0.82

35 0.85 0.83 0.82 0.81

40 0.83 0.82 0.81 0.81

Page 21 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

30 base classifiers and the best bagging GCN is obtained with 15 base classifiers. For the
CRC dataset, it could be observed from the Table 5 that the best boosting GraphSAGE is
obtained with 15 base classifiers, the best Bagging GraphSAGE is obtained with 20 base
classifiers, the best Boosting GCN is obtained with 30 base classifiers and the best bag-
ging GCN is obtained with 25 base classifiers. Hence, in all experiments, the above men-
tioned values are used as the number of base classifiers for the ensemble graph models.

Parameters for ML, DL and ensemble models

All the ML models and ensemble ML models except RF are implemented using the
default settings in their corresponding sklearn libraries. The RF model is constructed
using the default settings from the random forest module in the sklearn library except
for some parameters. The number of trees in this work is set to 200 and the criterion
to to measure the quality of the a split is set to entropy.

Evaluation metrics

To evaluate the performance of the proposed model, the widely used metrics for
binary classification are used in this work. Let True Positive (TP) be the number of
sick samples that are correctly predicted as samples with disease by a classifier model,
False Positive (FP) be the healthy samples that are incorrectly predicted as samples
with disease, True Negative (TN) be the healthy samples that are correctly predicted
as healthy samples and False Negative (FN) be the sick samples that are incorrectly
predicted as healthy samples.

Then, Accuracy (ACC) is the ratio of total number of predictions that are correct to
the total number of predictions made and is given by the Eq. 16.

Accuracy is not a good metric to use when the dataset has the class imbalance problem.
So in this work F1-score is also used to evaluate the performance. It is the weighted har-
monic mean of recall and precision and is given by the Eq. 17.

Area under operator curve (AUC) is the area underneath the receiver operator curve
(ROC) that calculates the model’s ability to discriminate samples between positive and
negative classes. The value of AUC ranges between 0 and 1. AUC value 0 indicates a
poor classification and AUC value 1 indicates a perfect classification.

In order to evaluate the performance of the model when working with imbalanced
datasets, a useful metric called area under the precision-recall curve (AUPRC) is also
used. AUPRC is the area under the precision-recall curve, drawn with recall on the
x-axis and precision on the y-axis. If the model is able to identify all of the positive
examples (sick samples) without accidentally marking any healthy samples as sick, then
the model achieves a perfect AUPRC. AUPRC value of 0 indicates a poor model and 1
indicates a perfect model.

(16)ACC =
TP + TN

TP + FP + TN + FN

(17)F1− score =
2 ∗ TP

2 ∗ TP + FN + FP

Page 22 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

Results and discussion
Comparison of the proposed model with other ML, DL and ensemble models

In this section, the capability of the boosting GraphSAGE method in classifying the
metagenomic samples into sick and healthy class is compared with other ML, DL and
ensemble models. The comparison is made according to the results achieved by each
model in terms of the AUC, ACC, F1-score and AUPRC. Table 6 presents the sum-
mary of results achieved by all the models on real datasets. From the results it is evi-
dent that the boosing GraphSAGE model outperforms all the graph ensemble models,
the single GraphSAGE, the single GCN, and other traditional ML and ensemble mod-
els in classifying the real disease datasets.

For the IBD dataset, the results show that ML models like SVM, RF, DF, XGB and
MLP exhibit low F1-score. Among the ML models the SVM classifier achieves the
best F1-score. One possible reason for the low performance of these classifiers can
be the data imbalance. By analyzing the results of the single GNN models, the single
GraphSAGE model outperforms the single GCN. In addition, the single GNNs out-
perform all the individual ML and ensemble ML models. Even though all the ensem-
ble GNN models significantly improve the performance, the boosting GraphSAGE
outperforms all the other models for all considered evaluation metrics. The boosting
GraphSAGE achieves the best performance with an AUC of 93%, an ACC of 95%, an
F1-score of 95% and an AUPRC of 95%.

