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Abstract 

Background:  Genome-wide tests, including genome-wide association studies (GWAS) 
of germ-line genetic variants, driver tests of cancer somatic mutations, and transcrip-
tome-wide association tests of RNAseq data, carry a high multiple testing burden. 
This burden can be overcome by enrolling larger cohorts or alleviated by using prior 
biological knowledge to favor some hypotheses over others. Here we compare these 
two methods in terms of their abilities to boost the power of hypothesis testing.

Results:  We provide a quantitative estimate for progress in cohort sizes and present 
a theoretical analysis of the power of oracular hard priors: priors that select a subset of 
hypotheses for testing, with an oracular guarantee that all true positives are within the 
tested subset. This theory demonstrates that for GWAS, strong priors that limit testing 
to 100–1000 genes provide less power than typical annual 20–40% increases in cohort 
sizes. Furthermore, non-oracular priors that exclude even a small fraction of true posi-
tives from the tested set can perform worse than not using a prior at all.

Conclusion:  Our results provide a theoretical explanation for the continued domi-
nance of simple, unbiased univariate hypothesis tests for GWAS: if a statistical question 
can be answered by larger cohort sizes, it should be answered by larger cohort sizes 
rather than by more complicated biased methods involving priors. We suggest that 
priors are better suited for non-statistical aspects of biology, such as pathway structure 
and causality, that are not yet easily captured by standard hypothesis tests.

Keywords:  Genome-wide association studies (GWAS), Genomics, Multiple hypothesis 
testing, Population genetics, Statistical genetics

Background
Genomics experiments involve testing thousands to millions of hypotheses. In func-
tional genomics and proteomics, each gene or protein usually corresponds to a 
single test, with 20,000 or more tests required for an RNAseq or proteomics experi-
ment. In human genetics, the number of independent tests accounting for linkage 
disequilibrium in a single ethnicity is usually assumed to be about 1 million for all 
but the rarest variants. To maintain a family-wise error rate (FWER) controlled at 
0.05, a long-standing approach has been to apply a Bonferroni correction, requir-
ing a single-test p value of 0.05 divided by the number of hypotheses tested. This 
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multiple-testing correction from this stringent approach is a burden for identifying 
genome-wide significant findings.

A robust solution to this problem has been to gather large cohorts of unrelated 
individuals, particularly for GWAS [1]. While the biological effect of a genetic vari-
ant is constant, its corresponding test statistic should be improved with cohort size, 
yielding greater power to detect. Cohort sizes are limited by the efficiencies of data 
generation, for example the number of samples that can be genotyped for a typi-
cal research budget. Increased DNA sequencing efficiencies permit larger cohorts 
for RNAseq, and increased DNA synthesis efficiencies reduce the cost of genotyp-
ing arrays and permit larger cohorts. Exponential improvements in cost-per-base 
is a typical model for DNA sequencing and synthesis efficiencies over time. Pro-
gress in such exponentially improving fields is often characterized by the doubling 
time, popularly known as Moore’s law for 1.5–2 year doubling time for the number 
of transistors on a semiconductor computer chip [2]. Moore’s law analysis applied 
to the number of DNA bases that can be sequenced or synthesized per dollar has 
shown a doubling time of approximately 2 years [3]. Of course, sequencing or geno-
typing costs are only one aspect of a study, and actual cohort sizes may grow at dif-
ferent rates.

Rather than increasing cohort sizes, an alternative approach is to incorporate prior 
knowledge about functional effects of genes or SNPs. In GWAS, this may increase 
the power to detect SNPs with true associations or to identify which SNP in a link-
age disequilibrium (LD) region is most likely to be the causal variant [4–7]. Other 
methods incorporate priors based on patterns learned from the data, for example 
priors for gene-based patterns [8, 9] or phenotype-based patterns [10]. While these 
methods have value in providing a clearer view of genetic architecture than available 
through univariate tests, the number of new significant findings has been small [7, 
11].

A representative approach incorporated 450 different annotations into GWAS 
analysis of 18 human traits; the number of loci with high-confidence associations 
was increased by around 5 % [12]. Despite the intuitive value of incorporating pre-
existing biological knowledge, it remains unclear whether this roughly 5% increase 
in genome-wide significant findings is the best that could be obtained, and addition-
ally whether the increase comes at the cost of false negatives for true positives that 
lack similar annotations. It is also unclear how this 5% increase compares with the 
anticipated increase from cohort size alone: given that this more sophisticated analy-
sis itself required 1-2 years of effort, would it have been just as effective to wait a year 
and then apply simpler methods to a larger cohort?

In this paper, we use theoretical models and derivations to investigate the depend-
ency of power on population size and incorporating priors. We consider an oracular 
hard prior, which tests a subset of the hypothesis that is guaranteed to include all the 
true positives. We show analytically that in the limit of small effect sizes and most 
relevant to genomics studies, population sizes are exponentially more important than 
priors in determining the power. We then show that given historical trends in cohort 
sizes, it is nearly impossible for new analytical methods to improve power faster than 
larger studies that use conventional methods.
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Results
To ground our analysis in improvements in GWAS power that can be anticipated simply 
due to increases in cohort sizes enabled by increases in DNA analysis efficiencies, we 
characterized the doubling times for GWAS cohorts and the number of loci detected 
at genome-wide significance. We then determined analytically the strength of a prior 
required to give an increase in power equivalent to the power gain from an increased 
cohort size. We show that an oracular hard prior, which restricts testing to a fraction of 
tests that still includes every true positive, has difficulty matching the power gain from 
a typical one-year increase in cohort size. We then show that a non-oracular hard prior, 
which excludes some true positives from the tested set, often performs worse than tests 
without a prior at all.

