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Abstract 

In this paper we propose PIICM, a probabilistic framework for dose–response predic-
tion in high-throughput drug combination datasets. PIICM utilizes a permutation 
invariant version of the intrinsic co-regionalization model for multi-output Gaussian 
process regression, to predict dose–response surfaces in untested drug combination 
experiments. Coupled with an observation model that incorporates experimental 
uncertainty, PIICM is able to learn from noisily observed cell-viability measurements 
in settings where the underlying dose–response experiments are of varying quality, 
utilize different experimental designs, and the resulting training dataset is sparsely 
observed. We show that the model can accurately predict dose–response in held out 
experiments, and the resulting function captures relevant features indicating synergis-
tic interaction between drugs.

Keywords: Gaussian process regression, Bayesian inference, Cell viability assay, Drug 
synergy

Introduction
Utilizing combinations of drugs to treat cancer is commonplace in modern treatment 
regimes offered to patients [1, 2]. Drug combinations have multiple benefits over sin-
gle drug regimens, offering increased survival and treatment efficacy for patients, and 
at the same time allowing a lower total drug burden, in turn lessening side-effects [3, 
4]. Combinations can also have the effect of minimizing the chances of the tumour 
acquiring drug resistance [5]. Finally, by utilizing novel targeted drugs and monoclonal 
antibodies in combinations, treatments can be personalised to the individual patient’s 
disease, exploiting weaknesses in the cancer cells while leaving normally functioning 
cells unharmed, through e.g. synthetic lethality [6].

When looking for effective drug combinations, researchers have often focused on 
the notion of drug synergy. That is, a drug combination whose joint effect is greater 
than what would be expected by using the two drugs individually. Synergistic com-
binations offer significant boosts in efficacy, at lower doses than would be needed 
had the drugs been administered on their own. The opposite effect, where two drugs 
perform worse together than would be expected is called antagonism, and finally if 
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neither synergy nor antagonism is present in a combination, we say that the drugs are 
non-interacting [7].

The nature of a drug combination, as synergistic, antagonistic or non-interacting, is 
usually studied by in-vitro dose–response experiments on cancer cell lines, through 
e.g. a cell viability assay [8]. In these experiments, cancer cells are treated with mul-
tiple concentrations of the component drugs individually and in combination, and 
viability is measured by comparing a marker associated with viability (e.g. ATP lev-
els) to negative and positive controls. Further processing takes place to determine if a 
drug combination is either synergistic, antagonistic or non-interacting. With modern 
high-throughput technology, thousands of drug combinations can quickly be evalu-
ated in parallel on multiple cell lines in-vitro, aiding in synergistic drug combination 
discovery.

In recent years, several such datasets have been made available to researchers [9–11], 
with the aim of understanding mechanisms of drug synergy, as well as being used as 
input in machine learning algorithms predicting drug synergy or efficacy of drug com-
binations in new cell lines or patients. Most often, the input in these algorithms is a 
scalar measure of drug interaction, often called a synergy score, derived from the dose–
response surface.The goal is to predict the synergy score in unseen experiments, either 
on untested cell lines or for completely novel, previously unobserved drug combinations 
(see e.g. [12] for a review of these approaches to synergy prediction, including various 
deep learning approaches such as [13, 14]).

There are a few major drawbacks with this current practice of drug synergy prediction. 
Firstly, there is no commonly agreed upon and generally applicable definition of drug 
synergy. Quantifying drug synergy relies on first settling on a model for non-interaction, 
essentially defining what non-interaction looks like, i.e. what would be expected if the 
drugs do not interact. Several such definitions have been made, each encoding its own 
pharmacological assumptions, the two most popular ones being the Bliss independence 
model [15] and Loewe additivity [16] (several modern approaches exist as well, see e.g. 
[17–19]). Exactly which model is deemed most correct depends on the drugs in ques-
tion, and their mechanism of action. Secondly, once the preferred model of non-interac-
tion has been chosen, it is common to quantify interaction point-wise as the difference 
between the observed and expected cell viability at each concentration combination. 
The problem with this approach is that it ignores the underlying measurement error 
and treats any deviance from the non-interaction model as evidence of drug interaction. 
Because of the heterogeneity of cell growth, as well as technical error sources, the noise 
component of the individual viability measurement can be considerable, and will vary 
across the dose–response surface [20, 21]. The underlying noise and measurement error 
has been largely ignored in the literature, where synergy scores are usually taken as pre-
cisely measured quantities, or measured with an identical noise across experiments [14, 
22]. Finally, the synergy score used for training models is typically produced by taking an 
average across all observed concentrations, further obscuring the complex landscape of 
the dose–response surface which can contain several local minima and maxima.

Because of the problems associated with the synergy scores, a recent trend has been 
to directly predict the dose–response surface, and derive the synergy score as a post-
processing step if desired.
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Notably, the comboFM model [23] makes use of a higher-order factorization machine 
to predict dose–response for drug combinations. The comboFM model is able to han-
dle the large and sparse reality of drug combination datasets, and can easily incorporate 
various information sources regarding the cell lines or the drugs involved, examples of 
which could be molecular descriptors of the drugs and various omics datasets for the 
cancer cell lines. Recently, comboFM was improved upon by a new algorithm, com-
boLTR [24], which uses a latent tensor reconstruction method as its main workhorse, 
that allows a more general form of its linear model, and is more computationally efficient 
than comboFM. There is also the IDACombo framework of [25], that employs the prin-
ciple of Independent Drug Action to predict dose–response of combinations. The princi-
ple stipulates that the expected combined effect of multiple drugs administered together 
equals the effect of the single most effective drug in the combination administered on its 
own. Thus, the framework only utilizes monotherapy measurements of response for its 
predictions and does provides the key insight that most drug combination experiments 
are fit remarkably well by relatively simple models based solely on monotherapy meas-
urements. The IDACombo framework is however quite limited in its simplicity, and is 
not able to incorporate e.g. other information sources regarding the cancer cell lines or 
the drugs. Additionally, the framework only provides an averaged prediction across mul-
tiple cell lines and does not provide a unique per cell-line prediction of response, further 
hindering its performance and wider applicability.

While these models directly predict dose–response and hence avoid the problems 
associated with the synergy scores, they still treat the measured viability percentages 
as precisely measured quantities, ignoring the heteroskedastic measurement error and 
inherent uncertainty of the underlying experiments.

Recently, Tansey et al. [21] proposed an end-to-end approach to dose–response mod-
elling that naturally incorporates measurement error. Starting from raw fluorescent 
counts directly from the plate-reader, a large Bayesian hierarchical model was set up to 
describe the entire data-generating process. In this fashion, the measurement uncer-
tainty coming from both biological and technical sources is handled properly, allow-
ing for cleaner estimates of the dose–response function. The individual experiments’ 
dose–response functions are further linked to drug and cell line auxiliary data through a 
neural network. In this way the authors are able to uncover both well-known and novel 
biomarkers of drug response, and improve the state of the art in terms of prediction 
performance on held out experiments. However, the model is tailored for single drug 
responses, and impose restrictions, such as monotonicity, that could make it unfeasible 
for drug combination data.

Predicting the full dose–response surface for drug combinations brings an additional 
challenge. Since the drugs involved in each combination can be ordered in any man-
ner, the predicted dose–response should be exactly the same no matter which way the 
drugs in a pair are ordered. That is, if we denote by f (c, (A,B), (xA, xB)) the predicted 
dose–response of the drug combination (A, B) at concentrations (xA, xB) in cell line c, the 
model should predict the exact same output if the ordering was reversed:

(1)f (c, (A,B), (xA, xB)) = f (c, (B,A), (xB, xA)).
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In a supervised learning setting, there are two main ways to deal with this type of sym-
metry, or invariance. The easiest path is to augment the initial training dataset by add-
ing examples that have undergone transformation known to leave the output unchanged. 
For drug combination datasets, this would amount to doubling the training data, includ-
ing both orderings of the drug pairs for each experiment. By training a suitably flexible 
model, data augmentation encourages invariant parametrizations of the model, but does 
not enforce it. This is the the approach taken by both the comboFM and the comboLTR 
model. However, this is unsatisfactory from a Bayesian viewpoint where all the relevant 
assumptions should be built into the prior. Duplicating the data could also lead to the 
posterior variance being too narrow, and the model being too confident in its predic-
tions. The other way, which is more preferable from a Bayesian perspective, is to directly 
encode the invariance into the model construction. Building invariant models has been 
an empirical success story particularly within deep learning, starting from the early con-
volutional neural nets made to classify handwritten digits [26]. In these models, the out-
come is made invariant to translations of the input image, often with considerable boosts 
in prediction performance compared to non-invariant models [27, 28]. There is also an 
emerging theoretical understanding of why models that directly encode invariance can 
often perform better than augmenting the training data, particularly in settings where 
the data is either of low-quality or scarse [29, 30].