For the CRC dataset, it is evident from the results that all the individual ML and
ensemble ML models face difficulty achieving good results even though the dataset
is balanced. The poor results may be due to the small sample size and high dimen-
sionality of the dataset. From the results, it can be observed that SVM is the worst-
performing classifier. The XGB performs better when compared to individual ML
and ensemble classifiers. When analyzing the GNN models, it is observed that all
the GNN models (i.e.) the single and ensemble models outperform the individual
ML and ensemble models. Out of the GNN models, the single GCN performs poorly.
The boosting and bagging GCN perform better than the single GCN but their perfor-
mance is less than that of a single GraphSAGE model. However, the boosting Graph-
SAGE model achieves the best results, of 90% AUC, 91% ACC, 87% F1-score and 93%
AUPRC.

Table 7 presents the summary of results achieved by all the models on synthetic data-
sets. The synthetic datasets have more samples than the real datasets and follow the
same ratio of data imbalance as in the real dataset. As the number of samples increased
in the synthetic dataset, the performance of all the models improved. From the results,
it can be observed that for the IBD_synthetic dataset, the SVM classifier and all the
variations of the GCN model (i.e., single GCN, boosting GCN, and bagging GCN) per-
form poorly when compared to other models with respect to ACC, AUC, F1-score
and AUPRC. The RF classifier achieves good AUC but a reduced F1-score. Apart from
SVM, RF and all the variations of the GCN models, other classifiers perform similarly
on the IBD_synthetic dataset. The best AUC of 99% is achieved by RF, DF, MLP, XGB,
and boosting GraphSAGE classifiers. The XGB classifier achieves the best ACC of 100%.
However, DF, GraphSAGE, and boosting GraphSAGE classifiers also achieve a near-
est ACC value of 99%. The best F1-score of 99% is achieved by boosting GraphSAGE,

Page 23 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

Ta
bl

e
6

Su
m

m
ar

y
of

 re
su

lts
 o

n
te

st
 s

et
 o

f r
ea

l d
at

as
et

s

Th
e

bo
ld

 fo
nt

 in
di

ca
te

s
hi

gh
es

t r
es

ul
ts

D
at

as
et

M
et

ri
cs

Cl
as

si
fie

rs

SV
M

RF
D

F
M

LP
XG

B
G

CN
G

ra
ph

SA
G

E
Bo

os
tin

g
G

CN
Ba

gg
in

g
G

CN
Ba

gg
in

g
G

ra
ph

SA
G

E
Bo

os
tin

g
G

ra
ph

SA
G

E

IB
D

A
CC

0.

71
0.

79
0.

81
0.

82
0.

82
0.

91
0.

91
0.

92
0.

94
0.

95
0.

95
F1

-s
co

re
0.

68
0.

57
0.

57
0.

62
0.

57
0.

91
0.

93
0.

93
0.

94
0.

94
0.

95
AU

C

0.
70

0.
80

0.
80

0.
81

0.
83

0.
88

0.
89

0.
89

0.
91

0.
92

0.
93

AU
PR

C
 0

.7
1

 0
.6

6
 0

.7
3

 0
.7

0
 0

.6
4

 0
.9

3
 0

.9
5

 0
.8

4
 0

.9
2

 0
.9

3
0.

95
C

RC

A
CC

0.

50
0.

64
0.

65
0.

58
0.

68
0.

76
0.

86
0.

84
0.

88
0.

87
0.

91
F1

-s
co

re
0.

52
0.

53
0.

58
0.

54
0.

62
0.

75
0.

87
0.

84
0.

84
0.

86
0.

87
AU

C

0.
53

0.
67

0.
67

0.
57

0.
73

0.
76

0.
87

0.
85

0.
87

0.
87

0.
90

AU
PR

C
 0

.6
3

 0
.6

7
 0

.7
3

 0
.6

1
 0

.8
0

0.
81

0.
92

0.
82

 0
.8

6
0.

92
0.

