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Abstract 

Motivation: Gene regulatory networks (GRNs) arise from the intricate interac-
tions between transcription factors (TFs) and their target genes during the growth 
and development of organisms. The inference of GRNs can unveil the underlying 
gene interactions in living systems and facilitate the investigation of the relationship 
between gene expression patterns and phenotypic traits. Although several machine-
learning models have been proposed for inferring GRNs from single-cell RNA sequenc-
ing (scRNA-seq) data, some of these models, such as Boolean and tree-based networks, 
suffer from sensitivity to noise and may encounter difficulties in handling the high 
noise and dimensionality of actual scRNA-seq data, as well as the sparse nature of gene 
regulation relationships. Thus, inferring large-scale information from GRNs remains a 
formidable challenge.

Results: This study proposes a multilevel, multi-structure framework called a pseudo-
Siamese GRN (PSGRN) for inferring large-scale GRNs from time-series expression 
datasets. Based on the pseudo-Siamese network, we applied a gated recurrent unit to 
capture the time features of each TF and target matrix and learn the spatial features of 
the matrices after merging by applying the DenseNet framework. Finally, we applied 
a sigmoid function to evaluate interactions. We constructed two maize sub-datasets, 
including gene expression levels and GRNs, using existing open-source maize multi-
omics data and compared them to other GRN inference methods, including GENIE3, 
GRNBoost2, nonlinear ordinary differential equations, CNNC, and DGRNS. Our results 
show that PSGRN outperforms state-of-the-art methods. This study proposed a new 
framework: a PSGRN that allows GRNs to be inferred from scRNA-seq data, elucidat-
ing the temporal and spatial features of TFs and their target genes. The results show 
the model’s robustness and generalization, laying a theoretical foundation for maize 
genotype-phenotype associations with implications for breeding work.

Keywords: Gene regulatory network, Pseudo-siamese network, Deep learning, Time-
series expression, Maize

Introduction
Maize (Zea mays) is an important worldwide food crop and an important human 
nutrition, animal feed, and bioenergy source. However, with the reduction in global 
cultivated land area, maize production has become an essential issue in worldwide 
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food security [1]. Bioinformatics can realize in-depth mining and analysis of com-
plex biological processes and has become an indispensable and efficient tool in crop 
breeding [2]. Therefore, understanding the growth process of maize and exploring 
the relationship between the genotype and phenotype of maize seeds with the help 
of bioinformatics methods will help screen for particular traits in maize breeding to 
improve maize varieties and yield [3–5].

The inference of gene regulatory networks (GRNs) holds great promise for uncover-
ing complex gene-level information and its connection to phenotypic traits, providing 
solutions for a range of applications, such as medicine [6], biology [7], and agricul-
ture [8]. With the advent of high-throughput sequencing technologies, such as RNA 
sequencing (RNA-Seq) [9] and chromatin immunoprecipitation followed by sequenc-
ing (ChIP-Seq) [10], GRN inference research has advanced considerably, enabling 
the study of regulatory relationships between genes at the molecular level [11–14]. 
However, the verification of these relationships typically requires biological experi-
ments, which are constrained by the limited amount of data generated, extended time 
frames, and high costs in terms of human and material resources [15]. Recent devel-
opments in machine learning and computational biology have paved the way for the 
use of machine learning models to reverse engineer gene expression metrics and infer 
GRNs in a rapid and efficient manner [16]. A wide range of computational methods 
has been proposed for GRN inference, including Bayesian networks [17–20], infor-
mation theory [21–24], and differential equation models [25, 26].

Many existing methods, such as GENIE3 [27], GRNBoost2 [28], TIGRESS [29], and 
PoLoBag [30], formulate GRNs as regression-based problems, assuming that all regu-
latory interactions are functional and that changes in the expression levels of genes 
result from the regulation of specific transcription factors (TFs). However, biological 
networks exhibit multiple regulatory mechanisms and interactions that only exist at 
certain times.

In recent years, several supervised learning approaches have been proposed for infer-
ring GRNs by analyzing known regulatory relationships’ features and integrating prior 
knowledge to infer unknown regulatory relationships. One of the most successful mod-
els in this area is CNNC, proposed by Yuan et al. [31]. CNNC encodes the scRNA-seq 
data of TFs and their targets into histograms of expression data and employs two Con-
volutional Neural Network (CNN) layers to explore the interactions between each pair. 
Building on the success of CNNC, Zhao et al. proposed a hybrid deep-learning frame-
work, named DGRNS [32], which utilizes Pearson Correlation Coefficient (PCC) to 
encode scRNA-seq data and combines Recurrent Neural Network (RNN) and CNNs 
to train models that can differentiate pairs of genes with known interactions and infer 
unknown interactions between other pairs of TF-targets. The accuracy and execution 
speed of both CNNC and DGRNS have attracted significant attention in the bioinfor-
matics community.