In this paper we introduce PIICM, a probabilistic prediction model based on a Per-
mutation Invariant Intrinsic Coregionalization model for multi-output Gaussian Pro-
cess (GP) regression, that aims to alleviate some of the issues associated with the current 
methodological landscape of drug combination prediction. By developing a permu-
tation-invariant, multi-output GP prior, where each drug combination experiment is 
considered an output, the relevant invariances for dose–response prediction are built 
directly into the model, thus avoiding the issues associated with data augmentation. 
Furthermore, a two-stage observation model is utilized that incorporates the measure-
ment error within and between individual experiments, accounting for the potential 
differences in experimental quality. The GP model is implemented in a computationally 
efficient manner built on top of the GPyTorch [31] library, which allow fast and exact 
inference with GPU acceleration.

Methods
The main model proposed in this paper builds on the bayesynergy [20] model for dose–
response estimation of individual two-drug combination experiments. Our main idea 
here is to extend this single-experiment dose–response model to a model that accounts 
for correlations between dose–response functions from different experiments. The way 
this is achieved is by linking together the latent GPs underlying each dose–response 
function by explicitly modelling the cross-function covariance in a multi-output frame-
work. The multi-output framework can be used to predict the values of the latent GP 
in unobserved experiments, which are then used to reconstruct the full dose–response 
function of that experiment.

In the following we first introduce in some detail the bayesynergy dose–response 
model, highlighting how the latent GP enters in the modelling framework and the exten-
sion to the multi-output setting through the intrinsic coregionalization model (ICM) 
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[32]. We then detail the construction of a permutation invariant ICM kernel, which 
encodes the required invariances for drug combination experiments. Next, the observa-
tion model is introduced where we show how individual level observation noise can be 
introduced through the likelihood to account for differences in experimental uncertainty. 
The procedure for inference and parameter learning is introduced in the “Inference and 
parameter learning” section, where we show how the model handles incomplete data-
sets through a masking technique. Finally, we show how the dose–response function in 
unseen experiments can be reconstructed using the predicted values of the correspond-
ing latent GP. The general workflow of the model is illustrated in Fig. 1.

Bayesian dose–response model for single experiments

The main object of interest in drug sensitivity screens is the dose response function, 
which maps a drug concentration x to cell viability, i.e. taking values in the interval [0, 1] 
where zero indicates all the cells are dead, and one that all cells are still viable. In mono-
therapy screens, where only a single drug is tested at a time, it is common to employ a 
log-logistic model for the dose–response function:

where x is the drug concentration on the log10 scale. The parameters (u,  l) denote the 
upper and lower asymptotes representing the minimum and maximum effect of the 
drugs on the cell lines, respectively. The parameter s controls the slope of the func-
tion, how quickly the drug reaches maximum effect with increasing concentration. And 
finally the m parameter is the half maximal effective concentration, or EC50 , acting as a 
location parameter giving the concentration at which the drug reaches half of its maxi-
mum effect. Because we are usually working with normalized viability measurements, 
and assume no drugs are beneficial to cell growth, the upper asymptotes are fixed at one 
throughout the paper.

In drug combination screens, it is common to represent the dose–response function 
by two parts: a non-interaction term p0 capturing a non-interaction assumption, and an 
interaction term � capturing any additional effect, synergistic or antagonistic:

where x = (x1, x2) denotes the concentrations of the two drugs. For the non-interaction 
term, we utilize the Bliss independence assumption [15] which states that the joint effect 
of two drugs is simply the product of the two drugs’ individual effects – each modelled 
parametrically through Eq. (2):

where each monotherapy function is estimated with its own set of parameters (li, si,mi) 
for i = 1, 2 . There are several possible choices for the non-interaction term, e.g. Loewe 
additivity [16] or the zero interaction potency (ZIP) model [33]. While we utilize the Bliss 
model due to its simplicity and ease of calculation, this choice only functions as a jump-
ing-off point for the larger goal of modelling the full response surface.

(2)h(x) = l +
u− l

1+ 10s(x−m)
,

(3)f (x) = p0(x)+�(x),

(4)p0(x) = h1(x1)h2(x2),
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The interaction term is modelled using a latent Gaussian Process (GP) formulation. A 
GP is a stochastic process, any finite realization of which takes the form of a multivariate 
normal distribution. That is if z ∼ GP(µ(x), κ(x, x′)) then

where µ = [µ(x1), . . . ,µ(xn)]
T is the mean vector and the entries of the covariance 

matrix K are Kij = κ(xi, xj) . The function κ(·, ·) is called the kernel function, and is of 

(5)[z(x1), . . . , z(xn)]
T ∼ MVN (µ,K ),

Fig. 1 The figure shows the overall workflow of the method. In (a) the bayesynergy R package [20] is used 
as a pre-processing step to estimate the latent GP underlying each experiment, which is summarized by 
its posterior mean and variance. In (b), the posterior mean and variance of each experiment is put into a 
common grid, and collected in matrices Z and S . In (c), the missing entries of Z is predicted using the PIICM 
model. And finally, in (d) the predicted latent GP of an unseen experiment is used to reconstruct the dose–
response function
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particular importance as it controls many features of the resulting function, such as 
smoothness. The GP is fully specified by its mean and covariance functions.

In order to ensure the correct bounds for the resulting dose–response function, i.e. 
that f (x) ∈ [0, 1] , the latent GP is pushed through a transformation function to give the 
interaction surface � . In detail

where (b1, b2) are parameters needed to keep the model identifiable, and κ is the kernel 
function for the underlying GP. In addition to ensuring the correct bounds for the dose–
response function f, the transformation function g(·) acts to encode an expectation on 
the interaction term � . If the model is uncertain, or is extrapolating far outside the range 
of the data, the underlying GP will revert to its prior mean at zero, which when plug-
ging in g(0) = 0 , entails that the dose–response function returns to f (x) = p0(x) in the 
case of lack of data. Generally, since large interaction effects are rare [34–36], the non-
interaction assumption is often a reasonable approximation to the full dose–response 
function. A full model description including the prior distributions for all parameters is 
given in the Additional file 1. See also the original paper implementing this model [20] 
for more details.

Joint modelling of latent GPs

The model from the previous section can be extended to take into account the correla-
tion between individual dose–response functions. Specifically, the individual latent GPs 
underlying each experiment’s dose–response function can be estimated jointly using 
a multi-output GP framework. In a multi-output GP setting, the GP is extended from 
single valued to vector-valued outputs. In our context, every output corresponds to a 
different dose–response experiment, each consisting of a cell line and two drugs in a 
combination. Many approaches exist for multi-output GPs, see e.g. [32] for a review, and 
we opt for the simple intrinsic coregionalization model (ICM), that we extend to a per-
mutation invariant version.

In the ICM, the covariance between two function evaluations zi(x) and zj(x′) is written 
as a product between an output kernel and an input kernel:

where the input kernel κx controls the smoothness of the functions across input space as 
in the regular single-output setting of “Bayesian dose–response model for single experi-
ments” section, and the output kernel κz explicitly models the covariance between the 

(6)

�(x) = g(z(x))

z ∼ GP(0, κ(x, x′))

g(x) =
−p0(x)

1+ exp b1z(x)+ log
p0(x)

1−p0(x)

+
1− p0(x)

1+ exp −b2z(x)− log
p0(x)

1−p0(x)

,

Cov
[

zi(x), zj(x
′)
]

= Cov
[

zi, zj
]

Cov
[

x, x′
]

= κz(zi, zj)κx(x, x
′),
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functions, or outputs. If it is the case that every input is evaluated on every output, then 
this induces a Kronecker structure on the covariance matrix of the joint multivariate 
normal. That is, if we have a function with m outputs evaluated at n distinct inputs, and 
assume a mean zero GP, the joint vector of responses has a zero-mean multivariate nor-
mal distribution;

where Koutput is an m×m matrix corresponding to the output covariance, i.e. with 
entries Koutput,ij = κz(zi, zj) and Kx an n× n matrix of input covariance constructed 
using the corresponding input kernel. Note that we can write the expression above more 
succinctly as

where Z is the n×m matrix constructed such that the i-th column corresponds to the 
vector (zi(x1), . . . , zi(xn))T , and vec() denotes the operator that creates a column vector 
by stacking each column of the matrix on top of each other.

Because of the large number of experiments typically performed in high-throughput 
drug combination screens, we impose further structure on the output covariance in 
order to keep the model computationally feasible. Let zcAB denote the latent GP under-
lying the experiment consisting of the drug combination (A, B) and cell line c, and let 
zc′A′B′ similarly denote the latent GP corresponding to another experiment of the drug 
combination (A′,B′) on cell line c′ . We assume that the covariance between two outputs 
(experiments) can be decomposed into a covariance across cell lines and a covariance 
across drug combinations:

Similarly to before, if we assume that each drug combination is screened on every cell 
line, the output kernel matrix can also be written as a Kronecker product and:

where Kc is an Nc × Nc covariance matrix over cell lines, and Kd the Nd × Nd covari-
ance matrix over drug combinations. The columns of the n× (NcNd) matrix Z must be 
ordered such that the first Nd columns correspond to the first cell line, the next Nd to the 
second, and so on.