93

Page 24 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

Ta
bl

e
7

Su
m

m
ar

y
of

 re
su

lts
 o

n
te

st
 s

et
 o

f s
yn

th
et

ic
 d

at
as

et
s

Th
e

bo
ld

 fo
nt

 in
di

ca
te

s
hi

gh
es

t r
es

ul
ts

D
at

as
et

M
et

ri
cs

Cl
as

si
fie

rs

SV
M

RF
D

F
M

LP
XG

B
G

CN
G

ra
ph

SA
G

E
Bo

os
tin

g
G

CN
Ba

gg
in

g
G

CN
Ba

gg
in

g
G

ra
ph

SA
G

E
Bo

os
tin

g
G

ra
ph

SA
G

E

IB
D

_s
yn

th
et

ic
A

CC

0.
97

0.
96

0.
99

0.
98

1.
00

0.
95

0.
99

0.
91

0.
96

0.
98

0.
99

F1
-s

co
re

0.
81

0.
91

0.
98

0.
96

0.
99

0.
92

0.
98

0.
91

0.
93

0.
99

0.
99

AU
C

0.

92
0.

99
0.

99
0.

99
0.

99
0.

95
0.

98
0.

90
0.

95
0.

98
0.

99
AU

PR
C

 0
.9

5
0.

94
0.

99
 0

.9
5

0.
99

 0
.9

8
0.

99
0.

92
0.

98
 0

.9
8

0.
99

C
RC

_s
yn

th
et

ic
A

CC

0.
87

0.
98

0.
99

0.
92

0.
97

0.
89

0.
99

0.
87

0.
89

0.
98

0.
98

F1
-s

co
re

0.
75

0.
98

0.
98

0.
91

0.
96

0.
88

0.
98

0.
93

0.
87

0.
98

0.
98

AU
C

0.

78
0.

99
0.

99
0.

96
0.

99
0.

86
0.

98
0.

87
0.

82
0.

98
0.

99
AU

PR
C

0.
82

0.
99

0.
98

 0
.9

4
0.

96
0.

92
 0

.9
8

0.
94

0.
92

 0
.9

8
0.

98

Page 25 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

bagging GraphSAGE, and XGB classifiers. Similarly, the best AUPRC of 99% is achieved
by DF, XGB, GraphSAGE, and boosting GraphSAGE classifiers.

The results of CRC_synthetic dataset show that the SVM, MLP and all the variations
of the GCN model perform poorly when compared to the other models with respect
to ACC, AUC, F1-score and AUPRC. The best AUC of 99% is achieved by boosting
GraphSAGE, XGB, and RF classifiers. The boosting GraphSAGE achieves an ACC of
98%, which is slightly lower than the ACC achieved by GraphSAGE and the DF classifier.
Also, the best AUPRC of 99% is achieved by RF classifier. However, the best F1-score is
achieved by RF, DF, and all variations of GraphSAGE classifiers including the boosting
GraphSAGE.

To sum up, the single GraphSAGE model is able to accurately discriminate the sick
and healthy metagenomic samples in real and synthetic disease datasets. The sampling
of neighbors and the aggregation of features from the sampled neighbors positively
help the GraphSAGE model to get a better representation of the nodes and, thereby,
effectively classify the nodes. Since, single GraphSAGE performs well, the ensemble
GraphSAGE model improves the classification performance. Out of the two ensembles,
bagging GraphSAGE and boosting GraphSAGE, the boosting GraphSAGE outperforms
because the boosting GraphSAGE is able to tackle the misclassifications at each base
classifier. However, it should be noted that for synthetic data, most of the ensemble ML
models and the proposed model perform similarly. Comparing the results of ensemble
ML models on real and synthetic datasets, the models achieve an increased performance
in synthetic dataset because of the increased number of samples. But, still the proposed
model is able to handle the data imbalance in both the real and the synthetic datasets.
It could be observed from the results that the proposed model is not able to achieve the
best ACC on both the synthetic datasets. However, it is evident that the performance of
the proposed model exceeds all the other models for the real datasets.

Comparison with previous work done on the real datasets

To show the effectiveness of the proposed framework, a comparative analysis is con-
ducted with the previous works [18, 27, 36] on the real datasets. Among these works,
[18] and [36] have reported the results on the real IBD dataset and [27] has used the real
CRC dataset. The metaNN model [18] used a 3-layer MLP to classify the samples of the
real IBD dataset. The graph embedding deep feedforward network (GEDFN) [36] imple-
mented feature selection using graph embedding and deep neural network to identify
the best features for the real IBD dataset. [27] used a RF model for real CRC dataset clas-
sification. All these previous works have analyzed the results in terms of AUC value and
hence this work compares the results in terms of AUC.