Despite the development of numerous models for inferring GRNs, several challenges 
persist in the field. These include the extraction of relevant features from gene expres-
sion data, the practical engineering of these features, and the accurate assessment of 
gene interactions. Given the complexity of the data sources, such approaches need to 
be more generalizable across biological mechanisms to achieve widespread applicability.
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To address these issues, we proposed a supervised framework, the pseudo-Siamese 
network-based GRN inference framework (PSGRN), to infer GRNs. Based on this foun-
dation, this study considers GRN inference as an association classification problem 
affected by multiple factors. In particular, we expressed gene interaction as the cor-
relation between gene expression series and applied the pseudo-Siamese network to 
automatically learn the time features contained in the series and the spatial features gen-
erated after two features have been concatenated. The critical overviews underlying our 
approach are the feature matrices constructed from genes and capturing the key features 
to obtain the underlying changes between genes. Co-located genes with similar topo-
logical roles in the co-expression network may interact at some stages. These insights 
enabled us to discover the standard features of gene interactions and infer whether 
unknown genes have regulatory relationships. We extensively considered the gene 
expression features and embedded different feature extractors, including gated recurrent 
units (GRUs) [33] for time-feature learning and DenseNet [34] for spatial-feature learn-
ing. After learning the gene expression feature matrix, we can discover the correlation 
in the gene expression data and infer whether there is a regulatory relationship between 
other genes. Finally, we checked the efficiency of each PSGRN part. PSGRN significantly 
improve inference accuracy, robustness, and generalization ability compared to other 
methods.

This study’s significance realizes the construction of a large-scale GRN by using deep 
learning and applying it to maize multi-omic data to lay a theoretical foundation for 
maize genotype-phenotype association and later breeding work.

Datasets
We evaluated the performance by applying PSGRN to the gene expression data of maize 
seeds from the National Center for Biotechnology Information (NCBI) database and 
comparing it with other GRN inference approaches.

The expression and function of most genes involved in grain development remain 
unclear [35–37]. Yi et  al. [38] conducted RNA-Seq analysis on the nucellus (including 
the embryo sac) of the maize inbred line B73 and detected 22790 genes, including 1415 
TFs. They drew the transcriptome landscape of early maize seed development with high 
temporal resolution. Covering 22790 gene expressions and 107 time points provides 
essential resources for future studies on the gene regulation of grain development.

Tu et  al. [39] applied ChIP-Seq technology to large-scale transcriptional data tech-
nology to analyze TF binding and DNA promoters at the gene level and constructed 
the GRN in maize leaves based on experimental results; this GRN contains 272627 
regulatory relationships, revealing the interaction of 104 TFs with other genes. These 
results demonstrate the structure, organization principles, and evolution of plant tran-
scriptional regulatory networks, helping to elucidate plant transcriptional regulatory 
processes.

Previous studies have shown that TFs and their target genes tend to maintain their 
regulatory relationships across different stages of development in an organism, as 
observed in eukaryotes like humans [40], mice [41], Escherichia coli [42], and Arabidop-
sis [43]. Therefore, we applied the known GRN from maize leaves to infer the GRN of 
maize seeds.
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Figure 1 shows the data preprocessing steps. Here, real expression and regulation data-
sets were obtained from the NCBI database. Co-expression of genes in maize seeds and 
leaves can be considered part of the GRN of maize seeds. We preprocessed and con-
structed sub-datasets by eliminating the non-expressed genes and strengthening their 
regulatory relationships. We constructed two networks at different scales to evaluate the 
PSGRN generalization.

This research conducted a comprehensive analysis of two datasets and derived two 
sub-datasets. The first step involved filtering the gene expression dataset to retain 
genes with a mean expression level of at least 1.0 ( mean(Exp) ≥ 1.0 ) and removing 
non-expressed genes with a mean expression level below 1.0 ( mean(Exp) < 1.0 ). We 
then applied a p-value threshold of 0.01 to identify regulatory relationships among the 
expressed genes in the GRN dataset. Relationships with a p-value of 0.01 or less were 
considered reliable regulations and were sorted in ascending order of p-value. The 
top 500 and top 1000 genes from this regulation dataset were selected, and the corre-
sponding integrated time series of expressions were designated as maize-1 and maize-2, 
respectively.