While this structure is simplistic, similarly decomposed covariance structures have 
been utilized successfully for single-drug predictions previously [37].

A permutation invariant ICM

As previously discussed, the dose–response functions for drug combinations have some 
natural symmetries and invariances to consider. Letting f (c,A,B, x) denote the drug 
response for the drug combination (A, B), at concentration x = (x1, x2) , on cell line c. 
The dose–response is invariant to a certain permutation of its inputs, namely:

(7)(z1(x1), . . . , z1(xn), . . . , zm(x1) . . . , zm(xn))
T ∼ MVN (0,Koutput ⊗ Kx),

(8)vec(Z) ∼ MVN (0,Koutput ⊗ Kx),

(9)κz(zcAB, zc′A′B′) = κc(c, c
′)κd((A,B), (A

′,B′)).

(10)vec(Z) ∼ MVN (0,Kc ⊗ Kd ⊗ Kx),

(11)f (c,A,B, x) = f (c,B,A, x̃),
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where x̃ = (x2, x1) denotes the flipped concentration pair. That is, if the order of drugs 
and their concentrations were swapped, we should see the exact same viability on the 
cell line c. In fact, the dose–response surface of the pair (A,  B) should be exactly the 
same as for the pair (B, A), but reflected around the 45◦ line, see Fig. 2. From Eq. (4), 
we note that this is easily achieved for the Bliss non-interaction assumption, p0(x) , by 
simply swapping the arguments around. But in order to enforce the equality in Eq. (11), 
we need to encode the same structure into the joint model of the latent GPs across all 
experiments. If this symmetric relationship is not accounted for properly, the model can 
struggle to learn the inter-output correlations, and consequently negatively affect the 
performance of the model.

In a GP, these types of invariances and symmetries can be directly encoded in the kernel 
construction. This is achieved by writing the desired GP as a sum of terms in such a way 
that swapping arguments around yields an unchanged function [38]. In this case, we need 
to enforce the permutation invariance of the drug pairs and their concentrations.

Let

denote the multi-output GP with the product-structured covariance developed in the 
previous section. By writing the final evaluation at location (c,A,B, x) as a sum of the GP 
evaluated at two locations:

we ensure that the function value is unchanged when the drugs and their concentra-
tions switch places. That is, the mapping (c,A,B, x)  → (c,B,A, x̃) leaves the function 
unchanged. Since Gaussians are closed under addition, the GP prior on ζ̃ induces a GP 
prior over ζ , with mean zero and covariance function:

(12)ζ̃ (c,A,B, x) ∼ GP
(

0, κc(c, c
′)κd((A,B), (A

′,B′))κx(x, x
′)
)

,

(13)ζ(c,A,B, x) = ζ̃ (c,A,B, x)+ ζ̃ (c,B,A, x̃),

Fig. 2 The figure shows the estimated dose–response surfaces for the two drugs AZD1775 and Mitomycine 
on the HT144 malignant melanoma cell line, taken from the [10] dataset. Depending on which drug is 
plotted on the x-axis, the dose–response surface flips around the 45◦ line
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See the Additional file 1 for the derivation of this covariance function. Note that the 
kernel assumes that the two drug pairs (A,  B) and (B,  A) are distinct entities, hence 
κd((A,B), (A

′,B′)) �= κd((B,A), (B
′,A′)) , and the kernel can not be simplified further. 

This assumption needs to be enforced when the drug combination kernel is constructed, 
otherwise the model will force all dose–response functions to be symmetric around the 
45◦ line, instead of reflected only in the swapped drug pair (this point is expanded upon 
in the Additional file 1).

Observation model

High-throughput drug combination screens produce measures of post-treatment cell 
viability given a range of different concentrations of drugs. For a single experiment, let 
y = (y1, . . . , yn) denote the measured cell viability corresponding to drug concentrations 
X = (x1, . . . , xn) . In a dose–response modelling setting these cell viabilities are assumed 
observed from the underlying dose–response function f (x) subject to some added noise 
due to various biological and technical factors. For example, both [20] and [39] consider 
a heteroskedastic noise model,

and proceed in a fully Bayesian fashion to estimate parameters and various summary 
statistics of drug efficacy and interaction. The heteroskedastic structure arises from how 
cell viabilities are measured in-vitro and normalized. Viability is usually measured indi-
rectly by comparing a marker associated with viability (e.g. ATP levels) to positive and 
negative controls. Due to the heterogeneity of cell growth, the variance of this marker 
is usually much higher in the negative controls than in the positive controls, i.e. there is 
typically much more variance in the viability estimate when all cells are still alive, com-
pared to when all cells are dead. This translates into a heteroskedastic noise structure 
that varies across the dose–response surface.

A two‑stage observation model

Ideally, we would want to directly utilize the dose response model from the “Bayesian 
dose–response model for single experiments” section, swapping out the latent single-
output GP prior z(·) with the invariant multi-output GP prior ζ(·) from the previous sec-
tion. But because of the sample size of most drug combination screens, as well as the 
latent way the GP enters into the model formulation, a fully integrated workflow starting 
from the viability measurements is not computationally feasible to pursue. The latent GP 
formulation is not conjugate and would require expensive numerical approximations. 
We instead rely on an indirect way of predicting cell viability where the main quantities 
of interest are evaluations of the latent GP underlying each experiment.

Borrowing an idea from meta-analysis [40], we proceed in a two stage fashion. In the 
first stage, each experiment of the drug combination dataset is analysed separately to 
obtain estimates of the underlying latent single-output GP z(·) . That is, given an input 

(14)

κζ ((c,A,B, x), (c
′,A′,B′, x′)) = κc(c, c

′)

×
[(

κd((A,B), (A
′,B′))+ κd((B,A), (B

′,A′))
)

κx(x, x
′)

+
(

κd((A,B), (B
′,A′))+ κd((B,A), (A

′,B′))
)

κx(x̃, x
′)
]

.

(15)yi ∼ N (f (xi), σ
2
i ), σ 2

i > 0,
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of cell viability and drug concentrations (ycAB,XcAB) from the experiment consisting of 
cell line c, and the drug combination (A, B), we use the Bayesian dose–response model 
from the “Bayesian dose–response model for single experiments” section, along with the 
heteroskedastic observation model in Eq. (15) to estimate the marginal posterior distri-
bution of the latent GP at each drug concentration, i.e.

See the Additional file 1 for a full description of the model used to fit each experiment. 
From this posterior we compute the mean and variance, denoted z̄cAB,i and σ 2

cAB,i , and 
collect these in vectors, z̄cAB = (z̄cAB,1, . . . , z̄cAB,n) and σ 2

cAB = (σ 2
cAB,1, . . . , σ

2
cAB,n) . In this 

fashion the latent GP of each experiment is summarized by the vector z̄cAB which will 
be used as the main response variable in the multi-output model. Furthermore, since 
each experiment contains different drugs and cell lines, and perhaps even utilizes differ-
ent experimental designs or number of replicates, the estimation uncertainty will vary 
across the latent GP surface, and between different experiments. These differences in 
uncertainty are accounted for by the corresponding vector of posterior variance, σ 2

cAB , 
which will be used to implicitly weight observations by how precisely they are measured 
in the next stage.

In the second stage, the posterior mean estimates obtained in the first stage are con-
sidered as fixed observed quantities, noisily observed from the multi-output GP. Specifi-
cally, we assume Gaussian noise and write

The error term is given a two-part variance, where the first term, σ 2
cAB,i , is considered 

fixed and corresponds to the posterior variance estimated from the first stage. This term 
captures any measurement error of the latent GP corresponding to how the experiment 
was performed, e.g. number of replicates or experimental design. The second term, σ 2 
corresponds to a common error across all the outputs, which introduces a dependency 
across the outputs and helps to regularize the variance components. In regular multi-
output GP regression, a common noise term is key to avoid issues of autokrigability 
[41], where the outputs become independent of each other in the noiseless setting. This 
parameter needs to be estimated from the data. Note that the model defined above is 
conditional on the measured cell viability yi only through the posterior distribution in 
Eq. (16). In order to keep notation to a minimum, we omit this dependence in the fol-
lowing sections, and simply consider z̄cAB and σ 2

cAB as fixed quantities.

Kernel choices

Having set up the general structure of the model we now discuss the specific choices for 
the input, drug combination and cell line kernels that are used to produce the results in 
this paper.