Figure 6 compares the AUC values achieved by the previous works and the proposed
framework for the real IBD and the real CRC datasets. It can be seen from Fig. 6 that the
proposed framework outperformed the previous works on both the datasets. The pro-
posed framework achieves an AUC of 93% on the IBD dataset. However, the metaNN
and GEDFN achieved an AUC of 89% and 84% respectively. Similarly, for the CRC data-
set, the RF model obtained an AUC value of 84% while the proposed model achieves an
AUC of 90%.

Page 26 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

In summary, the improved results of the proposed framework prove that the boosting
GraphSAGE model can effectively generate a powerful representation for each node by
gaining relevant information from its neighbors. The ensembling technique has helped
to improve the classification performance by overcoming the challenge of high dimen-
sionality coupled with low sample size associated with metagenomic datasets. Addition-
ally, the results also favor the modeling of the metagenomic datasets in the form of a
graph for the application of graph based models to yield better performance. Further-
more, it should be noted that the proposed framework achieves considerable results for
highly imbalanced datasets such as IBD, where all the other models failed to achieve
good results. One reason for the improved result is the MD-graph construction proce-
dure for the imbalanced dataset which has effectively addressed the imbalance problem
by setting a different neighbor threshold for nodes from different classes. The different
neighbor threshold helps the MD-graph to avoid unnecessary connections and to keep
only the relevant relationship between the nodes.

Case study
The case study aims to analyze the effectiveness of the MD-graph construction module
of the proposed framework in capturing the neighbors of a graph node for the two real
datasets.

Two sick samples S2, S10 and two healthy samples S7, S16 are considered from the real
IBD dataset and the abundance of the microbial biomarkers in these samples is analyzed.
The microbial biomarkers for the IBD disease are identified from few biological stud-
ies as Clostridiales, Enterobacteriaceae, Eubacterium, and Ruminococcus [37, 38]. While
examining the adjacency matrix of the MD-graph, it is observed that the graph construc-
tion module is able to identify the sick samples (S2, S10) as neighbors and the healthy
samples (S7, S16) as neighbors. This is because the sick samples exhibit high abundance
values for the microbial biomarkers in their microbiome profiles. Also, the healthy sam-
ples exhibit low abundance values for the microbial biomarkers in their microbiome pro-
files. Table 8 shows the abundance values of the biomarkers in the microbiome profiles
of samples S2, S10, S7 and S16 from the IBD dataset.

Fig. 6 Comparison of AUC values with previous work done on the real IBD (left) and the real CRC datasets
(right)

Page 27 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

Similarly, two sick samples S7, S10 and two healthy samples S8, S11 are considered
from the real CRC dataset and the abundance of the microbial biomarkers in these sam-
ples is analyzed. The microbial biomarkers for the CRC disease are identified from a few
biological studies as Peptostreptococcus, Streptococcus, Prevotella and Ruminococcus
[39]. While examining the adjacency matrix of the MD-graph, it is observed that the sick
samples (S7, S10) are identified as neighbors and the healthy samples (S8, S11) are iden-
tified as neighbors in the MD-graph. This is because the sick samples exhibit high abun-
dance values for the microbial biomarkers in their microbiome profiles. Also, the healthy
samples exhibit low abundance values for the microbial biomarkers in their microbiome
profiles. Table 9 shows the abundance values of the biomarkers in the microbiome pro-
files of samples S7, S10, S8, and S11 from the CRC dataset.

Conclusion
In this paper, we have developed a new framework consisting of boosting GraphSAGE
model to analyze human gut microbiome metagenomic data to classify the disease sta-
tus as sick or healthy. In particular, the ability of GraphSAGE to work effectively on
graph-based data is used for the binary classification task. We also proposed a novel
graph construction approach using a dissimilarity measure for computing the dissimilar-
ity between the samples. The graph was constructed by considering the data imbalance
present in the dataset, which helped the proposed model to achieve the best results on
the highly imbalanced dataset. The experimental results using real metagenomic disease
datasets and synthetic datasets show that the proposed framework outperformed most
competing methods in classification performance. Also, from the results, we confirm
that the proposed framework can be effectively used for disease prediction and person-
alized medicine for microbiome-related diseases. In future, the proposed framework can
be applied to other metagenomic and medical datasets for disease prediction.