To label regulatory relationships as gold standards, we utilized the data-pair construct 
process as outlined in the DREAM4 challenge [44]. We listed each potential TF-target 
relationship pair and assigned a binary label of 1 to pairs with a p-value ≤ 0.01 in the 
GRN dataset. Pairs with p-values above this threshold or not shown in the GRN dataset 
were assigned a label of 0. These labeled regulatory relationships were utilized as gold 
standards for both maize-1 and maize-2. Table 1 presents a detailed description of the 
datasets, including the number of genes, the number of regulatory relationships, and the 
number of TF-target pairs for each dataset.

Method
The framework is illustrated in Fig. 2. PSGRN aim to evaluate the relationship between 
TFs and their target genes using a pseudo-Siamese network consisting of three steps:

Fig. 1 Data processing framework for exploring gene expression in real-world organisms based on the 
expression data of maize seeds and the regulatory relationships of leaves. Upon preprocessing the gene time 
expression dataset and the regulatory relationship dataset, we removed the untrusted parts ( mean(Exp) < 1 
and p-value> 0.01 ) and sorted the regulatory relationships based on their p-values. We then selected the 
genes that appeared in the top 500 and 1000 regulatory relationships and identified the credible regulatory 
relationships among them. Using this approach, we constructed two sub-datasets, called maize-1 and 
maize-2, which contain the most reliable regulatory relationships among the expressed genes
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• Extraction of feature matrices from each TF and target gene according to preproc-
essed datasets.

• Application of the GRU and DenseNet to obtain hidden time and spatial informa-
tion.

• The regulatory and non-regulatory gene pairs are distinguished, and the predic-
tion results are outputted.

With no prior knowledge of the regulators, we considered each TF as a potential net-
work regulator for all genes.

PSGRN is a classification algorithm where the network inference problem is con-
sidered a binary classification task for each relationship, that is, whether TFs regulate 
target genes. Each classification task was performed by applying a pseudo-Siamese 
network, inferring GRNs from gene expression data by reverse reasoning. It simul-
taneously considers the time and spatial features of the regulatory relationship of 
expressed genes, extracts the time and spatial features, applies the deep learning 

Fig. 2 PSGRN framework. PSGRN aim to evaluate the relationships between TFs and target genes using a 
pseudo-Siamese network consisting of three steps. This model extracts feature matrices from each TF and 
target gene according to preprocessed datasets. The GRU and DenseNet are applied to obtain hidden time 
and spatial information. Finally, the regulatory and non-regulatory gene pairs are distinguished, and the 
prediction results are outputted

Table 1 Different scales of maize gene datasets introduction

aNumber of genes in the datasets (containing TFs)
bNumber of TFs contained in gene expression dataset
cNumber of regulatory relationships contained in standard network
dCalculate Network Density through Regulations/(TFs*Genes)

Datasets Genesa TFsb Regulationsc Network 
densityd

Maize-1 506 101 9690 0.190

Maize-2 876 148 16367 0.126
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framework, evaluates whether each TF has a regulatory relationship with target 
genes, and infers the entire GRN.

Pseudo‑siamese network

The pseudo-Siamese network is a deep-learning framework with multiple inputs and a 
single output [45]. Two or more inputs were applied for feature extraction using spe-
cific neural network modules. The extracted features were then connected to the inner 
product and mapped to a new feature space. The loss function evaluates the correlation 
between the inputs. In supervised learning, a pseudo-Siamese network can be applied to 
maximize the distance between different labels and minimize the distance between the 
same labels to achieve accurate classification. Its structure is shown in Fig. 3.

A pseudo-Siamese network is suitable for dealing with situations in which correlations 
exist between different inputs. Pseudo-Siamese networks have been widely applied in 
many fields, such as natural language processing [46], image recognition [47], and signa-
ture analysis [48].

Feature matrix extraction

PSGRN extract the feature matrix of the genes from each time-expression dataset. 
Denote G = {G1,G2 . . . ,Gm} , where m genes are in the gene expression profile, and 
Gi = Gi,1,Gi,2 . . . ,Gi,n  , where the expression of Gi at all n time points is represented. 
Data preprocessing of the original data before correlation analysis unifies the description 
and enhances comparability, ensuring that PSGRN can fully obtain the hidden state of 
the series. For each TF and target gene expression level, considering its time features, we 
applied the differential equation as the feature extraction method to obtain the differ-
ence matrix as follows:

where tl is the time lag, and it calculates the series difference values for each time point 
to generate its feature matrix. The difference matrix captures gene expression changes 

(1)G
′

i =

{

G
′

i,1,G
′

i,2, . . . ,G
′

i,n−tl−1

}

(2)G
′

i,j =
{

Gi,j+1 − Gi,j ,Gi,j+2 − Gi,j , . . . ,Gi,j+tl − Gi,j

}

Fig. 3 Pseudo-Siamese network structure [45]. In supervised learning, two or more input vectors represented 
by a network will maximize the distance of representation of different labels and minimize the distance of 
the same labels. A pseudo-Siamese network can evaluate the correlation between new vectors based on this 
strategy
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after each time point. The feature dimension of Gi is changed to G′

i = (n− tl − 1) ∗ tl 
after the series extraction.