Doubling times for GWAS cohorts and significant loci

Exponential increases in genotyping and sequencing efficiency have enabled simi-
lar increases in GWAS cohort sizes. Larger sample sizes in turn have greater power to 
detect SNPs with smaller and smaller effects. We quantified increases in cohort sizes and 
genome-wide significant SNPs through a systematic analysis of GWAS cohorts, traits, 
and loci as compiled by the GWAS Catalog [13]. Quantification is through an exponen-
tial fit, reported as the doubling times of GWAS cohort sizes and detected SNPs in phe-
notypes with sufficient studies to permit estimation.

The GWAS Catalog contains results for 5123 total studies describing 3034 traits and 
126,788 associations that are genome-wide significant, defined as  p value 5× 10−8 or 
below, and pruned to report one lead SNP for regions with high linkage disequilibrium. 
Studies were grouped according to the catalog-assigned disease trait and arranged in 
chronological order from the oldest to the most recent (see Additional file 1). Cohort 
sizes were based on the populations reported by the studies. Case-control population 
sizes were estimated as twice the harmonic mean of the number of cases and controls, 
a balanced design that should have similar power (see Methods). To avoid analysis of 
smaller replication studies, studies for a trait were only analyzed if the study identified 
the largest number of significant loci for that trait as of its publication date. These time-
ordered studies for each phenotype were defined as ‘effective studies’. With three effec-
tive studies required to permit fitting regression models, we calculated doubling times 
for cohorts and loci for 49 traits, comprising 282 studies and 23,839 associations (see 
Additional file 2).

Results for a well-studied case-control disease trait, breast cancer susceptibility, dem-
onstrate the progress in identifying genome-significant loci (Fig.  1, data provided in 
Additional file  3). As of 2010, the largest study had 3659 cases and 4897 controls, an 
effective cohort size of 8377. Those studies had revealed 19 genome-wide significant 
loci. As of 2015, the largest effective cohort size was 33,671, and 106 loci had been iden-
tified. Studies through 2020 have had an effective cohort size of 138,040 and 411 loci 
have been identified.

Regression fits for the five breast cancer susceptibility studies estimate the cohort size 
doubling time to be τN = 1.5± 0.2 years, and the genome-wide significant loci doubling 
time to be τL = 1.6± 0.2 years (Fig. 2). This fit, highly significant versus a null hypothesis 
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of no progress, used the log-linear model log2 y = β0 + β1t , where y is the cohort size or 
the number of genome-wide significant loci, t is the publication date in fractional years, 
and β−1

1  is the doubling time. A fit including a quadratic term, log2 y ∼ β0 + β1t + β2t
2 , 

did not improve the model for cohort doubling time (p = 0.384) or for loci doubling 
time (p = 0.652), justifying the use of an exponential growth model.

Analogous results for a well-studied quantitative trait, blood triglyceride levels, show 
similar progress from 2010 to 2020 (Fig. 3, data provided in Additional file 4). As of 2010, 
the largest study had a cohort size of 96,598, and 65 loci had been identified. As of 2020, 
the largest cohort was 283,251, and 452 loci had been identified. The doubling time for 
cohorts was estimated at τN = 1.8± 0.5 years, and the doubling for loci was estimated at 
τL = 1.8± 0.2 years (Fig. 4).

We then restricted attention to traits where doubling times could be calculated robustly, 
with a standard error of 0.5 or smaller, and with at least 10 SNP associations, yielding 33 

Fig. 1  GWAS progress for breast cancer susceptibility cohorts and loci. Manhattan plots depict GWAS 
findings for breast cancer as of 2010 (top panel), 2015 (middle panel), and 2020 (bottom panel). In each 
panel, the x-axis represents genomic coordinates to scale, and the y-axis is the − log10 p value for a GWAS 
association with a SNP; a dashed line indicates the genome-wide significance threshold, p = 5× 10−8 . 
The SNP color alternates blue/green by chromosome, with lighter colors for findings below threshold and 
saturated colors above threshold
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traits comprising 187 studies and 15,051 associations (see Additional file 2). Results for dis-
ease traits where sufficient studies have been reported to estimate doubling times show a 
general agreement between the doubling time for cohort size and the doubling time for the 
number of significant loci (Fig. 5). For 23 of the 33 traits analyzed, the null hypothesis of 
equal doubling times for cohort size and loci cannot be rejected (p value = 0.05, two-sided 
t-test). The only trait for which the number of loci is doubling more slowly than the cohort 
size is age-related macular degeneration, with a cohort doubling time of 1.2 years and a loci 
doubling time of 1.8 years. Early studies of this phenotype with small cohorts nevertheless 
discovered significant loci with large effects. This may explain the subsequent slower rate of 
discovery.

Traits for which loci are doubling faster than cohort size include neuroticism, chrono-
type, and education, with cohorts doubling every 1.2 to 1.6 years and loci doubling every 
0.4 to 0.6 years. An important aspect noted in a recent educational attainment study is the 
difficulty in controlling for environmental effects that are correlated with causal variants 
and overstate the causal effect [14].

Well-defined doubling times imply a power-law for the cumulative distribution L(R2) of 
the number of loci with effect size R2 or greater,

Equivalence in doubling times leads implies the specific exponent of −1,

L(R2) ∼ (R2)−τN /τL .

L(R2) ∝ 1/R2.