(16)π
(

z(xcAB,i) | ycAB,XcAB

)

, i = 1, . . . , n

(17)

z̄cAB,i| ζ , xi, yi = ζ(c,A,B, xi)+ εcAB,i,

ζ ∼ GP(0, κζ ((c,A,B, x), (c
′,A′,B′, x′)))

εcAB,i| xi, yi ∼ N (0, σ 2
cAB,i + σ 2).
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The input kernel For the kernel controlling the function’s behaviour across the inputs, 
or drug concentrations x , we use a simple squared exponential kernel

where ℓ denotes the lengthscale parameter, controlling how sensitive the function is 
to changes in the input. The squared exponential kernel produces functions that vary 
smoothly with its covariates. It reflects the assumption that a small change in the drug 
concentrations produces a similarly small change in the output. Note that when fitting 
cell viability measurements of individual experiments to compute posterior means and 
variances of the latent GP in the “Bayesian dose–response model for single experiments” 
section, we utilize the default Matérn kernel recommended in [20] as a less smooth 
alternative to the squared exponential. This enables the posterior distribution to better 
adapt to rapid changes in the interaction surface, as well as give a more faithful repre-
sentation of the underlying measurement error. When working in a multi-output setting 
using posterior means of each experiments’ latent GP as a response variable we prefer 
the smoother squared exponential kernel. The added smoothness helps to regularize the 
model and better estimate the covariance between outputs.

Given a set of unique drug concentrations X = (x1, . . . , xn) the Gram matrix Kx gener-
ated by the kernel has entries {Kx}ij = κx(xi, xj) . If we assume further that the n unique 
drug concentrations lie on the two-dimensional Cartesian grid generated by a set of 
common drug concentrations, e.g. X = X × X , where X = (x1, . . . , xk) , then the matrix 
generated by the ’reflected’ function κx(x̃, x′) in Eq. (14) is simply a row permutation of 
Kx . That it, there exists a symmetric permutation matrix P̃ such that {P̃Kx}ij = κx(x̃, x) . 
To see why this is true, note that the ith row of Kx contains the entries κx(xi, xj) for 
j = 1, . . . , n . Because X is generated from a common set of concentrations, the reflected 
version of xi is also a valid concentration on the grid, and hence x̃i = xi′ for some index 
i′ . This holds for all of the n unique concentrations, and thus the matrix generated by 
κx(x̃, x

′) is simply a row-permutation of Kx.
The drug combination kernel A kernel over drug combinations can be constructed in 

many different ways, and sources of auxiliary information exists both for the individual 
compounds (their targets, mechanism of action, or chemical structure), and additionally 
for properties of the combinations themselves that are not reducible to the individual 
compounds. For example, if the two drugs are jointly targeting a synthetically lethal gene 
pair [42] that induces cell death, this property cannot be reduced back to the targets of 
the individual drugs.

The simplest method for constructing a drug combination kernel would be to simply 
combine together two single-drug kernels by their product. If (A, B) and (A′,B′) denote 
two drug combinations, the kernel between these two could be written as

where κdA denotes the kernel function for drugs in the first position of a pair, and simi-
larly κdB for drugs in the second position. This construction is simple, and very com-
putationally efficient due to the induced Kronecker structure of the covariance matrix. 
However, it is very limited in the type of information it can encode, being essentially 

(18)κx(x, x
′) = exp

(

−
||x − x′||2

2ℓ2

)

,

(19)κd((A,B), (A
′,B′)) = κdA(A,A

′)κdB(B,B
′),



Page 13 of 31Rønneberg et al. BMC Bioinformatics          (2023) 24:161  

restricted to only using information regarding the individual compounds. The Kronecker 
structure essentially encodes an independence assumption between the two drugs in a 
pair, precisely the opposite of what drug interaction is meant to capture. For this reason, 
such a simple construction is unsuitable for our purpose.

We instead opt for treating each drug combination as its own distinct entity, irreduc-
ible to its constituent parts, which allows for a much richer covariance structure, but 
is computationally more expensive. For a given dataset, let Nd denote the number of 
unique drug pairs, which we assume can be ordered alphabetically, e.g. as

We then extend this vector to include all the swapped pairs to obtain the ordering

Using this extended vector of drug combinations, the 2Nd × 2Nd covariance matrix of 
drug pairs could be built in many ways. In this paper, we follow [41] and construct a 
“free-form” low-rank kernel matrix

where rd denotes the rank of the final matrix, and the entries of Ld and vd are considered 
parameters to be learned from the data. The rank of the matrix, rd is treated as a user-
defined hyperparameter, and requires tuning.

The low-rank assumption can make a lot of sense in this setting, as most drug com-
bination are non-interactive, typically only a few within a dataset show large deviations 
from the non-interaction model. The “free-form” structure of Kd , where the entries of 
the matrix are estimated from the data directly, allow for very complex covariance struc-
tures to be fit, but will not be able to extrapolate beyond the training data. That is, since 
the kernel does not have a parametric form that incorporates auxiliary data about the 
drug combinations, it is impossible to use this kernel to predict dose–response for com-
binations not already in the training dataset. For the purpose of this paper this restric-
tion is fine, but we outline in the conclusion possible extensions that would allow the 
model to predict on unseen drugs or drug combinations.

This covariance matrix in Eq. (22) corresponds to the kernel function κd((A,B), (A′,B′)) 
in Eq. (14), where the drug pairs are ordered alphabetically according to the ordering 
in (21). The other covariance matrices corresponding to the swapped drug pairs can 
be derived by permuting the rows and columns of Kd . Specifically, let P denote the 
2Nd × 2Nd symmetric permutation matrix of the form

where INd
 denotes the identity matrix of size Nd . It is easy to check that the matrices 

PKdP , KdP and PKd are the matrices generated by the functions κd((B,A), (B′,A′)) , 
κd((A,B), (B

′,A′)) , and κd((B,A), (A′,B′)) , respectively.

(20)[(A,B), (A,C), . . . , (A,Z), (B,C), . . . , (B,Z), . . . , (W ,Z)].

(21)
[(A,B), (A,C), . . . , (A,Z), (B,C), . . . , (B,Z), . . . , (W ,Z),

(B,A), (C ,A), . . . , (Z,A), (C ,B), . . . , (Z,B), . . . , (Z,W )].

(22)Kd = LdL
T
d + diag(vd), Ld ∈ R

2Nd×rd , vd ∈ R
2Nd

P =

[

0 INd

INd
0

]

,
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Cell line kernel For the cell line kernel, we use the same low-rank structure as for the 
drug combination kernel. That is, given a dataset with Nc distinct cell lines, we create a 
low-rank kernel matrix by

where again rc denotes the rank of the final matrix and must be tuned, and the entries of 
Lc and vd are considered parameters to be learned from the data.

Inference and parameter learning

In this section, we describe the general form of the predictive posterior distribution, 
π(ζ(c,A,B, x∗)| Z, S,X) , of the GP evaluated at a new drug concentration x∗ in the experi-
ment consisting of cell line c, and drug combination (A, B). We also describe an efficient 
procedure for estimating the kernel parameters by maximizing the marginal likelihood.

We start by introducing some rather strict assumptions regarding the data setup, that 
we later relax to a more realistic setting suitable for drug combination datasets. The first 
restriction we will make is that each experiment in the training dataset has been performed 
on a common set of drug concentrations, X = (x1, . . . , xn) . Additionally, we demand that 
each of these n unique drug concentrations lie on the two-dimensional Cartesian grid gen-
erated by some set of common concentrations, i.e. X = X × X , where X = (x1, . . . , xk) and 
thus n = k2 . Secondly, we require that every drug combination has been evaluated on every 
cell line, i.e. that the data is complete. Note that since we insisted in the definition of the 
invariant kernel in Eq. (14), that the combinations (A, B) and (B, A) are distinct entities, 
this entail that that we need two versions of every experiment; one for each ordering of 
the pair. In practice, there is no natural ordering of the drugs, and no way to differenti-
ate between the two orderings in an experimental setting. We show later that there is no 
need to enter the data twice, we simply treat the unobserved ordering as missing data when 
doing inference.

Given a complete drug combination dataset consisting of Nd drug combinations, each 
screened on Nc cell lines at n distinct drug concentrations on the Cartesian grid as defined 
above. Let Z denote the n× (Nc · 2Nd) matrix containing posterior means of the latent GP 
from each experiment, including both orderings of the initial Nd drug combinations. The 
columns of Z are ordered such that the first 2Nd columns correspond to the drug combina-
tions in the first cell line, the next 2Nd to the second cell line and so on. Let S denote the 
matrix of the same dimensions, containing the corresponding posterior variances. Then, 
given the model structure in (17), the predictive posterior distribution of the GP at an 
unobserved input x∗ , in the experiment corresponding to the cell line c and the drug combi-
nation (A, B), conditional on the data (Z, S) is available in analytic form [43]

where k∗∗ = κζ ((c,A,B, x∗), (c,A,B, x∗)) . The vector k∗ contains the covariances 
between the test point (c,A,B, x∗) and the training data, and can be written as 

(23)Kc = LcL
T
c + diag(vc), Lc ∈ R

Nc×rc , vc ∈ R
Nc ,

(24)

ζ(c,A,B, x∗)| Z, S ∼ N (ζ̄∗, V[ζ̄∗]),

ζ̄∗ = k∗
T (K +�)−1vec(Z),

V[ζ̄∗] = k∗∗ − k∗
T (K +�)−1k∗,

� = diag(vec(S)+ σ 2)
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k∗ = (Kc ⊗ Kd)
cAB ⊗ kx∗ , where (Kc ⊗ Kd)

cAB selects the column of Kc ⊗ Kd correspond-
ing to the cell line c and drug combination (A, B), and kx∗ denotes the covariance between 
the new drug concentration x∗ and the concentrations in the training data. Note that 
all outputs can be predicted simultaneously by replacing the vector k∗ with the matrix 
K∗ = (Kc ⊗ Kd)⊗ kx∗ , using the full matrix Kc ⊗ Kd instead of only selecting the column 
corresponding the desired experiment.

