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Abstract 

Background: Identification of hot spots in protein–DNA binding interfaces is 
extremely important for understanding the underlying mechanisms of protein–DNA 
interactions and drug design. Since experimental methods for identifying hot spots are 
time-consuming and expensive, and most of the existing computational methods are 
based on traditional protein–DNA features to predict hot spots, unable to make full use 
of the effective information in the features.

Results: In this work, a method named WTL-PDH is proposed for hot spots prediction. 
To deal with the unbalanced dataset, we used the Synthetic Minority Over-sampling 
Technique to generate minority class samples to achieve the balance of dataset. First, 
we extracted the solvent accessible surface area features and structural features, and 
then processed the traditional features using discrete wavelet transform and wavelet 
packet transform to extract the wavelet energy information and wavelet entropy infor-
mation, and obtained a total of 175 dimensional features. In order to obtain the best 
feature subset, we systematically evaluate these features in various feature selection 
strategies. Finally, light gradient boosting machine (LightGBM) was used to establish 
the model.

Conclusions: Our method achieved good results on independent test set with AUC, 
MCC and F1 scores of 0.838, 0.533 and 0.750, respectively. WTL-PDH can achieve gener-
ally better performance in predicting hot spots when compared with state-of-the-art 
methods. The dataset and source code are available at https:// github. com/ chase 2555/ 
WTL- PDH.

Keywords: Protein–DNA complexes, Hot spot, Synthetic minority over-sampling 
technique, Discrete wavelet transform, Wavelet packet transform, Light gradient 
boosting machine

Background
Protein–DNA interactions play a vital role in many biological activities, such as DNA 
replication and repair, gene regulation [1, 2] and transcription. In the protein–DNA 
interaction interface, a small number of interfacial residues called hot spots contribute 
more affinity in the interaction [3]. Identification of hot spots plays an important role in 
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exploring the underlying mechanisms and stability of protein–DNA interactions. Ala-
nine scanning mutagenesis [4] has long been used to identify hot spots. At the same 
time, this experimental method has also been used to explore the mechanism of pro-
tein–DNA recognition. Since the high cost, time consuming and labor intensity of the 
experimental methods, the computational methods provide an alternative way to predict 
hot spots.

So far, two kinds of computational methods have been used to predict hot spots in 
protein–DNA complexes. One is based on molecular mechanics, where SAMPDI [5] 
and PremPDI [6] predict changes in the free energy of protein–DNA binding. SAMPDI-
3D [7] is a new version of SAMPDI, which used a gradient lifting decision tree machine 
learning method to predict protein–DNA binding free energy changes caused by bind-
ing proteins and corresponding DNA base mutations. The mCSM-NA [8] approach sig-
nificantly enhanced the original approach by incorporating pharmacophore modelling 
and information of nucleic acid properties into graph-based signatures. All the above 
methods can predict changes of binding free energy in protein–DNA single muta-
tion. mmCSM-NA [9] adapts the well-proven graph-based signature concept based on 
mCSM-NA and is the first scalable method capable of quantitatively and accurately pre-
dicting the effect of multipoint mutations on nucleic acid binding affinity. HISNAPI [10] 
takes into account the flexibility of protein-nucleic acid complexes by sampling confor-
mations using molecular dynamics simulation, and using empirical force field FoldX to 
determine the binding energy of wild-type and mutant protein-nucleic complexs. The 
other is based on machine learning. PrPDH [11] was a method based on 114-dimen-
sional features, which used random forests (VSURF) [12] for feature selection and 
support vector machine (SVM) [13] as classifier to predict hot spot residues in pro-
tein–DNA binding interfaces. inpPDH [14] extracted the traditional features and new 
interface adjacent property features, used the two-step feature selection strategies for 
feature selection, and finally built the prediction model based on SVM. sxPDH [15] used 
supervised isometric feature mapping (S-ISOMAP) [16] and extreme gradient boost-
ing (XGBoost) [17] to predict hot spots in protein–DNA complexes based on features 
extracted from PrPDH. SPDH [18] was a protein sequence-based hotspot residues pre-
diction method that obtains features from physicochemical property, conservation, sol-
vent accessible surface area, and then feature selection by sequential forward selection 
(SFS) using SVM as a classifier. PreHots [19] constructed a new dataset consisting of 
260 samples from 89 protein–DNA complexes. A total of 157 features were obtained by 
extracting features such as target residue attributes and network information. Then 19 
features were obtained by dimensionality reduction using SFS, and finally an ensemble 
stacking classifier was employed as the final prediction model. PEMPNI [20] introduced 
new energy features based on geometric partition and structural features based on inter-
face, and established an integrated model based on energy and non-energy by feature 
selection and ensemble learning. It can be used to predict changes in the binding free 
energy of a single mutation. The machine learning-based methods can improve the pre-
diction performance by extracting traditional or new features of protein–DNA complex 
to predict hot spots. However, some problems still existed, for example, the small scale 
and the imbalance problem in the data sets have not been solved, and the effective infor-
mation in the traditional features is not fully utilized.
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In this work, we proposed a novel method based on discrete wavelet transform 
(DWT) and wavelet packet transform (WPT) to describe conventional features, 
termed WTL-PDH, to predict hot spots in protein–DNA binding interfaces. We 
screened 339 mutations in 117 protein–DNA complexes from dbAMEPNI [21], 
SAMPDI, Nabe [22], ProNAB [23], and then used Synthetic Minority Over-sampling 
Technique (SMOTE) [24] to solve the imbalance between positive and negative sam-
ples. Firstly, we extracted 43 dimensional traditional features in terms of solvent 
accessibility surface area, secondary structure, protrusion index and depth index, 
and hydrogen bond. Then we processed the traditional features by DWT and WPT to 
obtain 132 dimensional features. We collected a total of 175 dimensional features. To 
improve the prediction performance, we used a two-step feature selection strategy to 
obtain 15 best features. Finally, we used light gradient boosting machine(LightGBM) 
[25] to build the prediction model. To demonstrate its effectiveness, we compared 
WTL-PDH with the state-of-the-art methods in an independent test set. WTL-PDH 
achieved generally better performance in predicting hot spots, with an F1 score of 
0.766 and an AUC of 0.852 on the training set, as well as an F1 score of 0.750 and an 
AUC of 0.838 on the test set. The workflow diagram of WTL-PDH is shown in Fig. 1. 
Both the data and source code are available for download from: https:// github. com/ 
chase 2555/ WTL- PDH.