Fig. 2  Growth rate of sample size and number of loci for GWAS investigating breast cancer. The scatter 
plot shows that both the sample size and number of loci increase through time for GWAS investigating 
breast cancer. The cohort size and numbers of loci increase linearly in log scales during last decade. 
The x-axis indicates time and the y-axis indicates the counts. Every points is a single study recorded in 
the GWAS Catalog.
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Algebraic or power-law decay is synonymous with a scale-free distribution and is also 
known as Zipf ’s law. This conjecture is generally consistent with the omnigenic view of 
complex traits [15].

Oracular hard priors

The previous results describe why increasing cohort sizes have increasing power to 
detect additional GWAS loci: the cumulative effect size distribution for many traits has 
a power-law functional form approximately proportional to 1/R2 , and a proportional 
increase in the cohort size N can reveal the same proportional increase in genome-wide 
significant loci.

In this section, we hold the population size fixed and instead present results for oracu-
lar hard priors. The term ‘hard’ indicates a frequentist framework in which only hypoth-
eses within a pre-specified subset are tested, and a multiple testing correction is applied 

Fig. 3  GWAS progress for triglyceride cohorts and loci. Manhattan plots depict GWAS findings for blood 
triglyceride levels as of 2010 (top panel), 2015 (middle panel), and 2020 (bottom panel). In each panel, the 
x-axis represents genomic coordinates to scale, and the y-axis is the − log10 p value for a GWAS association 
with a SNP; a dashed line indicates the genome-wide significance threshold, p = 5× 10−8 . The SNP color 
alternates blue/green by chromosome, with lighter colors for findings below threshold and saturated colors 
above threshold
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according to the number of hypotheses within this subset. The alternative ‘soft’ prior in a 
Bayesian framework would be a prior probability assigned to each hypothesis, for exam-
ple arising from predictions of functional impact. The hard prior is valuable in permit-
ting an analytical treatment for general insight into the value of priors.

The ‘oracular’ property indicates that all the hypotheses that in reality fall under the 
alternative hypothesis are guaranteed to be within the subset selected for testing. This 
again is a simplification that overestimates any real-world prior, which invariably will 
create false negatives by not testing some of the hypotheses that really fall under the 
alternative.

Fewer hypotheses tested corresponds to a reduced multiple-testing burden. This in 
turn implies a less stringent significance threshold and a greater power to detect posi-
tives within the prior region.

Studies of cancer somatic mutations to identify cancer drivers (rather than cancer sus-
ceptibility loci) regularly apply hard priors to reduce the testing burden from passenger 
mutations (Fig. 6). The universe of all possible hypothesis tests includes every somatic 
mutation identified in a tumor cell versus the germ line, regardless the fraction of tumor 
cells that carry the mutation or the predicted functional impact of the mutation. Loss-
of-function mutations, including deletions, frameshifts, and nonsense mutations, are 
generally prioritized for testing. Tumor suppressor genes often have these types of muta-
tions. Missense mutations that arise recurrently in independent individuals are also pri-
oritized for testing, with a gain-of-function hypothesis. Oncogenes often have recurrent 
non-synonymous mutations, or recurrent loss of specific regulatory domains leading 

Fig. 4  Growth rate of sample size and number of loci for GWAS investigating triglycerides in blood. 
The scatter plot shows that both the sample size and number of loci increase through time for GWAS 
investigating triglycerides in blood. The cohort size and numbers of loci increase linearly in log scales during 
last decade. The x-axis indicates time and the y-axis indicates the counts. Every points is a single study 
recorded in the GWAS Catalog
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to constitutive activity. Mutations that are less likely to have functional consequences, 
including non-recurrent non-synonymous mutations and mutations in non-protein-
coding regions, are often not tested at all. The number of neutral mutations can be 
orders of magnitude larger than the number of driver mutations [16, 17] Consequently 
only a small fraction of the observed somatic mutations are tested, considerably reduc-
ing the multiple testing burden.

Hard priors for cancer studies are easier to formulate, given the strong functional 
effects assumed for cancer driver mutations. Similarly, positional cloning studies to 
identify Mendelian disease loci successfully rely on sequencing to identify germ line 
mutations with strong functional effects and high penetrance. For GWAS of complex 
disorders, genetic variants predisposing to disease are less readily identified by strong 
effects on protein structure or function. Nevertheless, priors that focus attention on 
genes expressed in a tissue of interest at an appropriate developmental stage, or priors 
that focus attention on SNPs that are within gene-based boundaries or coincide with 
regulatory regions, have been discussed and applied.

Fig. 5  Comparison between years of doubling for loci and cohort in GWAS studies.  Each term denotes a 
trait recorded in the GWAS Catalog. The corresponding x-axis indicates the cohort doubling time for studies 
investigating that trait, and the y-axis indicates the captured loci doubling time. Terms in black shows that 
the doubling time for study cohort and loci is approximately the same. Traits that have a significant larger 
doubling time for cohort than loci are marked in green. Traits with significant larger doubling time for loci are 
marked in red
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For a general mathematical framework, we define the strength S of a hard prior 
as the fold-reduction in the number of hypotheses tested: rather than testing all A 
hypotheses, only a subset of size A/S is tested. The stronger the prior, the larger the 
value of S, and the smaller the multiple testing burden. For a GWAS, a p value cutoff 
of 5× 10−8 is usually used for genome-wide tests. A prior with strength S = 100 , 
roughly equivalent to testing SNPs in 250 rather 25,000 genes, would change the p 
value cutoff to 5× 10−6.