Table 8 Abundance of the microbial biomarkers in samples S2, S10, S7, and S16 of real IBD dataset

Biomarker Sick samples Healthy samples

S2 S10 S7 S16

Clostridiales 795 564 57 43

Enterobacteriaceae 5378 2150 41 26

Eubacterium 180 125 6 15

Ruminococcus 809 825 1 5

Table 9 Abundance of the microbial biomarkers in samples S7, S10, S8, and S11 of real CRC dataset

Biomarker Sick samples Healthy samples

S7 S10 S8 S11

Peptostreptococcus 933 715 8 3

Streptococcus 7161 6865 45 85

Prevotella 5258 3196 62 90

Ruminococcus 4554 3533 589 401

Page 28 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

Abbreviations
ML Machine learning
DL Deep learning
OTU Operational taxonomic units
CNN Convolutional neural network
SVM Support vector machines
RF Random forest
DF Deep forest
XGB EXtreme gradient boosting
MLP Multilayer perceptron
GNN Graph neural network
GraphSAGE Graph SAmple and aggreGatE
GCN Graph convolutional network
IBD Inflammatory bowel disease
CRC Colorectal cancer
AUC Area under the receiver operating characteristics curve
ROC Receiver operating characteristics
T2D Type 2 diabetes
NN Neural network
NB Negative binomial

Acknowledgements
Not applicable.

Author contributions
SK and AAJ proposed the main idea and implemented all computational work; NK supervised the biological aspects of
the work. All authors discussed the results, read and approved the final manuscript.

Funding
This article did not receive sponsorship for publication.

Availibility of data and materials
The real IBD and CRC datasets analyzed in this study can be downloaded from the MetaNN repository (https:// github.
com/ Chieh Lo/ MetaNN) and SchlossLab’s repository (https:// github. com/ Schlo ssLab), respectively. The synthetic datasets
generated/analyzed in this study can be downloaded from https:// drive. google. com/ drive/ folde rs/ 15c59 orR1a ZAfC6 rW_
cXIaK aMLFI 06Avl? usp= shari ng.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 27 January 2023 Accepted: 23 March 2023
Published: 31 March 2023

References
 1. Rob K, Giglio MG, Lobos EA, Ramana M, Vincent M, Makedonka M, et al. Human microbiome project consortium.

Structure, function and diversity of the healthy human microbiome. Nature (London). 2012;486(7402):207–14.
 2. Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev

MMBR. 2004;68(4):669–85.
 3. Kuczynski J, Stombaugh J, Walters W, González A, Caporaso J, Knight R. Using QIIME to analyze 16s rRNA gene

sequences from microbial communities. Curr Prot Microbiol. 2012;27:1.
 4. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, et al. MetaPhlAn2 for enhanced metagenomic

taxonomic profiling. Nature Methods. 2015;12(10):902–3. https:// doi. org/ 10. 1038/ nmeth. 3589.
 5. Kinross JM, Darzi A, Nicholson JK. Gut microbiome-host interactions in health and disease. Genome Med.

2011;3:14–14.
 6. Ramos-Pollán R, Guevara-López MA, Suárez-Ortega C, Díaz-Herrero G, Franco-Valiente JM, Rubio-Del-Solar M,

et al. Discovering mammography-based machine learning classifiers for breast cancer diagnosis. J Med Syst.
2012;36(4):2259–69.

 7. Cao C, Liu F, Tan H, Song D, Shu W, Li W, et al. Deep learning and its applications in biomedicine. Genomics Proteom-
ics Bioinf. 2018;16(1):17–32.