The prior covariance matrix K takes a particularly simple form in this fully observed 
setting, and can be written as

where Kc is the Nc × Nc matrix of cell line covariances, Kd the 2Nd × 2Nd matrix of 
drug combination covariances, and Kx the matrix of drug concentration covariance. The 
matrices P and P̃ are symmetric permutation matrices, binary matrices with a single 1 
entry in each row and column. These matrices permute the rows or columns of a matrix 
D when either pre- (PD) or post-multiplying (DP).

The predictive distribution above is for fixed values of the kernel parameters 
{ℓ, Ld , vd , Lc, vc} and the global noise parameter σ 2 . These parameters can be learned 
from the data following the standard GP practice of maximizing the marginal likelihood. 
Since the model is conjugate, the GP can be integrated out to obtain the likelihood of 
the data conditioned on the model parameters, θ = {ℓ, Ld , vd , Lc, vc σ

2} [43], and can 
be written down in closed form. For the fully observed dataset described above, the log 
marginal likelihood can be written as

where the vec(Z)T (K +�)−1vec(Z) can be thought of as measuring the model’s fit to 
the data, and the log-determinant log |K +�| penalizing model complexity. This log 
marginal likelihood can be maximized using any gradient based optimizer.

There are two main issues with the expressions in Eqs. (24) and (26). First, note that 
the inverse product (K +�)−1vec(Z) appears in both the predictive posterior distribu-
tion, and in the marginal likelihood. The standard way of computing this term is through 
a Cholesky decomposition of K +� , from which also the log-determinant is readily 
available. However, the Cholesky decomposition requires O(N 3) computations [43], 
where N is the number of total observations, i.e. the number of entries in Z . For most 
drug combination datasets, with number of observations in the hundreds of thousands, 
this is simply not computationally feasible. The second issue is that the predictive pos-
terior distribution in Eq. (24) is of limited use. Since each drug combination has been 
observed on each cell line, there is nothing left to predict besides the value of the latent 
GP at unobserved concentration points x∗ . Both of these issues are solved in the next 
section, where we relax the assumptions on the data setup to incomplete settings, and 
provide methods for computing the predictive posterior distribution and the marginal 
likelihood using incomplete data.

(25)K = Kc ⊗
[

(Kd + PKdP)⊗ Kx + (PKd + KdP)⊗ P̃Kx

]

,

(26)log(Z|S,X, θ) = const.−
[

vec(Z)T (K +�)−1vec(Z) + log |K +�|
]

,
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Incomplete data

In recent years, a lot of work has been put into making GPs more scalable [44], either 
by keeping inference exact and speeding up the calculations in Eqs. (24) and (26), 
or by various methods of approximate inference, such as variational approaches. In 
this paper, we make use of the highly structured covariance matrix to keep inference 
exact, but resort to a minor approximation for of the log-determinant used in param-
eter estimation. More specifically, we rely on the structure of the covariance matrix K 
to drastically speed up these computations by first exploiting fast matrix–vector mul-
tiplications for Kronecker matrices, and secondly by proving a novel result regarding 
the eigenvalues of K that entails that the log-determinant can be computed efficiently.

For Kronecker-structured covariance matrices, i.e. those that can be written as 
K = K1 ⊗ · · · ⊗ Kd , [45] developed fast inference procedures in the fully observed 
setting and under homoskedastic noise. By exploiting properties of the Kronecker 
product, both the log-determinant and the inverse can be computed efficiently, 
resulting in a method that requires only O(N ) computations. This procedure was later 
extended by [46] to allow fast Kronecker inference also when the covariance matrix 
is not necessarily of this form. The main idea is to first generate dummy observations 
such that the covariance matrix of the joint dataset can be written as a Kronecker 
product. Then, these dummy observations are effectively ignored during inference 
by adding a large corresponding noise term, and computing the inverses using con-
jugate gradients (CG). While the covariance matrix K in Eq. (25) is not completely 
Kronecker-structured because of the matrix sums, we can still apply this trick since 
CG only relies on efficient matrix–vector multiplication.

We utilize this trick to lift the initial restrictions made on the training dataset. 
Given a partially observed drug combination dataset of size M, i.e. not every drug 
combination is screened on every cell line, and not every experiment is performed 
using the exact same grid of concentrations. Let KM denote the kernel matrix gener-
ated by (14), which in this partially observed case will not necessarily have any special 
structure, and let �M denote the corresponding diagonal noise matrix. Let further z 
denote the vector of length M, containing the estimated posterior means z̄cAB of the 
latent GP underlying each experiment.

When constructing the matrix Z corresponding to the fully observed dataset, 
we utilize the values from z wherever possible, and fill in unobserved entries using 
dummy values, z0 . Then, for the corresponding entry in S we add a large fixed noise, 
e.g. ǫ−1 for a sufficiently small ǫ > 0 . For example, if the experiments in the screen 
have all been performed at slightly different concentrations, we construct a common 
grid across all experiments and add dummy observations at whichever points are 
missing in each experiment.

We then used preconditioned CG to compute (K +�)−1vec(Z) , using C = �−1/2 
as a preconditioner matrix to solve the linear system CT (K +�)Cq = CT vec(Z) . 
As shown in [46], this procedure effectively ignores the contributions of the dummy 
observations, and produces inference identical to the naïve implementation. That is, 
solving the pre-conditioned system above is exactly equal to solving (KM +�M)q = z , 
only using the observed values.
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In order to learn the parameters of the model, we still need to compute the log-
determinant in Eq. (26). For this term, we utilize the same approximation as in [46]:

where the eigenvalues �Mi  of (KM +�M) are approximated by the eigenvalues �i of 
(K +�) such that �̃i = M

N �i . In order to obtain the eigenvalues of the sum K +� , we 
first use Weyl’s inequality [47] to upper bound each �i by the eigenvalues of K and � . Let 
�
K
1 ≤ · · · ≤ �

K
N and ��1 ≤ · · · ≤ �

�
N denote the sorted eigenvalues of the matrices K and 

� , respectively. Then, by Weyl’s inequality we have

with some freedom in how the indices {i, j} are chosen. Following [48], we adopt the heu-
ristic of setting i = j whenever possible, and opt for j = i + 1 otherwise. The eigenvalues 
of � are readily available since it is a diagonal matrix, but we are still left with computing 
the eigenvalues of K, an often prohibitively large matrix. Initially, it looks like this will 
be difficult due to the matrix sums disrupting any natural Kronecker structure we could 
exploit. However, it turns out that due to the symmetries of this matrix, we can indeed 
exploit Kronecker algebra to efficiently get the eigenvalues of K. The following proposi-
tion is proved in the Additional file 1.

Proposition 1 Let Kc , Kd and Kx denote positive semi-definite matrices, while P and P̃ 
denote symmetric permutation matrices. Furthermore, let σ(A)+ denote the collection of 
positive eigenvalues of the matrix A. Then, the matrix

is positive semi-definite (PSD) and

Thus, all the eigenvalues of K can be computed from the positive eigenvalues of the 
Kronecker-structured matrix Kc ⊗ (PKd + KdP)⊗ P̃Kx . This can be performed effi-
ciently since the eigenvalues of a Kronecker-structured matrix is simply the cross-
product of the eigenvalues from each individual matrix.

Using these two tricks: pre-conditioned CG for the inverse solve and the approxi-
mation for the log-determinant, inference and parameter learning can be done 
efficiently and scales to large and incompletely observed datasets. The predictive pos-
terior distribution in Eq. (24) is now of more use, since it can be used to predict the 
values of the latent GP in experiments that have not been run. In the next section we 
show how these predictions can be used to reconstruct the full dose–response func-
tion. The bottle-neck in these computations will usually be the eigendecomposition of 
PKd + KdP , typically the largest of the three matrices utilized to create K. The model 
is implemented using in GPyTorch [31], a library for GP inference built on top of the 
efficient PyTorch machine learning framework [49]. We use the built-in functionality 

(27)log |KM +�M | =

M
∑

i=1

log �Mi ≈

M
∑

i=1

log �̃i,

(28)�
K+�
i+j−1 ≤ �

K
i + �

�
j , for all i, j,

K = Kc ⊗
[

(Kd + PKdP)⊗ Kx + (PKd + KdP)⊗ P̃Kx

]

,

σ(K )+ = 2σ(Kc ⊗ (PKd + KdP)⊗ P̃Kx)
+
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of automatic differentiation to compute the requires gradients of the marginal likeli-
hood and rely on GPyTorch’s implementation of preconditioned conjugate gradients.