This type of approach can identify some variants that are not identified using a 
conventional threshold. For example, a breast cancer susceptibility GWAS inves-
tigating breast cancer risk identified the SNP rs11571833 in BRCA2 with p value 
of 2× 10−6 . The BRCA2 gene is a known tumor suppressor contributing to DNA 
repair. Based on this prior knowledge, the SNP is likely to be a true finding. A strong 
prior, for example a prior limiting tests to SNPs close to known breast cancer risk 
factors, would yield a significant finding for rs11571833, which could not be cap-
tured as a significant hit with the normal p-value cutoff for GWAS studies. This type 
of prior could suffer from false negatives, however, in excluding most of the genome 
from testing.

Instead of devising and applying priors, an alternative strategy would be to accu-
mulate larger cohorts for greater power to detect real effects. Larger cohorts and 
improved priors could of course be pursued simultaneously. Nevertheless, given the 
18–24 month doubling time for cohort size and the similar amount of time required 
to develop and benchmark a new computational method, it is worthwhile to consider 
the prior strength S required to give the same boost in power as simply waiting one to 
two years for a larger study.

Fig. 6  Hard priors in the context of cancer somatic mutations. The universe of all tests (dark blue) includes 
all identified somatic mutations, regardless of frequency within cancer cells or recurrence across individuals. 
Hard priors often restrict tests to loss-of-function mutations (light blue) characteristic of tumor suppressors 
(green) and to recurrent non-synonymous mutations (light blue) characteristic of oncogenes (green). These 
priors may exclude unanticipated classes of driver mutations, for example structural variants (green) in which 
copy-number amplifications lead to changes in gene activities that drive cancer. While oracular hard priors 
have the property that all true findings are within the subset selected for testing, in real-world applications 
true findings will fall outside the prior and can increase the false-negative rate
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Power as a function of prior strength and cohort size

Consider two studies with equal power, represented by the normal quantile zII for 
the false-negative rate for a particular effect size. Typically a power of 80% is desired 
for a small effect, with zII = −0.84 . One study has a larger population of size N1 and 
applies no prior, S1 = 1 . This study has a full multiple testing burden, represented by 
the normal quantile ζ . For GWAS, ζ corresponds to the quantile for a two-sided p 
value of 5× 10−8 , or ζ = 5.45 . As shown in the methods using a steepest descents 
approximation for the normal distribution survival function (or the complementary 
error function),

Using the values described above for GWAS, ζ(ζ − zII )/2 = 17.2 . The logarithmic term 
divided by this value is small, permitting the approximation 1+ ǫ ≈ eǫ with error ǫ2 . 
Using this approximation,

The population size is exponentially more important than the prior in determining the 
critical effect size for a study, defined as the effect size R2 that can be detected with 80% 
power at significance threshold αS , where α is the threshold without a prior and S is 
the prior strength (Fig. 7). The results depicted in Fig. 7 are numerically exact solutions 
to Eq. 5. The contour lines of equal power as a function of prior strength and popula-
tion size have a steep slope, slightly steeper in the limit of prior strength 1 (no prior) at 
the bottom of the figure, and somewhat less steep as the prior strength increases. The 
numerically exact magnitude of the slope of the contour lines is 17.0 for a prior strength 
close to 1 and 14.4 for a prior strength of 100, corresponding to 200 genes tested. The 
analytical approximation yields a slope of ζ(ζ − zII )/2 = 17.2.

The full contour plot of critical R2 is summarized by a numerically exact calibra-
tion curve depicting the prior strength required to match the power increase from 
a larger cohort (Fig. 8). A 1.2-fold larger population could be matched by a prior of 
strength 16.8, roughly equivalent to restricting tests to genes specific to a tissue of 
interest. A 1.4-fold larger population could be matched by a prior strength 124.2, 
roughly equivalent to restricting tests to a pathway of about 100–200 genes. Doubling 
the cohort size would require a prior strength 4321.5. This would almost certainly 
violate the oracular property by restricting tests to about 1–10 genes, or to about 500 
of the effectively 2 million independent SNPs usually assumed for the GWAS multiple 
testing burden. This type of prior can be useful for validation studies but would have 
an unacceptably larger false-negative rate for a discovery study.

Non‑oracular priors

An oracular prior, guaranteed to include every true positive, is an unlikely ideal. 
More likely is a non-oracular prior with an accuracy f defined as the fraction of true 

N1

N2
≈ 1+ 2

ζ(ζ − zII )
ln

S2

S1
.

S2

S1
≈ N1

N2

ζ(ζ−zII )
2
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positives it includes, with f = 1 corresponding to an oracular prior. The power of a 
test employing a non-oracular prior is the probability of the statistical test itself mul-
tiplied by the probability f that a particular true positive is actually included in the 
tested set. Thus, for any specified population size, type I error, and prior strength S, 
a test using a non-oracular prior with f < 1 will necessarily have less power than the 
corresponding oracular power.