 8. Reiman D, Metwally AA, Sun J, Dai Y. PopPhy-CNN: a phylogenetic tree embedded architecture for convolutional
neural networks to predict host phenotype from metagenomic data. IEEE J Biomed Health Inf. 2020;24:2993–3001.

https://github.com/ChiehLo/MetaNN
https://github.com/ChiehLo/MetaNN
https://github.com/SchlossLab
https://drive.google.com/drive/folders/15c59orR1aZAfC6rW_cXIaKaMLFI06Avl?usp=sharing
https://drive.google.com/drive/folders/15c59orR1aZAfC6rW_cXIaKaMLFI06Avl?usp=sharing
https://doi.org/10.1038/nmeth.3589

Page 29 of 29Syama et al. BMC Bioinformatics 2023, 24(1):126

 9. Fioravanti D, Giarratano Y, Maggio V, Agostinelli C, Chierici M, Jurman G, et al. Phylogenetic convolutional neural
networks in metagenomics. BMC Bioinf. 2018;19(2):49.

 10. Pasolli E, Truong DT, Malik F, Waldron L, Segata N. Machine learning meta-analysis of large metagenomic datasets:
tools and biological insights. PLOS Comput Biol. 2016;07(12):1–26.

 11. Li H, Cui Y, Liu Y, Li W, Shi Y, Fang C, et al. Ensemble learning for overall power conversion efficiency of the all-organic
dye-sensitized solar cells. IEEE Access. 2018;6:34118–26.

 12. Hamilton WL, Ying R, Leskovec J. Inductive representation learning on large graphs. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems. NIPS’17. Red Hook, NY, USA: Curran Associates
Inc.; 2017. p. 1025-1035.

 13. Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th
International Conference on Learning Representations. ICLR ’17; 2017. Available from: https:// openr eview. net/
forum? id= SJU4a yYgl.

 14. LaPierre N, Ju C, Zhou G, Wang W. MetaPheno: a critical evaluation of deep learning and machine learning in
metagenome-based disease prediction. Methods. 2019;03:166.

 15. Xu X, Wu A, Zhang X, Su M, Jiang T, Yuan Z. MetaDP: a comprehensive web server for disease prediction of 16S rRNA
metagenomic datasets. Biophys Rep. 2016;2:106–15.

 16. Asgari E, Garakani K, McHardy AC, Mofrad MRK. MicroPheno: predicting environments and host phenotypes
from 16S rRNA gene sequencing using a k-mer based representation of shallow sub-samples. Bioinformatics.
2018;34(13):i32–42. https:// doi. org/ 10. 1093/ bioin forma tics/ bty296.

 17. Wingfield B, Coleman S, McGinnity TM, Bjourson AJ. A metagenomic hybrid classifier for paediatric inflammatory
bowel disease. In: 2016 International Joint Conference on Neural Networks (IJCNN); 2016. p. 1083–1089.

 18. Lo C, Marculescu R. MetaNN: accurate classification of host phenotypes from metagenomic data using neural
networks. BMC Bioinf. 2019;06(20):314.

 19. Nguyen TH, Prifti E, Chevaleyre Y, Sokolovska N, Zucker JD. Disease classification in metagenomics with 2D embed-
dings and deep learning. ArXiv. 2018; abs/ 1806. 09046.

 20. Nguyen TH, Nguyen TN. Disease prediction using metagenomic data visualizations based on manifold learning
and convolutional neural network. In: Dang TK, Küng J, Takizawa M, Bui SH, editors. Future Data Secur Eng. Cham:
Springer International Publishing; 2019. p. 117–31.

 21. Sharma D, Paterson AD, Xu W. TaxoNN: ensemble of neural networks on stratified microbiome data for disease
prediction. Bioinformatics. 2020;36(17):4544–50. https:// doi. org/ 10. 1093/ bioin forma tics/ btaa5 42.

 22. Zhao BW, Wang L, Hu PW, Wong L, Su XR, Wang BQ, et al. Fusing higher and lower-order biological information for
drug repositioning via graph representation learning. IEEE Trans Emerg Top Computi. 2023;1–14.

 23. Zhao BW, Su XR, Hu PW, Ma YP, Zhou X, Hu L. A geometric deep learning framework for drug repositioning over
heterogeneous information networks. Brief Bioinf. 2022;23(6):bbac384.

 24. Zhao BW, You ZH, Hu L, Guo ZH, Wang L, Chen ZH, et al. A novel method to predict drug-target interactions based
on large-scale graph representation learning. Cancers. 2021;13(9):2111.