The features of the original dataset include four different developmental stages, cor-
responding to double fertilization, endosperm, cell formation, and early differentiation 
stages. To analyze the mechanism of gene regulation more comprehensively, we set 
tl = 32 . Each gene feature was changed from 107 points to a 74 ∗ 32 matrix through the 
constructed feature matrix.

Time feature learning

In this study, we conducted time-feature learning of the expression series, considering 
that transcription factors (TFs) and their target genes often exist at specific times during 
natural gene expression with little overall regulation. To achieve this, we employed the 
gated recurrent unit (GRU) as the unit of time feature learning.

The GRU is a variant of the vanilla RNN that incorporates a gating mechanism, simi-
lar to the long short-term memory (LSTM) unit. While both the GRU and LSTM have 
input and output gates similar to the vanilla RNN, the GRU removes the forgetting gate 
and applies the reset and update gates to retain valuable long-term memory and ignore 
unnecessary short-term noisy memories. Compared with LSTM, the GRU structure 
is more straightforward and requires less training, making it easier to implement. The 
standard architecture of the GRU network is available at Additional file 1. The internal 
GRU calculation formulae are as follows:

where xt is the current input vector of the GRU, and in PSGRN, it is the feature matrix 
of each gene expression level. rt and zt are the reset and update gates, respectively, and 
are computed using Eqs.  3 and 4. σ and tanh denote sigmoid and the tanh activation 
functions, respectively. ht−1 , h′t and ht are the previous, candidate, and current outputs, 
respectively. wr , wz , and wh are the weight matrices of the reset, update, and candidate 
gates, respectively, which are optimized during the training process.

We set the hidden dimension vector to 128. After the GRU studies the time features of 
the TF-target pairs, we concatenated them into one matrix and transferred them to the 
next module for spatial feature learning.

Spatial feature learning

In this study, we utilized the DenseNet module to extract spatial features based on a fea-
ture matrix from a global perspective.

DenseNet is a popular CNN architecture [34]. As the successor to the ResNet archi-
tecture, DenseNet is composed of dense blocks and transition modules. DenseNet 

(3)rt = σ(Wr · [ht−1, xt ])

(4)zt = σ(Wz · [ht−1, xt ])

(5)h′t = tanh
(

Wh ·
[

rt ⊙ h′t−1, xt
])

(6)ht = (1− zt)⊙ ht−1 + zt ⊙ h′t
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introduces a novel architecture that connects each layer to every other layer in a feed-
forward fashion, enabling a maximum flow of information across all layers. The network 
is built using dense blocks, which contain multiple layers that are densely connected to 
each other. In each dense block, the feature maps from all preceding layers are concat-
enated to form the input to each layer, instead of being added or averaged as in other 
architectures. This enables each layer to have access to the collective knowledge of all 
preceding layers, which helps to alleviate the vanishing gradient problem and improves 
the feature reuse across layers. DenseNet also employs a transition layer between the 
dense blocks to reduce the spatial dimension of the feature maps, which improves 
computational efficiency and reduces overfitting. For the structure and submodules of 
DenseNet, please see Section II of Additional file 1 for more detail.

The utilization of deeper networks facilitates the extraction of high-dimensional fea-
tures across regions, without being restricted by a series of correlation vectors. Addi-
tionally, the employment of more hierarchical connections helps to mitigate the problem 
of gradient vanishing and explosion, resulting in more effective feature propagation.

Relatedness measurement

After the input features were extracted from these deep networks, the main features 
were extracted and outputted through the average pool and fully connected layers. In 
the output stage, PSGRN utilized binary cross-entropy (BCE) as the loss function to 
obtain binary results:

The BCE values were restricted to the range of (0, 1) , where N represents the number of 
samples, yi represents the label of sample i, and pi represents the probability that sample 
i is predicted to be a positive label by the sigmoid function. PSGRN subsequently applied 
max-pooling and fully connected layers to obtain all features, followed by a sigmoid 
function as the classification measurement. The use of sigmoid instead of softmax was 
because softmax is only applicable to dichotomous issues, whereas in GRN classification, 
it is impossible to prove that two genes are completely unrelated based on current bio-
technology. Therefore, this is not a straightforward dichotomous issue. The logical value 
of (0, 1) in GRN classification inference represents the relationship between “currently 
not verified correlation” and “currently verified correlation,” which are not absolute. 
Thus, PSGRN applied the sigmoid function to transform the output to the range of (0, 1) 
and then employed various thresholds for classification based on different techniques.