For a requested power of 1− β (with β the overall false-negative rate), a statisti-
cal test using a non-oracular prior must have power (1− β)/f  , yielding a generalized 
expression relating the prior strength S and prior strength f to the cohort size, vari-
ance explained, and requested type I and type II error rates (Eq. 11). This relationship 
can then be used to compare the population size requirement for the non-oracular 
prior relative to the requirements without a prior (or equivalently, at fixed popula-
tion size, the effect size that can be discovered at specified family-wise error rate and 
power). For a given prior strength, consider starting with an oracular prior (accuracy 
f = 1) and decreasing the accuracy. As the accuracy is decreased, the performance of 
the prior degrades and eventually falls below the performance without a prior. This 
transition point between using a non-oracular prior and avoiding a prior altogether 
is readily computed. A second transition occurs when the prior accuracy f falls below 

Fig. 7  Critical R2 for p = 5× 10−8 at power = 0.8 as a function of prior strength and population size. Colors 
indicate contour lines of equal power to detect an effect in the context of GWAS. Power changes rapidly 
left-to-right, reflecting the strong dependence of power on population size. Power changes very slowly 
bottom-to-top, reflecting the weak ability of priors to boost power
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the requested power 1− β , at which point the test with the non-oracular prior can 
never yield the requested power regardless of population size.

Our analyses of non-oracular priors in GWAS are based on a type I error of 5× 10−8 
and a range of powers of 50% to 95% (Fig. 9). For a typical 80% power requested and 
a prior strength of 10, corresponding approximately to testing 10% of the genes, an 
accuracy of 89% is required. If the power strength is 100, corresponding to testing 
approximately 200 genes, the prior accuracy must be at least 83%.

Fig. 8  Calibration curve for power and population size. Numerically exact results are shown for the prior 
strength S required to achieve the same power as a simple fold-increase in population size with no prior

Fig. 9  Non-oracular priors for GWAS. Non-oracular priors, with accuracy f defined as the fraction of true 
positives included in the tested set, can perform worse that not using a prior at all. Equal performance (solid 
line) of a non-oracular prior and of no prior is defined by the R2 that can be detected with 50% power (left), 
80% power (middle), or 95% power (right) at p = 5× 10−8 typically used for GWAS. Performance is depicted 
for non-oracular priors having accuracy f from 0% to 100% (equivalent to an oracular prior) and having prior 
strength S from 1 to 1000. Accuracies for equal performance at prior strength 10, 100, and 1000 are shown 
(labeled points). Above the line, the non-oracular prior performs better; below the line, the non-oracular prior 
performs worse and should be avoided
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While our main focus has been GWAS, similar analyses are readily performed 
for RNAseq studies. Here, assuming tests of 25,000 genes, the type I error single-test 
threshold is 2× 10−6 , and again we consider requested power from 50% to 95% (Fig. 10). 
Results for RNAseq and GWAS are similar, with a prior accuracy of 88% required for 
80% power with 10% of genes tested, and a prior accuracy of 82% for 80% power when 
only 1% of genes are tested.

For studies with power requested closer to 50%, priors with accuracy of 60% can be 
effective. Power requests this low are unusual, however, because of potentially large 
numbers of false negatives. These results suggest that prior accuracies in general must be 
90% or higher for non-oracular priors to be considered in practice for genomics studies.

Discussion
Despite long-standing efforts to exploit prior knowledge to boost the power of GWAS, 
RNAseq, and other genome-wide tests, including our own efforts to develop and apply 
gene-based priors for GWAS [8, 9], traditional unbiased univariate tests with a Bon-
ferroni multiple-testing correction or, in RNAseq, a false-discovery rate threshold, are 
essentially the only methods used in practice. One hypothesis is that genetics research-
ers performing GWAS do not appreciate the power gains that could be had by using the 
most recent methods. An alternative hypothesis supported by our findings is that effort 
is better spent collecting larger cohorts and performing meta-analyses. Supporting the 
alternative hypothesis are no-free-lunch theorems that prove that priors that improve 
performance for one class of problems must degrade performance for other classes [18]. 
Our extension to non-oracular priors highlights the risk a prior with even small inaccu-
racies can perform worse than an unbiased analysis avoiding priors entirely.

What, then, is the value of priors in GWAS? We are ourselves convinced that developing 
priors to boost statistical significance for GWAS is not a productive area for future research. 
We do think, however, that they have an important role in bridging between statistical sig-
nificance and biological mechanism. While larger cohorts will provide stronger statistical 
associations, they will not necessarily identify which SNP or SNPs in a linkage disequilib-
rium block is most likely to be responsible for the observed effect; which gene is affected 
by the causal SNP; or how many independent effects or different genes are involved. These 

Fig. 10  Non-oracular priors for RNAseq. Same as Fig. 9, but for RNAseq, with significance p = 2× 10−6 
typically requested. Equal performance (solid line) of a non-oracular prior and of no prior is defined by the 
R2 that can be detected with 50% power (left), 80% power (middle), or 95% power (right) at p = 5× 10−8 . 
Performance is depicted for non-oracular priors having accuracy f from 0% to 100% (equivalent to an oracular 
prior) and having prior strength S from 1 to 1000. Accuracies for equal performance at prior strength 10, 100, 
and 1000 are shown (labeled points). Above the line, the non-oracular prior performs better; below the line, 
the non-oracular prior performs worse and should be avoided
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types of problems are excellent opportunities to develop and use of priors for inference over 
multiple types of data and existing biomedical knowledge.

Conclusion
In the context of GWAS, mathematical analyses of standard statistical tests demonstrate 
that doubling the size of a cohort improves test power more than is possible with any rea-
sonable prior, including oracular priors that are guaranteed to include every true positive 
in the set of tested hypotheses. In reality, priors are non-oracular and inaccurate, with 
true positives inevitably left out of the tested set. Whether for GWAS, RNAseq, or other 
genome-scale hypothesis testing, when even moderate power is a goal, priors can require 
an unrealistically high accuracy of 90% or more, making it nearly impossible to improve 
upon performance without a prior.