 25. Wang Y, Lian B, Zhang H, Zhong Y, He J, Wu F, et al. A multi-view latent variable model reveals cellular heterogeneity
in complex tissues for paired multimodal single-cell data. Bioinformatics. 2023;39(1):Btad005. https:// doi. org/ 10.
1093/ bioin forma tics/ btad0 05.

 26. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host and Microbe. 2014;15(3):382–92.
 27. Baxter N, Ruffin M, Rogers M, Schloss P. Microbiota-based model improves the sensitivity of fecal immunochemical

test for detecting colonic lesions. Genome Med. 2016;8(1):1.
 28. Robinson MD, Smyth GK. Small-sample estimation of negative binomial dispersion, with applications to SAGE data.

Biostatistics. 2007;9(2):321–32. https:// doi. org/ 10. 1093/ biost atist ics/ kxm030.
 29. Schapire RE. In: Schölkopf B, Luo Z, Vovk V, editors. Explaining AdaBoost. Berlin, Heidelberg: Springer Berlin Heidel-

berg; 2013. p. 37–52. https:// doi. org/ 10. 1007/ 978-3- 642- 41136-6_5.
 30. Cortes C, Vapnik V. Support-Vector Networks. In: Machine Learning; 1995. p. 273–297.
 31. Svozil D, Kvasnicka V, Pospichal J. Introduction to multi-layer feed-forward neural networks. Chem Intell Lab Syst.

1997;39(1):43–62.
 32. Leo B. Random Forests. Mach Learn. 2001;45:5–32.
 33. Zhou ZH, Feng J. Deep forest. Natl Sci Rev. 2018;6(1):74–86. https:// doi. org/ 10. 1093/ nsr/ nwy108.
 34. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. KDD ’16. New York, NY, USA: Association for Computing
Machinery; 2016. p. 785-794. Available from: https:// doi. org/ 10. 1145/ 29396 72. 29397 85.

 35. Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–40.
 36. Zhu Q, Jiang X, Zhu Q, Pan M, He T. Graph embedding deep learning guides microbial biomarkers identification.

Front Genetics. 2019;10:1182.
 37. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, et al. A decrease of the butyrate-producing spe-

cies Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut.
2014;63(8):1275–83.

 38. Zhou Y, Xu ZZ, He Y, Yang Y, Liu L, Lin Q, et al. Gut microbiota offers universal biomarkers across ethnicity in inflam-
matory bowel disease diagnosis and infliximab response prediction. Systems. 2018;3(1):e00188.

 39. Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, et al. Potential of fecal microbiota for early-stage detec-
tion of colorectal cancer. Mol Syst Biol. 2014;10:766.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1093/bioinformatics/bty296
http://arxiv.org/2018;abs/1806.09046
https://doi.org/10.1093/bioinformatics/btaa542
https://doi.org/10.1093/bioinformatics/btad005
https://doi.org/10.1093/bioinformatics/btad005
https://doi.org/10.1093/biostatistics/kxm030
https://doi.org/10.1007/978-3-642-41136-6_5
https://doi.org/10.1093/nsr/nwy108
https://doi.org/10.1145/2939672.2939785

	Automatic disease prediction from human gut metagenomic data using boosting GraphSAGE
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Related work

	Methods
	The input dataset
	Real datasets
	Synthetic datasets

	Distance matrix computation
	Distance threshold computation
	Neighbor threshold computation
	Metagenomic disease graph (MD-graph) construction
	Edge construction
	Edge refinement
	Adding the feature vectors to MD-graph nodes

	Disease prediction network (DP-Net)
	GraphSAGE
	Boosting GraphSAGE
	Initialization phase
	Iterative phase

	Experimental setup
	Implementation details
	Experiments
	Parameter settings
	Identifying the optimum number of neighbors and the best dissimilarity measure for each dataset
	Identifying parameters for single GraphSAGE and single GCN models
	Determining the optimum number of base classifiers for the ensemble graph models
	Parameters for ML, DL and ensemble models

	Evaluation metrics

	Results and discussion
	Comparison of the proposed model with other ML, DL and ensemble models
	Comparison with previous work done on the real datasets

	Case study
	Conclusion
	Acknowledgements
	References