Predicting dose–response and drug interaction

The inference procedure described in the preceding sections produces estimates of the 
multi-output GP ζ(·) evaluated at an unobserved output (c,A,B, x∗) . In order to obtain 
a prediction of dose response at this location, we plug these estimates into the dose 
response model of “Bayesian dose–response model for single experiments” section. 
First, we use the mean of the predictive distribution in (24), ζ̄∗ , to obtain an estimate of 
the interaction effect at this point, �̂∗.

where p̂0∗ denotes the evaluation of p̂0(x∗) , which has been estimated using the mono-
therapy data from drugs A and B on cell line c, but no combination data (see the Addi-
tional file 1). For the parameters (b1, b2) , which cannot be estimated without access to 
the combination data, we use the posterior means of these parameters as estimated from 
the experiments in the training data.

Thus, we can obtain an estimate of the dose–response at an unobserved input, 
f̂∗ = f (c,A,B, x∗) simply adding the two terms together:

By doing this for a range of drug concentrations X∗ = (x1∗, . . . , xn∗) , the whole dose–
response surface can be reconstructed across a grid of concentrations.

Data and preprocessing
To test the predictive performance of our method, we utilize the publicly available data-
set provided by [10]. In this dataset, 38 drugs were combined in a pairwise manner into 
583 distinct combinations that were screened on 39 cancer cell lines across 6 different 
tissues of origin (Lung, 8; Ovarian, 9; Melanoma, 6; Colon, 8; Breast, 6; Prostate, 2). Each 
combination was screened on all 39 cell lines, providing a total of 22,737 drug combina-
tion experiments. Within each experiment, the drugs are combined on a 4 × 4 grid of 
concentrations, and at each location cell viability is measured in 4 replicates. Addition-
ally for each single drug response, cell viability is measured for at least 8 distinct drug 
concentrations, with replicates varying from three to six. In total, the dataset consists of 
over 1.5 million cell viability measurements.

(29)

�̂∗ = ĝ(ζ̄∗)

ĝ(ζ̄∗) =
−p̂0∗

1+ exp
[

b1ζ̄∗ + log
(

p̂0∗
1−p̂0∗

)]

+
1− p̂0∗

1+ exp
[

−b2ζ̄∗ − log
(

p̂0∗
1−p̂0∗

)] ,

(30)f̂∗ = p̂0∗ + �̂∗.
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Pre‑processing

For pre-processing, we ran each experiment through the bayesynergy [20] R pack-
age, to individually fit each experiment to the dose–response model in the “Bayesian 
dose–response model for single experiments” section. We utilized version 2.4.1 of 
the package on default settings, resulting in 4000 samples from the posterior dis-
tribution of each individual experiment. Since the experiments are performed on 
different grids of concentrations, we scaled the concentration ranges of each experi-
ment to the [0, 1] × [0, 1] unit box and constructed a common 10× 10 grid of con-
centrations in an equispaced manner across the [0, 1] range. We then sampled the 
corresponding latent GP evaluated at these locations from the posterior predictive 
distribution, and computed means and variances at these locations. This results in 
a fully observed dataset on this common grid of drug concentrations. The scaling 
to the unit box is not strictly necessary for the inference procedure described in the 
“Inference and parameter learning” section to be applied, we could construct a com-
plete grid starting from the original concentrations. But because the concentration 
ranges of individual drugs can be very different from each other, the scaling to a 
common range makes it easier to fit the data using the same length-scale ℓ in the 
input kernel across all outputs.

We construct the (Z, S) matrices by following the alphabetical ordering estab-
lished previously. Thus in the first 2Nd columns, which corresponds to the first cell 
line in an alphabetical ordering, the first half of the columns contain data, while 
the second half, correponding to the alphabetically reversed ordering of the drug 
combination, is treated as missing data. We set the missing entries in Z equal to the 
value z0 = −999 and further set the corresponding entries of S equal to ǫ−1 where 
ǫ = 1e−12.

Additionally, from the output of the bayesynergy package for each individual exper-
iment, we also generate samples from the posterior predictive distribution of the 
dose–response function f (x) , evaluated at the complete grid of concentrations. From 
these samples, we compute posterior means and variances, and collect them in matri-
ces F and SF  using the same ordering as for Z and S.

Prediction setting, performance metrics and results
We evaluate the prediction performance of the model in completely held out, 
untested experiments. By an experiment, we mean a (cell line, drug A, drug B) triplet. 
In this setting, we assume that the training dataset contains at least some previous 
experiments for each cell line and drug combination of interest, but that the particu-
lar experiment we wish to predict has not been performed.

Given the fully observed dataset, we hold out entire experiments from the training 
dataset by treating the corresponding columns of Z as missing data. We then pre-
dict these missing columns using the predictive posterior distribution in Eq. (24), and 
construct the corresponding dose–response function for that experiment (“Predict-
ing dose–response and drug interaction”). For the test dataset we use the same grid 
of drug concentrations as for the training dataset, and we predict at every output 
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simultaneously. In this setting, the covariance between the test and training inputs 
(the vector k∗ in Eq. 24) is simply the kernel matrix K and we can write

for the predictive mean. In a way, the prediction procedure can be thought of as imput-
ing the missing entries of Z . These predictions can then be used to construct estimated 
of the dose–response function f̂∗ of untested experiments, by following the procedure 
in the “Predicting dose–response and drug interaction” section.

Parameter tuning via cross‑validation

We divide the full dataset using an 80/20 train/test split, by randomly sampling the 
experiments. We retain 4,547 experiments for testing and 18,190 for training. There 
are two hyper-parameters in the model that need tuning, (rc, rd) controlling the rank 
of the cell line and drug combination kernels. To select these, we perform 5-fold cross 
validation using the training dataset, across a range of values: rc ∈ {1, 3, 5, 10, 20} and 
rd ∈ {10, 100, 200, 300, 600} . These ranges can be chosen as e.g. percentiles of the total 
number of drugs and cell lines in the dataset, while still maintaining a sense of “low” 
rank. This encodes an assumption that the cell lines and drugs can be effectively sum-
marised by a lower-dimensional representation. Note that for the drug combination 
rank we set the rank according to the full matrix of drug combinations, in both order-
ings. For this dataset, Kd has dimensions 1166× 1166 . After the optimal parameters 
have been chosen, the model is validated on the test set.

Performance metrics

The primary metric utilized to evaluate performance in the cross-validation is the 
weighted root-mean-squared-error (wRMSE) of the latent GP predictions. Since each 
observation in the test set has a corresponding measurement uncertainty, we weight 
observations higher if they are measured precisely. This is done simply by weighting with 
the inverse measurement uncertainty. For the latent GP, the wRMSE can be written as,

where the sums are taken over the indices corresponding to the test set T  . We addition-
ally compute the Pearson correlation coefficient between predicted and observed as a 
secondary metric.

We utilize the same metrics to evaluate the performance of dose–response predic-
tion, where the predicted dose–response is computed from the latent GP using the 
procedure in the “Predicting dose–response and drug interaction” section). Let v̂ec(F) 
denote the vector of predicted dose–response, generated by a pushing each entry of 
v̂ec(Z) through Eq. (30). Then the wRMSE for dose–response prediction is,

(31)v̂ec(Z) = KT (K +�)−1vec(Z),

(32)

wRMSE =

√

∑

i∈T

wi

(

v̂ec(Z)i − vec(Z)i

)2
,

wi =
w̃i

∑

i∈T w̃i
, where w̃i = 1/vec(S)i
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where again the sums are taken over the indices corresponding to the test set.

Comparison models

As a baseline of comparison for the model’s ability to predict dose–response, we 
utilize the non-interaction model p̂0∗ ., i.e. the Bliss model where the joint effect is 
assumed to be the product of the two monotherapy curves. In our modelling, we 
essentially predict deviations from the Bliss model, and hence it is a natural model 
to compare against. Additionally, in our experience large deviations from the Bliss 
model are rare, and most experiments are fit well by such a simple model. We com-
pute p̂0∗ using the bayesynergy R package, utilizing only monotherapy data.

We also compare our framework against a state-of-the-art model for this prediction 
problem, the comboLTR model [24]. comboLTR makes use of a higher-order polyno-
mial regression model, including all interaction terms to predict dose–response in 
unseen experiments. The model takes as input raw viability measurements from each 
experiment, alongside labels of the cell lines, drugs and drug concentrations, and can 
further make use of various auxiliary information sources regarding the drugs or the cell 
lines. Following the recommendations in the paper, we set the order of the polynomial 
to five, and use one-hot encoding to represent the cell lines, drugs and drug concen-
trations. We tune the hyperparameters of the model using the same train/test split and 
cross-validation folds of experiments as for the PIICM. In order to compare the pre-
dictions made by comboLTR (which is trained using the original concentrations), with 
those made by PIICM (which scales all experiments to a common grid on the unit box), 
we use the trained PIICM to predict on a new grid of observations via the standard 
predictive posterior distribution in Eq. (24). For each experiment, the grid is selected 
such that it corresponds to the original concentrations that were used to measure via-
bility. Hence, we can compare both PIICM’s and comboLTR’s performance in predict-
ing raw viability measurements. Since we do not have a measure of uncertainty for the 
raw viability measurements, we use the regular RMSE as a primary metric and Pearson 
correlation as secondary metric. In the Additional file 1 we also provide a short discus-
sion and comparison of our model with the IDACombo framework [25], which can be 
viewed as an alternative baseline p0 for comparison since it relies solely on monotherapy 
measurements.