Methods
Empirical data

Datasets were collected from the GWAS Catalog (accessed on June 13, 2020) [13]. An 
effective sample size was calculated for each study. For studies investigating quantitative 
traits, the effective sample size was estimated as the number of individuals in the largest 
cohort described. For case-control studies, the effective sample size was calculated as twice 
the harmonic mean of the case and control population, estimated to have equal power as 
follows.

Consider a study with N1 cases and N2 controls. In the context of GWAS, tests for each 
allele are typically based on δp , the difference in allele frequency between cases and con-
trols. Denoting these allele frequencies as p1 and p2,

The test statistic is Q2,

Under the null hypothesis, δp = 0 and Q2 follows a χ2 distribution for one degree of 
freedom.

The estimated allele frequency p̂1 is the observed allele count, n̂1 , divided by the number 
of chromosomes, 2N1 . The allele count itself is a binomial random variable with expectation 
2N1p1 and variance 2N1p1(1− p1) . The variance of p1 is therefore

similarly,

Under the null hypothesis, and for small effect sizes that are typical in GWAS, δp is 
small. Neglecting terms of order δp,

p1 = p+ δp/2,

p2 = p− δp/2,

Q2 = (δp)2/Var(p1 − p2).

Var(p1) = p1(1− p1)/2N1;

Var(p2) = p2(1− p2)/2N2.
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Now suppose that a study involves a population with total size N. The variance is mini-
mized with N1 = N2 = N/2 , suggesting our definition of effective population size N 
according to

where N̄  is the harmonic mean 2N1N2/(N1 + N2) . For the effective population size,

Traits and effective studies

Each GWAS study may be related to multiple records, each of which demonstrates the 
significant association between the trait or phenotype investigated by the study and a 
SNP. These records generally account for linkage disequilibrium by reporting the most 
significant SNP in a linkage region. The number of associations for each study was 
counted as the number of associations passing the genome-wide significance threshold 
of 5× 10−8.

The GWAS Catalog assigns a specific trait to each study [13]. We used these trait 
names defined by the GWAS Catalog to group studies according to trait. For every trait, 
we then ordered the studies chronologically by publication date. To exclude small repli-
cation and validation cohorts, we only retained studies reporting more findings than all 
previous studies of the same trait. The retained studies were defined as effective studies. 
Only traits with at least three effective studies (required for log-scale regression fits of an 
intercept and slope) were kept for further analysis.

Doubling times for cohort sizes and number of associations for each phenotype were 
estimated as a linear model, log2 ŷ = β0 + β1t , with y representing either the cohort size 
or the number of associations, t the publication date with months and days converted 
to fractional years, and regression coefficients β0 and β1 , corresponding to exponential 
growth, ŷ = 2β02β1t . The doubling time is τ ≡ 1/β1 , and its error is στ ≡ σβ1/β

2
1.

Significance of the exponential fit was assessed by three nested regression models 
denoted R0 , R1 , and R2 : the null model of no progress, R0 : log2 ŷ = β0 ; the log-linear 
model of exponential growth, R1 : log2 y = β0 + β1t ; and a model with more compli-
cated quadratic time dependence, R2 : log2 y = β0 + β1t + β2t

2 . Significance of the 
exponential growth model relative to a null hypothesis of no progress was estimated 
as the ANOVA p value of R1 versus R0 . For traits with significant growth, we then 
assessed the evidence for more complicated time dependence as the ANOVA p value 
of R2 versus R1 . Note that for a specific trait, large cohort studies could in princi-
ple identify all loci for that trait, yielding a significant model for cohort size growth 
but no growth in the number of significant loci. The F-statistic of ANOVA test for 
model sufficiency was calculated as the proportion of extra variation explained by the 
full model compared to the reduced model. Specifically, to test the time dependence 
of growth, F-statistic was calculated as the ratio of extra variation explained by R1 

Var(p1 − p2) =
p(1− p)

2
(
1

N1
+ 1

N2
).

1

N/2
+ 1

N/2
= 1

N1
+ 1

N2
= 2

N̄
,

(1)N = 2N̄ .
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compared to R0 and the variation explained by R1 alone; to test whether growth had a 
more complicated quadratic time dependence, F-statistic was calculated as the ratio 
of extra variation explained by R2 compared to R1 and the variation explained merely 
by R2 . The corresponding p value was then calculated by the F-statistic.

Doubling times for cohort size ( τN  and error σN  calculated as described above) and 
number of significant loci ( τL and σL calculated as described above) were compared 
for a test of the null hypothesis that τN = τL . The test statistic zτ was defined as 
(τN − τL)/

√

τ 2N + τ 2L  , and p values were calculated for a two-sided test of the null 

hypothesis zτ = 0 . As this analysis was exploratory, we did not correct this test for the 
number of traits analyzed.

Relating the significance threshold, power, cohort size, and variance explained 

for genome‑wide tests

We consider tests of association between an observed phenotype or response vari-
able, y, and a genotype feature of the data, x, testing each of the A total genotype 
features in turn. The x and y values are assumed to be mean-subtracted scalars for 
simplicity, and the population size is N. Each of the A total association tests compares 
a null model, M0 , to an alternative, M1 , which for a linear model takes the form

One such M1 exists for each feature to be tested. Model parameters are �0 = {σ 2
0 } for 

the null model and �1 = {β , σ 2
1 } for the alternative model. These models correspond to a 

null hypothesis H0 and alternative hypothesis H1,

For nested models, the hypothesis test is usually performed by a likelihood ratio test 
or its equivalent. Assuming independence of the model and data, a test statistic q2 is 
defined as

As usual, we define �̂ ≡ arg max�L(� | y) . For normally distributed y, with β ≡ 0 for 
M0 and possibly non-zero for M1 , the log-likelihood is

For the maximum likelihood parameters, ln L(�̂ | y) = −(N/2) ln(2πσ̂ 2)− (1/2) . 
Standard results are

M0 : y ∼ Norm(0, σ 2
0 );

M1 : y ∼ Norm(βx, σ 2
1 ).