Results
Model training and datasets partition

According to GRNs from the real world, we marked the gene pairs of TFs and target 
genes as positive sample 1, and those without regulatory relationships were marked as 
negative sample 0. A GRN is a sparse network in which the number of positive labels 
is much less than that of negative labels, which belongs to the problem of unbalanced 
samples. This problem is reflected in the network density of previous datasets. To 

(7)BCE = −
1

N

N
∑

i=1

yi log
(

p
(

yi
))

+
(

1− yi
)

log
(

1− p
(

yi
))
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comprehensively analyze the performance of our model, we divided the relationship of 
each gene pair in each dataset into training, test, and validation sets at a ratio of 3:1:1 
and ensured that the proportion of positive and negative samples after the division was 
consistent with the original data set. PSGRN were implemented based on the Tensor-
Flow platform, and with other compared models, all these experiments were run on a 
computer configured with Intel Xeon 16896k + 64GB RAM + 4 * NVIDIA GTX 1080ti.

Evaluating metrics

Most existing methods for inferring gene regulatory networks rely on pre-training their 
models and obtaining scores to predict the relationship between TFs and their target 
genes. The score reflects the confidence level of the regulatory relationship, and the net-
work is usually determined by setting a threshold.

In this study, we analyzed the expression dataset of maize seeds and constructed the 
time series of TFs and their target genes as inputs. We obtained the output coefficients α 
in the range of (0, 1) . For the two-classification problem, we conducted a comprehensive 
analysis of all output coefficients and determined an appropriate threshold θ . We classi-
fied the output with α ≥ θ as positive and α < θ as negative.

In most previous studies, the area under the receiver operating characteristic (ROC) 
curve (AUROC) and the area under the precision-recall (PR) curve (AUPR) scores were 
used as evaluation criteria for GRN inference models. The PR curve was drawn using 
precision and recall rates, and the ROC curve was drawn using false positive rate (FPR) 
and true positive rate (TPR) rates. However, we found that AUROC can only evaluate 
balanced problems, whereas GRN inference is highly unbalanced, with far fewer inter-
acting gene pairs than non-interacting pairs. Therefore, we used AUPR as the metric to 
evaluate the highly unbalanced datasets of the results of each model.

Our model’s experimental results provide all prediction edges and their corresponding 
weights. The weight indicates the credibility of the regulatory relationship at the edge. 
We evaluated the performance of each model by calculating the corresponding accuracy 
and recall rates by specifying an appropriate threshold. Finally, we obtained the corre-
sponding relationship through comprehensive analysis.

Performance evaluation

Among the many unsupervised models, we selected GENIE3 [27], GRNBoost2 [28], and 
nonlinear ordinary differential equations (NODE) [26]. These are all typical methods 
with a significant impact on inferring GRNs from gene expression series with unsuper-
vised learning. Similarly, for supervised learning, we compared the PSGRN with CNNC 
[31] and DGRNS [32], which are related to our method and significantly outperform 
other methods, such as PIDC [49], SCODE [50], and ARACNe [51].

The performance comparison results of various methods based on their AUPR values 
on the two-scale datasets are presented in Fig.  4, and their running time is shown in 
Table 2. PSGRN achieved AUPR values of 0.655 and 0.664, respectively, from the anal-
ysis of the two datasets, which significantly exceeded those of the other models. Our 
model considers both time and spatial features, rather than treating expression data as a 
whole. On the other hand, NODE is specifically designed for time-expression data and 
runs the fastest among all models. However, it yielded the poorest performance because 



Page 10 of 18Wang et al. BMC Bioinformatics          (2023) 24:163 

it views gene interactions as a whole process, whereas such interactions occur at spe-
cific moments, indicating that NODE is not appropriate for GRN inference in natural 
organisms.

The performances of GENIE3 and GRNBoost2 were not ideal as they are trained 
according to random subsets and do not consider all genes. As the successor of GENIE3, 
GRNBoost2 applied gradient-boosted decision trees and a regularized early stopping 
strategy to prevent the model from overfitting, making it insensitive to dropout events. 
GRNBoost2 does not solve the sparse and unstable problems of GENIE3.