Parameter initialization and optimization

The optimization of the marginal likelihood was performed with the Adam optimizer 
[50], using a learning rate of 0.1 for all parameters, and training until no more improve-
ment was seen in the marginal likelihood.

The parameters of the model that are constrained to be positive were initialized as 
follows:

(33)

wRMSE =

√

∑

i∈T

wi

(

v̂ec(F)i − vec(F)i

)2
,

wi =
w̃i

∑

i∈T w̃i
, where w̃i = 1/vec(SF)i,
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while the unconstrained entries of the matrices Lc and Ld were each drawn indepen-
dently from a normal distribution with standard deviation of 0.1. Note that this has the 
effect that the covariance matrices Kd and Kc are initialized close to a diagonal matrix.

All CG solves were done to a tolerance of 0.1α , where α = M/N  is the proportion of 
observed entries in the matrix Z . This was done to ensure that each setting was evalu-
ated to the same level of precision. We utilized a high performance cluster to run the 
model, taking advantage of an NVIDIA P100 GPU with 16GB of memory to speed up 
the required matrix–vector multiplications of CG. A single run of the model, including 
model training and prediction took around 30 min to complete using this setup.

(34)

ℓ, σ = log (1+ exp(0)) ≈ 0.693

vc,i = log
(

1+ exp(ṽc,i)
)

, ṽc,i ∼ N (0, 1),

for vc = (vc,1, . . . , vc,Nd
)

vd,i = log
(

1+ exp(ṽd,i)
)

, ṽd,i ∼ N (0, 1),

for vd = (vd,1, . . . , vd,2Nd
),

Fig. 3 The figure shows estimated versus predicted dose–response for both the baseline model (left panel) 
and the PIICM (right panel). The estimated dose–response values correspond to the posterior mean of the 
dose–response function, estimated for each experiment using the bayesynergy R package, and collected in 
the matrix F . The plot is colored according to the corresponding measurement error, darker color indicating 
more certainty regarding the estimate. Note the improvement from baseline, particularly in points in the 
upper-left corner

Table 1 Results from the cross-validation

Results are shown for prediction in the latent space, as well as for the resulting prediction of dose response. Corresponding 
results on dose–response for the baseline model are shown in parentheses for each setting. For both the latent GP and 
the dose–response, we compare our predictions against estimated values obtained from each experiment’s raw viability 
measurements using the bayesynergy R package. Bold numbers indicate best performance

Latent GP Dose response

rd rc wRMSE Pearson’s r wRMSE Pearson’s r

PIICM 200 10 0.3767 0.5336 0.0680 (0.0724) 0.9800 (0.9733)

PIICM (no invariance) 100 10 1.1231 0.1895 0.1857 (0.0724) 0.8815 (0.9733)

PIICM (no measurement 
error)

200 10 1.6459 0.1731 0.2120 (0.0724) 0.8349 (0.9733)
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Results

The results from the cross-validation are shown in the first line of Table 1, with both 
the primary (wRMSE) and secondary (Pearson correlation) metric of interest along-
side the optimal ranks selected. Additionally, we compute the same metrics for the 
dose–response predictions computed using the procedure in   the “Predicting dose–
response and drug interaction” section, and report these alongside the baseline per-
formance. For dose–response prediction, the results of the baseline model are already 
quite good, with our model only showing a small improvement (Pearson correlation 
of 0.98 compared to 0.97, and wRMSE of 0.068 compared to 0.0724). The optimal 
ranks selected are rd = 200 and rc = 10 , indicating that the model is finding some 
structure in the training data. These results are also visualized in Fig. 3, where we plot 
estimated versus predicted dose–response for PIICM (right panel) and baseline (left 
panel). Each point in the figure corresponds to an evaluation of the dose–response 
function f for a given (cell line, drug A, drug B, conc. drug A, conc. drug B) quintu-
plet. The x-axis corresponds to the dose–response as estimated from the raw viability 
measurements of each experiment using the bayesynergy R package, while the y-axis 
corresponds to the predicted values. By comparing the left and right panel, we can see 
that the improvements from the baseline are mainly observed in the top-left corner of 
the plot. In this region, the predicted value is close to one, indicating near 100% cell 
viability, but the estimated values are near zero. For the baseline model (left panel), 
this area represents points of large synergistic effects, as the Bliss non-interaction is 
predicting values near one, while the true estimates are near zero. The predictions 
made by PIICM (right panel), have fewer points in this region, which gives some indi-
cation that the model is able to capture synergistic effects present in the screen that 
are not well predicted by the baseline.

While the model is able to beat the baseline on held out experiments, it is not dras-
tically better than simply using the Bliss non-interaction assumption. Part of the rea-
son for this poor performance can be explained by looking at the estimated cell line 
and drug combination covariance matrices. In Fig. 4, the estimated matrices Kc and 

Fig. 4 The figure shows the estimated cell line covariance matrix Kc (left), and the overall drug combination 
covariance matrix Kd,total (right), constructed by averaging Kd across its blocks corresponding to the different 
possible orderings of the drug combinations
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Kd are visualized. The estimated drug combination covariance matrix Kd has a 2× 2 
block structure Kd =

(A B
B C

)

 , where A corresponds to the covariance between all the 
alphabetical orderings of drug pairs, C the covariance between the alphabetically 
reversed pairs, and finally B containing the cross-covariance. For the purposes of the 
figure, we display the Nd × Nd matrix Kd,total = 0.25(A+ C + 2B) , obtained by averag-
ing over the blocks – summarizing the drug combination covariance across both 
orderings of the drugs in a pair. This means that the plot visualizes the average covari-
ance between drug combinations (A, B) and (A′,B′) by looking at all possible order-
ings of the two pairs, i.e.

For the cell line covariance, most entries of the final matrix are near zero, with the 
exception of a strong diagonal containing cell line variances. This indicates minimal 
sharing of information across cell lines, and the model is essentially treating each cell 
line as an independent entity. For the drug combination covariance the situation is dif-
ferent, the matrix displaying many non-zero entries off the diagonal, and information is 
shared across combinations.

Accounting for invariance and measurement error boosts performance

The model developed in this paper is specifically tailored for dose–response predic-
tion in two major ways. First, we make use of the potentially large differences in estima-
tion uncertainty, both within and between experiments, to give observations different 
weights in the final model through the estimation errors S . Secondly, we directly encode 
the relevant invariances for dose–response functions into the model through the kernel 
construction. This enables the model to learn from the data no matter which order the 
drug combinations are introduced in the training dataset. In this section we show that 
abandoning any of these two features has a negative impact on model performance.

We consider two distinct variations of the model. First, we assess the performance of 
a variation of the model that does not take into account the natural invariances of dose–
response functions. The non-invariant version of the multi-output GP is simply the 
function ζ̃ (·) from Eq. (12) used to construct the final invariant ζ(·) . For a fully observed 
dataset, the kernel matrix takes the shape of a simple Kronecker product:

We utilize the same technique for inference and parameter learning as described in the 
“Inference and parameter learning” section using the optimal ranks for the drug combi-
nation and cell line covariance matrices found by CV in the previous section. In order 
to compensate for the lower dimensions of the drug combination space, we halve the 
rank of the drug combination kernel from the optimal 200 selected in the previous sec-
tion to 100. The results are shown in Table 1, where in terms of the latent GP, prediction 
performance deteriorates from 0.3767 to 1.1231 in wRMSE and from 0.5336 to 0.1895 in 
correlation. The performance drop in the latent GP carries over to the dose–response, 

((A,B), (A′,B′)), ((A,B), (B′,A′)),

((B,A), (A′,B′)), ((B,A), (B′,A′)).

(35)K = Kc ⊗ Kd ⊗ Kx.
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where wRMSE deteriorates from 0.0680 to 0.1857 and correlation from 0.98 to 0.8815, 
considerably worse than the baseline.