H0 : β = 0;
H1 : β �= 0.

(2)q2 = 2 ln
max�1L(�1 | y)
max�0L(�0 | y)

.

ln L(� | y) = −N

2
ln(2πσ 2)− 1

2σ 2

N
∑

i=1

(yi − βxi)
2.
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Again following standard definitions, the residual sums of squares for M0 is RSS0 = 
N σ̂ 2

0  and for M1 is RSS1 = N σ̂ 2
1  . The fraction of variance explained by M1 is 

(RSS0 − RSS1)/RSS0 , defined as R2 . The test statistic q2 can be expressed in terms of R2 
as

According to Wilks’s Theorem, when sample size N → ∞ under the null hypothesis, q2 
is a random variable distributed as χ2

1  , or more generally as a χ2
d random variable where 

the null model is nested inside an alternative model with d additional parameters [19]. 
Under the alternative hypothesis, for small R2 typical of GWAS, q2 is distributed as a 
non-central χ2 with non-centrality parameter q21,

To control the type I error (false-positive rate) at family-wise error rate (FWER) α , the 
Bonferroni method requires a single-test p value of α/A for A total tests. Let the quantile 
of the uniform normal distribution corresponding to a two-tailed test at this stringency 
be zI . More formally, if �(z) is the cumulative lower-tail probability distribution for 
standard normal random variable z, then �(−zI ) = α/2A . With true effect q1 defined as 
the positive value 

√

q21  , the power is �(q1 − zI ) . Suppose the type II error rate is β , and 
zII is the corresponding quantile �(zII ) = β . From the definition of power, 
�(q1 − zI ) = 1− β , implying q1 − z1 = −zII , or zI − zII = q1 . Therefore,

This key expression relates the type I error (false-positive rate), the type II error(false-
negative rate or complement of power), the population size N, and the effect size R2.

Effect size distribution

In the limit of small effect size, R2 ≪ 1 , and fixed type I and type II error, the effect size and 
population size are inversely related,

σ̂ 2
0 = 1

N

N
∑

i=1

y2i

β̂ =
∑N

i=1 xiyi
∑N

i=1 x
2
i

σ̂ 2
1 = 1

N

N
∑

i=1

(yi − βxi)
2

q2 =N ln
σ̂ 2
0

σ̂ 2
1

.

(3)q2 = N ln
RSS0

RSS1
= N ln

(

1+ R2

1− R2

)

.

(4)q21 = N
R2

1− R2
.

(5)(zI − zII )
2 = N

R2

1− R2
.

(zI − zII )
2 = NR2.
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This relationship, together with doubling times, implies a functional form for the num-
ber of loci with effect size R2 or larger, defined as L(R2) . As before, define τN as the dou-
bling time for cohorts and τL as the doubling time for loci. The effect size that can be 
discovered at a specified type I error is approximately equal to the effect size at 50% 
power,

After t years, cohort size increases from an initial value N0 to a final value Nt = N02
t/τN . 

Similarly, the number of loci discovered increases from L0 to L02t/τL . The number of loci 
at the end is also equal to the the number of loci with effect size greater than or equal to 
z2I /N (t),

This relationship is satisfied in turn by a power-law dependence of L(R2) on its argument,

The probability density has the form of the derivative of the cumulative probability, and 
thus well-defined doubling times imply an effect-size probability distribution ρ(R2) with 
functional form

Oracular hard priors

We consider an idealized prior in which only hypotheses corresponding to a faction 1/S 
of the total are tested, with an oracular property that all known positives lie within the 
selected subset. Larger S corresponds to a stronger prior. For 20,000 gene-based tests, 
testing 10% of the total corresponds to S = 10 , and testing 20 genes corresponds to 
S = 1000 . Realistically, priors stronger than S = 100 , corresponding to 200 genes tested, 
are unlikely.

The effect of a hard prior is to reduce the multiple-testing burden. To maintain FWER 
α , each two-tailed test is performed at stringency Sα/2A rather than α/2A . This reduces 
the quantile zI required for significance and increases the power to detect an association 
with a smaller effect R2 . Equivalently, Eq. 5 can be solved for R2 to calculate the critical 
effect size to achieve desired power at stated type I error,

In other words, given a fixed single test p value α , A total tests and a prior strength of S, 
Eq. 6 can be used to calculated the increases of detectable critical effect size brought by 
the prior. Results were generated as numerically exact solutions to these equations.

As shown below (see Results), priors were much less effective than increased popula-
tion sizes in improving power. We developed analytical approximations that helped us 
understand the reasons for our results. A steepest descents approximation relates the 
quantile z > 0 to its upper-tail area ǫ,

R2
N ≈ z2I /N .

L02
t/τL = L(z2I N

−1
0 2−t/τN ).

L(R2) ∼ (R2)−τN /τL .

ρ(R2) ∼ (R2)−(τL+τN )/τL .