CNNC and DGRNS have achieved impressive results on unbalanced datasets, which 
can be attributed to the successful integration of information theory and deep learn-
ing. Specifically, DGRNS has introduced PCC on top of the CNNC model, leading to 
superior performance compared to the original CNNC model. However, limitations 
exist due to the short time intervals between data points in the datasets, and the Pearson 
coefficient’s inability to capture non-linear relationships between TFs and target genes. 
Furthermore, the two-layer CNN structure used in CNNC and DGRNS may not fully 
capture the underlying information. Additionally, the computation of PCC in DGRNS 
is time-consuming (nearly 90%). Despite the extended running time, the marginal 
improvement achieved by DGRNS over other models is not significant, rendering the 
cost unjustifiable.

In summary, PSGRN runs slower than other models except for DGRNS but achieves 
the best results. The comparison of PSGRN with other models indicates that the per-
formance of PSGRN in inferring GRNs is highly effective. The results highlight the 
importance of time and spatial feature learning in GRN inference, and the significance 
of considering time series in sections in GRN inference. These findings demonstrate that 
PSGRN can significantly improve the accuracy and efficiency of GRN inference and pro-
vide insights into the development of future deep-learning models for GRN prediction.

Fig. 4 Performance comparison of different models. The color corresponds to each dataset, and the groups 
represent different models. The AUPR scores obtained by each model are marked above each designated 
column

Table 2 Running time comparison of different models

Model GENIE3 GRNBoost2 NODE CNNC DGRNS PSGRN

Maize-1 198.07 s 34.65 s 37.12 s 22.13 min 210.47 min 28.70 min

Maize-2 355.23 s 62.34 s 72.54 s 38.75 min 480.19 min 73.49 min
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Model validation

Robustness validation

To validate the robustness of PSGRN, this study employs two verification strategies, 
namely, introducing noise to the experimental dataset and extracting subsets from 
the experimental dataset. The study investigates the difference between the PSGRN 
model and the original experimental results in the presence of noise and incomplete 
data sets. The validation experiment is based on the maize-1 dataset.

To introduce data noise, this study randomly selects a TF-target relationship pair 
in the data acquisition stage, duplicates the time expression sequence of the two, and 
randomly selects the time expression sequence of a gene in the maize-1 dataset and 
the original time sequence of TF and Target, respectively, to generate noise samples. 
we selects 5% of the TF-target pairs in the maize-1 dataset randomly to construct 
noise samples, forming a noise dataset. we carries out ten repeated experiments, 
records the AUPR value of ten experiments, takes the mean value, and records the 
variance of ten experimental results for analysis.

For the analysis of incomplete datasets, this study adopts the resampling analysis 
method for verification. It randomly selects 70% of the data from the maize-1 data-
set to generate an incomplete dataset. Then, it inputs the obtained sub-dataset into 
PSGRN for evaluation. we also conducts ten repeated experiments, records the AUPR 
values of all experiments, takes the mean value, compares it with the performance of 
PSGRN in the original dataset, and records the variance of the resampling experiment 
results for analysis.

Table  3 illustrates the comparison between the two validation methods and the 
results of PSGRN in the maize-1 dataset. It can be observed that PSGRN still achieves 
similar results to the original dataset in the presence of noise and incomplete data. 
This is attributed to the PSGRN model’s sufficient depth of layers and strong learn-
ing ability, allowing it to accurately identify gene interactions even in the presence of 
noise and incomplete data.

After verifying the robustness of the model, we will further verify the effectiveness 
of each module in the model and analyze the effectiveness of each layer in the model. 
These verifications will help confirm the PSGRN model’s performance and provide 
more reliable support for its practical applications.

Effectiveness validation

Many deep learning models for time and spatial feature learning with good perfor-
mances have been proposed. To verify the optimal performance of the PSGRN, we 
applied various widely used methods to build different models and compared their 
performance in time and spatial feature learning. The structure of each model is illus-
trated in Fig. 5.

To verify the effectiveness of time-feature learning, we modified the PSGRN and 
built three models (Fig. 5a):
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• Removal of the temporal feature learning module so that the feature matrix of the 
TFs and target genes are directly inputted into DenseNet, called FM-DN. Here, 
FM represents the feature matrix, and DN represents the DenseNet module.

• Application of vanilla RNN as the time feature learning module, called RNN-DN.
• Application of LSTM as a time feature learning module, called LSTM-DN.

Similarly, we constructed the following models for the validity test of the spatial features 
(Fig. 5b):

• Construction of the FM-GRU model, which removes the spatial feature learning 
module and directly calculates the correlation of the GRU outputs.

• Replacement of DenseNet with VGGNet [52] and ResNet, which are called GRU-
VGG and GRU-RN, respectively, where RN is the ResNet module.