In the second variation, we remove the implicit weighting of observations through 
individual observation noise, but keep the model invariance. That is, we follow the 
regular inference procedure but set S = 0 for the observed entries, essentially giving 
all observations the same weight. Again, the corresponding results for this variation 
are shown in Table  1. Perhaps unsurprisingly, in terms of wRMSE the performance 
is worse than both the regular setting 1, and the non-invariant variation (1.6459 for 
latent GP, 0.2120 for dose–response). By treating all observations as equally pre-
cisely measured, the model is not allowed to ignore potential outliers or spurious 
large effects. The consequence of this is that the model attempts to fit all observations 
equally well, which in terms of the wRMSE means that contributions with low weight 
are given the same importance as contributions with high weight. This can have a 
detrimental effect on the model’s ability to accurately learn the required drug com-
bination and cell line covariances. One might think that the correlation score would 
improve, as it does not depend on a weighting of the observations, but also here we 
see a decrease in model performance (Pearson’s r decreases from 0.5336 to 0.1731 in 
the latent GP, and from 0.9800 to 0.8349 in dose–response – worse than the baseline).

Accurate reconstruction of synergistic dose–response surfaces

The plots in Fig. 3, and the metrics reported in Table 1 give an overall measure of the 
predictive performance of the model, across all drug concentrations and all outputs 
in the test set. In this section, we focus on a single experiment, and demonstrate that 
the model is able to accurately reconstruct the dose–response surface in a held-out 
experiment, and can capture relevant features indicating synergistic drug interaction.

Specifically, we inspect the prediction of the dose–response function in the experi-
ment consisting of the two drugs Sorafenib and Vorinostat (Zolinza) on the lung 

Fig. 5 The predicted dose–response function for the two drugs Vorinostat and Sorafenib on the MSTO 
lung cancer cell line is displayed both the for PIICM model (left) and the baseline model (right). The red 
lines indicate the distances between the estimated dose–response values and the predicted surface. The 
estimated dose–response values (black dots) correspond to the posterior mean of the dose–response 
function, estimated using the bayesynergy R package, and collected in the matrix F.
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cancer cell line MSTO. Sorafenib is a multi-kinase inhibitor (including RAF kinases 
and several receptor tyrosine kinases), while Vorinostat is an HDAC inhibitor. These 
two drugs are known in the literature to be highly synergistic in-vitro [51, 52], and 
have also been tested in a phase-I clinical trial for the treatment of patients with 
advanced hepatocellular carcinoma [53].

The predicted dose–response function is shown in Fig. 5, where the left panel dis-
plays the estimated dose–response function using our model, and the right panel 
shows the corresponding prediction made by the baseline, i.e. only utilizing the Bliss 
non-interaction assumption. The red lines in the plot indicate the distances between 
the predicted dose–response, and the corresponding entries of F . We see that our 
model is able to fit the data much better than the baseline, and can adapt to the large 
synergistic effect of the two drugs. This is also reflected in the wRMSE computed only 
for this experiment, which is 0.1187 for the PIICM and 0.3337 for the baseline model.

Predicting raw viability and comparing against comboLTR

We compare our modelling framework against comboLTR in terms of how well it can 
predict raw viability measurements. Unlike the previous sections, where the focus was 
to predict the dose–response function, f, of an unseen experiment, here we attempt to 
predict the actual viability measurements. We compare our model against the com-
boLTR model, and use the RMSE as the main metric of performance. The results are 
displayed in Table 2, where we compare the PIICM against the baseline (Bliss) model, 
as well as comboLTR. We see that in terms of RMSE, both comboLTR (RMSE = 0.1271) 
and PIICM (RMSE = 0.1270) outperform the Baseline model (RMSE = 0.1402), and that 

Table 2 Results showing the prediction performance of the baseline (Bliss) model, PIICM, and 
comboLTR in predicting raw viability measurements

Bold numbers indicate best performance

Viability

RMSE Pearson’s r

Baseline (Bliss) 0.1402 0.9103

PIICM 0.1270 0.9267
comboLTR 0.1271 0.9260

Fig. 6 The figure shows observed versus predicted viability measurements for the baseline (Bliss) model 
(left panel), the PIICM (middle panel), and the comboLTR model (right panel). The points have been coloured 
according to the density of points. Overall, the performance of the three models are similar, with the main 
differences being how the models handle observations outside the [0, 1] interval. Both the baseline and 
PIICM are limited to prediction within this interval, while the comboLTR is not
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PIICM is marginally better at predicting viability compared to comboLTR. When look-
ing at Pearson correlation, the results are similar, where PIICM is slightly outperforming 
comboLTR, with a Pearson’s r of 0.9267 against 0.9260.

The results are also shown in Fig.  6, where we plot the observed viability measure-
ments against the predicted viabilities from the baseline, PIICM and comboLTR mod-
els. The most noticable feature of the figure is the hard limits on the prediction by the 
baseline model and the PIICM. These models never predict viability measurements out-
side the [0,  1] interval, assuming these viability measurements to represent biological 
and technical noise. This reflects the underlying assumption that no cancer drugs can 
be beneficial to cell growth, nor can the drugs induce cell death below zero per cent 
viability. The comboLTR model does not have such a restriction, and will predict via-
bility measurements outside this bound. Part of the reason for the similar performance 
of comboLTR and PIICM in terms of RMSE and correlation despite the plots looking 
dissimilar, is that most viability measurements are within the [0,  1] range, in particu-
lar measurements below zero are very rare. Also note the persistence of viability meas-
urements near one, with varying prediction accuracy in the lower right corner, as was 
observed also in Fig. 3. That these observations are still not predicted well could indicate 
that they are outliers that should be removed in pre-processing.

Conclusion
In this paper we developed a novel approach to predicting dose–response for in-vitro 
drug combination experiments on cancer cell lines. We constructed a permutation 
invariant multi-output Gaussian process prior that encodes the symmetries and invari-
ances inherent in dose–response functions. A two-stage observation model was utilized 
that introduces individual level observation noise, accounting for the inherent measure-
ment errors in the dose–response experiments. These measurement errors reflect both 
the natural uncertainty across the dose–response surface within an experiment (due 
to e.g. the stochasticity of cell growth, or technical errors from the viability assay), but 
additionally they capture differences in uncertainty between experiments, which can 
be substantial depending on e.g. the number of technical replicates or the design of the 
experiment. Utilizing the conjugacy of the model and Kronecker algebra, we described 
a fast, scalable and exact inference procedure that handles incomplete datasets which 
are commonplace in drug combination screens. We showed that our model outperforms 
the baseline model (Bliss independence) when predicting the dose–response function of 
untested experiments, and that accounting for both measurement error and invariance 
is crucial for the model’s performance. Furthermore, we illustrated that the model can 
predict synergistic dose–response surfaces in held-out experiments.

The model in this paper can be extended in numerous ways, the most readily available 
being different kernel choices for the drug combination and cell line covariances. While 
the low-rank structure currently utilized offers a lot in terms of flexibility to learn com-
plex patterns of covariance, this choice also have some downsides.

Firstly, the model cannot predict dose–response in new drug combinations or cell 
lines that are not already part of the training dataset. Prediction in a GP setting requires 
the computation of the covariance between the test and training data. Thus, for a new 



Page 28 of 31Rønneberg et al. BMC Bioinformatics          (2023) 24:161 

cell line c∗ , we need to compute the covariance between the new cell line and the cell 
lines already observed in the training data, κc(c∗, ci) for i = 1, . . . ,Nc . Since the low-rank 
kernels are completely non-parametric, there are no covariates linking the new cell line 
to the cell lines in the training data. Thus, the required terms cannot be computed and 
the model cannot predict dose–response in new cell lines or for new drug combina-
tions. Secondly, the ranks of the kernel matrices must be determined using cross-valida-
tion, which is computationally expensive. Thirdly, the low-rank structure needs a lot of 
parameters. For example, for Nd = 583 and rd = 200 , the kernel matrix Kd depends on 
over 200 thousand parameters. This has the effect of slowing down parameter learning 
through the marginal likelihood, as well as the model struggling to converge to sensible 
locations in the parameter space. This could explain why the estimated cell line covari-
ance in Fig. 4 is essentially a diagonal, and is close to its initialization value.

Since the model is built within the GPyTorch framework, it is highly modular and eas-
ily customizable. Swapping out the low-rank kernels for a different construction would 
be straight forward, requiring minimal changes to the underlying code or inference pro-
cedures. This would allow the model to include relevant auxiliary data regarding the 
drug combinations and cancer cell lines, which in turn would make it possible to predict 
dose–response for previously unseen cell lines and combinations. One avenue to explore 
in this direction is to utilize multiple kernel learning (MKL) [54] to construct the drug 
combination and cell line covariances, which has previously been utilized successfully 
for drug response prediction in the single-drug case [37].

Adding external data regarding the cell lines, such as various omics characterizations, 
or tissue indicators, is likely to increase the prediction performance of the model, as pre-
viously observed by numerous authors [12, 14, 22]. In particular, it might help guide the 
model towards more sensible areas of the parameter space and encourage the model to 
borrow information across the cell lines, instead of treating each cell line as independent 
of each other. Through the kernels, various chemical descriptors can be utilized as well. 
For example, chemical structure information regarding the drugs [55], or information 
regarding their targets [56]. Overall, this will have the impact of greatly reducing the 
number of parameters in the model, adding further regularization to a learning prob-
lem where the data is scarce and noisy, helping the model’s generalizability to unseen 
experiments.
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