(6)R2 = (zI − zII )
2

N + (zI − zII )2
.
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Equivalently,

In terms of the quantile zI for prior strength S and a two-tailed test, we have 
approximately

Define ζ as the value of zI for no prior, S = 1 , with �(−ζ ) = α/2A and

For GWAS with a p value threshold of 5× 10−8 , ζ = 5.45 and ζ 2 = 29.7 . Because the 
dependence of Eq. 7 on ln z is weak, we replace ln z with ln ζ,

Keeping terms of order 1/ζ,

According to Eq. 5, the critical effect size depends only on the ratio (zI − zII )
2/N  . Con-

sider two scenarios with equal critical effect size, one with population size N1 and prior 
strength S1 , and the second with population size N2 and prior strength S2 . For these to 
have equal critical effect size,

Cancelling constant terms ζ − zII and noting that 2ζ−1(ζ − zII ) ln S is small,

ǫ = (2π)−1/2

∫ ∞

z

du e
−u2/2

= (2π)−1/2
e
−z2/2

∫ ∞

z

du e
−(u+z)(u−z)/2

≈ (2π)−1/2
e
−z2/2

∫ ∞

z

du e
−2z(u−z)/2

= (2π)−1/2
e
−z2/2

∫ ∞

z

du e
−z(u−z)

= 1√
2πz

e
−z2/2

.

z2 ≈ −2 ln[
√
2πzǫ].

(7)z2I ≈ −2 ln[
√
2πzISα/A].

(8)ζ 2 ≈ −2 ln(
√
2πζα/A).

z2I ≈ −2 ln[
√
2πζSα/A] ≈ ζ 2 − 2 ln S = ζ 2(1− 2ζ−2 ln S).

zI ≈ζ(1− ζ−2 ln S)

zI − zII ≈ζ − zII − ζ−1 ln S

(zI − zII )
2 ≈(ζ − zII )

2 − 2(ζ − zII )

ζ
ln S

=(ζ − zII )
2

[

1− 2

ζ(ζ − zII )
ln S

]

.

(ζ − zII )
2

[

1− 2

ζ(ζ − zII )
ln S1

]

/N1 ≈ (ζ − zII )
2

[

1− 2

ζ(ζ − zII )
ln S2

]

/N2.
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The dependence on population size is linear, whereas the dependence on prior strength 
is logarithmic. Equivalently, population size is exponentially more important that prior 
strength. Again for GWAS with zII selected for 80% power, ζ(ζ − zII )/2 = 17.15 , and 
only a small fractional population increase is required to obtain the equivalent power 
increase for a strong prior. In the equation above, the logarithmic term divided by 
ζ(ζ − zII )/2 is small, permitting the approximation 1+ ǫ ≈ eǫ with error ǫ2 . Using this 
approximation,

An extremely strong prior with S2 = 1000 , with effectively only 20 genes selected for 
testing, can be matched by a population increase of about 40%.

Contours of N and S with equal critical effect size can be estimated by returning to the 
approximate result

Noting that for small ǫ , 1+ ǫ ln S ≈ Sǫ , contours are given by

On a log-log plot of log S versus logN  , these contours would have steep negative slope 
equal to −ζ(ζ − zII )/2.

Non‑oracular priors

A non-oracular prior has an accuracy f defined as the fraction of true positives con-
tained within the tested set. In the limit f → 1 , the tested set contains all the true posi-
tives and the prior is oracular. The prior strength S retains its definition as the ratio of 
the total number of possible tests, A, to the tested set with size A/S. We again define 
�(z) as the lower-tail area for standard normal quantile z and �−1 as its inverse, with 
zǫ ≡ �−1(1− ǫ) for 0 < ǫ < 1 . Without a prior, zI = zα/2A , and with the prior, zI = 
zαS/2A as before.

With overall false-negative rate β , power 1− β , and no prior, zII = z1−β . With a prior, 
however, the final power is the product of the power of the statistical test, (1− β ′) and 
the prior accuracy f. Therefore, the statistical test must have power (1− β)/f  for the 
overall power to be 1− β . The value of zII for a non-oracular test is z(1−β)/f  . Note, how-
ever, that there are no solutions if the requested power 1− β is greater than the prior 

N1

N2
≈
[

1− 2

ζ(ζ − zII )
ln S1

]

/

[

1− 2

ζ(ζ − zII )
ln S2

]

≈
[

1− 2

ζ(ζ − zII )
ln S1

]

×
[

1+ 2

ζ(ζ − zII )
ln S2

]

≈1+ 2

ζ(ζ − zII )
ln

S2

S1
.

N1

N2
≈ exp

[

2

ζ(ζ − zII )
ln

S2

S1

]

≈
[

S2

S1

]
2

ζ(ζ−zII )

NR2/(1− R2) ≈ (ζ − zII )
2[1− 2

ζ(ζ − zII )
ln S].

(9)N ≈ S−2/ζ(ζ−zII )(ζ − zII )
2(1− R2)/R2.
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accuracy f (which would correspond to a lower-tail area ≥ 1 ). These results yield a gener-
alized version of Eq. 5,

with S = f = 1 for no prior, S > 1 with f = 1 for an oracular power, and S > 1 and f < 1 
for a non-oracular prior. For a given family-wise error rate α and population size N, the 
effect size R2 that can be discovered with requested power 1− β depends on (zI − zII )

2 . 
Using non-oracular prior has equivalent performance to using no prior when

When the left-hand side of Eq. 11 is smaller (corresponding to a smaller population size 
required for given effect size R2 ), the non-oracular prior is preferred. When the right-
hand side is smaller, an unbiased test without a prior is preferred.
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