It is worth mentioning that in the FM-GRU model, the GRU output and target genes 
in TFs are two matrices. Considering that there is no spatial feature learning part to 
consider these matrices comprehensively, we changed the previous matrix series to 
multiplication. In addition, to verify the effectiveness of the sigmoid function in model 
classification, we replaced the last sigmoid function in the PSGRN with the softmax 
function, called PS-SM (Fig. 5c). Here, SM represents the softmax function.

We evaluated their performance on maize-1 and maize-2 datasets. The results are 
shown in Fig. 6.

Among all the compared models, PSGRN achieved the best results. Notably, the per-
formance of PSGRN was significantly improved after replacing the softmax function 
with the sigmoid function, indicating that the softmax function is unsuitable for GRN 
inference. The softmax function maps the output to the range of (−∞,+∞) and then 
normalizes it, increasing the distance between different labels as much as possible. How-
ever, this strategy is often unsuitable for GRN inference, as researchers cannot evalu-
ate whether there is “no interaction” between two genes due to limitations in current 

Fig. 5 Module effectiveness validation of PSGRN. This study aimed to verify the optimal performance of each 
module of PSGRN by comparing different modules. In order to evaluate the time feature learning module, 
we removed the GRU module and implemented either RNN or LSTM to replace it. Similarly, the spatial 
feature learning module was also substituted by either VGGNet or ResNet in order to assess its performance. 
Additionally, for part c, the loss function was replaced with the softmax function instead of the sigmoid 
function. These modifications were made to better understand the effectiveness of each module within 
PSGRN
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technology. As stated in Section “Relatedness Measurement”, label 0 indicates “no cor-
relation found at present”, not “absolutely irrelevant”. Over-maximizing the sample dis-
tance between label 1 and label 0 is not conducive to discovering unknown interactions. 
We expected to obtain the probability value of the interaction between two genes, rep-
resenting the reliability of the corresponding category. The sigmoid function maps the 
actual output number field to the practical real number space in the range of (0, 1) and 
represents a probability distribution that is more suitable for GRN inference.

In the field of time feature learning, FM-DN achieves the worst performance, and 
RNN-DN and LSTM-DN have significantly improved compared with FM-DN, which 
fully illustrates the necessity of time feature learning. Compared with GRU, the vanilla 
RNN lacks the time memory module, which is also the reason for the relatively poor 
performance of RNN-DN. Compared with the GRU, LSTM has one more gate. Hence, 
LSTM performs better than GRU for long-time series learning. However, the gene 
expression series is not a long-time series, and too many memory modules will increase 
the redundant information. The GRU can reduce redundant information and obtain a 
better performance than LSTM.

The performance of each validation model differed in the field of spatial feature learn-
ing. Without spatial feature learning, FM-GRU outperformed GRU-RN in the maize-1 
dataset and GRU-VGG in the maize-2 dataset but was still inferior to PSGRN as it is 
difficult to capture features in a short-term gene expression series. When the dataset is 
relatively small, a shallower network can reduce the overfitting phenomenon and retain 
more features. Larger datasets must apply deeper networks to capture inherent fea-
tures. VGGNet and ResNet can perform only one of the feature transmissions and deep 

Fig. 6 Validation of each module. To validate the effectiveness of our PSGRN model, we conducted ablation 
experiments on three critical components: the time feature learning module, spatial feature learning module, 
and classification module. By removing each module and evaluating the performance of the modified model, 
we assessed the contribution of each module to the overall performance of PSGRN. This analysis allowed 
us to demonstrate the superiority of our model and provide insights into the specific components that 
contribute to its success

Table 3 The result of PSGRN in the noisy and incomplete dataset

Method AUPR (mean) AUPR (variance)

Noise 0.633 1.249× 10
−4

Incomplete 0.631 1.720× 10
−4

Original 0.655 1.492× 10
−4
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networks required for feature extraction. DenseNet can solve this problem; as more fea-
ture connections are set, the output of each layer can be inputted into a deeper network, 
which also effectively alleviates the problems of gradient vanishing and exploding. This 
is why the PSGRN achieved better results than the other models.

Network analysis

In this study, we utilized PSGRN to infer the gene regulatory network (GRN) of maize-1. 
The trained model was applied to predict interactions in the maize-1 dataset, and we set 
a threshold value µ as the absolute value of the 10000th most significant coefficient in 
result A to account for the density of the inferred GRN. Based on this threshold, we cal-
culated the number of interactions ( A ≥ µ ) and non-interactions ( A < µ ), resulting in 
6914 true positives (TP), 38108 true negatives (TN), 3308 false positives (FP), and 2776 
false negatives (FN).

Taking inspiration from the analysis conducted by Matsumoto et  al. [50], this study 
focuses on the analysis of positive edges of each TF under the PSGRN prediction, with 
a specific focus on the top 15 TFs having the largest number of edges. The complete 
results and analysis notes are available at https:// github. com/ ciril a9/ PSGRN. These TFs 
are highly expressed during double fertilization and coenocyte formation in maize seeds, 
respectively. The current investigation has identified these TFs as being related to other 
genes in the GRN. While these genes are not considered to be indispensable for the 
maintenance of pluripotency in the nucellus and endosperm cells of maize [53], previ-
ous studies have demonstrated their significance in the process of differentiation. For 
instance, these TFs are known to restrict the lineage-specific functions of other genes 
during differentiation through histone methylation [54]. Moreover, GRMZM2G145041 
is presumed to play a potential role in DNA methylation, while GRMZM2G119823 is 
involved in regulating genomic imprinting [55]. Hence, it is reasonable to conclude that 
GRMZM2G119823 and GRMZM2G145041 have an impact on the expression of genes 
in maize endosperm.

To gain deeper insights into our findings, we constructed a protein-protein interac-
tion (PPI) network using the Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) database [56]. We focused on the top 15 TFs in the maize-1 dataset and que-
ried the STRING database to generate a functional PPI network between the TFs and 
other proteins, following transcription and expression. The nodes in the network rep-
resent maize genes, and the colored lines depict the sources of the interactions, such as 
experiments, text mining, databases, and co-expression analysis. The partial results of 
our analysis are presented in Fig. 7.

Our investigation revealed that PSGRN could effectively identify genes in the network, 
include GRMZM2G118693 and GRMZM2G145041, suggesting their definite involve-
ment in the maize gene regulatory network. These findings provide further evidence 
for the accuracy and applicability of our model in predicting gene interactions in maize. 
Additionally, we identified novel potential regulatory relationships, and the inferred net-
work interactions were consistent with those present in the standard network. Notably, 
PSGRN predictions not included in the database are not necessarily incorrect, as many 
gene regulatory relationships remain unverified by biological experimentation. PSGRN 
can identify numerous potential rules between genes based on existing information and 

https://github.com/cirila9/PSGRN
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can save researchers significant time in identifying the next direction for exploration. 
Our study provides a foundation for supplementing biological data and identifying criti-
cal regulators of differentiation in maize.

Discussion and conclusion
This study proposes a deep learning framework called a PSGRN for GRN inference. It 
is based on supervised learning and a pseudo-Siamese network. A GRU and DenseNet 
were applied for processing time-series data and analyzing feature matrices, respectively, 
effectively improving the model’s performance.

To comprehensively assess the performance, we compared PSGRN with existing meth-
ods, including both representative supervised and unsupervised learning methods. Our 
model achieved the best performance among the existing advanced models on two real 
maize datasets. The experiments showed advantages in processing the expression profile 
data and identifying potential regulatory relationships.

The inference in this study infers the edges for a given dataset with TF and target tags. 
In PSGRN, unknown relationships can be inferred by mining the correlations between 
known regulatory relationships. Thus, exploring the temporal and spatial features of the 
dataset through deep learning helps us mine the internal relationships among them, pro-
viding insight into the functional understanding of GRNs.

The validity of the GRU and DenseNet modules was verified, and the comparative 
results revealed the necessity of setting these two modules and their excellent perfor-
mance in terms of time and space learning. In addition, we experimentally verified that 
the sigmoid function is more suitable for GRN inference than the softmax function.

All aspects of biological subsystems, such as scale-free properties, structural proper-
ties, motifs, and environmental factors, may affect cell interactions. PSGRN still lack 

Fig. 7 Illustrate of interactions of top 15 TFs. To validate the accuracy of our model, we employed the 
STRING database to perform a search on the top 15 TFs and generate a PPI network diagram. The nodes in 
the network represent maize genes, while the colored lines depict the sources of the interactions, such as 
experiments, text mining, databases, and co-expression analysis. Our analysis highlighted GRMZM2G145041 
and GRMZM2G118693, which exhibited a high number of edges in the PPI network, suggesting their 
potential involvement in the maize gene regulatory network. These results provide further evidence for the 
accuracy and applicability of our model in predicting gene interactions in maize
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prior knowledge, such as specifying the maximum possible number of candidate rela-
tionships for each gene and determining which genes play a regulatory role in a specific 
network. Inducing more domain-specific knowledge of PSGRN may help predict the 
network more accurately and make PSGRN a useful model for future work.
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