Fig. 1 Overall framework of WTL-PDH. First, 117 protein–DNA complexes containing 131 hot spots and 
208 non-hot spots in their binding interfaces are collected. The ASA (solvent accessible surface area) and 
structural feature are extracted. ASA, uASA, dASA and secondary structure feature are treated as four groups 
of digital signals and DWT and WPT are performed on them to obtain approximate coefficient, detailed 
coefficients, energy information and wavelet entropy features. The optimal feature subset is obtained using 
mRMR–SFS. Finally, the final model is constructed based on LightGBM. The predictive performance of our 
model is evaluated on an independent test dataset

https://github.com/chase2555/WTL-PDH
https://github.com/chase2555/WTL-PDH
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Results and discussion
Comparison of different imbalance data processing algorithms

At present, the data of protein–DNA binding interface residues are less than those of 
the protein–protein binding interface residues, and the positive and negative samples 
are unbalanced. More negative samples will lead to a preference for negative samples 
in the model training process, which is detrimental to model construction. To balance 
the data, the SMOTE algorithm was used over the training set data to produce a few 
(positive) class samples, i.e., hot spots. In order to investigate the contribution of the 
SMOTE method to the prediction performance, three imbalanced data processing algo-
rithms were compared: SMOTE, Balanced by Random Repeat Oversampling (simple 
replication operation), and adaptive synthetic (ADASYN) [26].ADASYN is an adaptive 
synthetic sampling method similar to SMOTE, but based on a local distribution esti-
mate of the oversampled class, then generates a different number of samples. As shown 
in Table 1, there is a significant improvement in the performance of the model trained 
using the balanced data compared to the model trained using the initial unbalanced 
data. The model performance SPE = 0.959 and SEN = 0.175 when based on unbalanced 
data set, indicating that the predicted values always lean toward negative samples due 
to the large number of negative samples.. Its AUC is only 0.734, and generalization abil-
ity of the model is poor. After the SMOTE operation, the model performance AUC is 
0.852 and F1 is 0.766, and SMOTE achieved better results under comprehensive evalu-
ation. We believe the reason for the improvement is that the data imbalance makes the 
model construction mainly dominated by negative samples, which is not conducive to 
model training. The balanced data obtained by SMOTE processing are more favorable 
for model construction.

Evaluation of different feature selection methods

We compared six feature selection methods based on LightGBM classification model, 
including mRMR, SFS, RF, SVM–RFE, mRMR–SFS, and RF–SFS. Table  2 shows the 
performance of models on different feature selection methods. It can be seen that PRE 
based on RF–SFS model is almost the same as that based on mRMR–SFS model, but 
other indicators based on mRMR–SFS model are significantly higher than those of RF–
SFS model. The model using mRMR–SFS approach yielded the best performance with 
an AUC of 0.852. In contrast, the AUC scores generated by the other five methods are 
relatively low. mRMR–SFS method can find and rank a set of features from the original 
feature set that are most relevant to the sample label but least relevant to each other. 
Then, SFS selects one feature at a time to add to the feature subset, which can make the 

Table 1 Effect of different data processing methods on the training set for the model

The highest value in each column is shown in bold

Data SEN SPE PRE F1 MCC ACC AUC 

Balanced by SMOTE 0.794 0.735 0.749 0.766 0.537 0.765 0.852
Balanced by random 
repeat oversampling

0.759 0.665 0.701 0.724 0.431 0.712 0.780

Imbalanced 0.175 0.959 0.365 0.236 0.170 0.667 0.734

ADASYN 0.727 0.576 0.659 0.681 0.314 0.654 0.723
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model achieve the best performance. Therefore, mRMR-SFS method was selected as the 
optimal feature selection method of the prediction model.

The importance of different features

Through mRMR–SFS, we selected 15 optimal features (Table  S1 in Additional file  1), 
among which two features belong to ASA, one to secondary structure feature and two 
to DPX, CX features. The other 10 Wavelet features were newly extracted by DWT and 
WPT, which were ASA_Wavelet(7 dimensions) extracted from ASA and DSSP_Wave-
let(3 dimensions) extracted from secondary structure, respectively. In order to better 
understand the contribution of different categories of features to the prediction per-
formance, we removed the features of different categories in turn and compared their 
cross-validation performance, as shown in Table 3. When Wave features were removed, 
all aspects of WTL-PDH’s evaluation indicators decreased significantly, and predic-
tion performance of the model decreased, which emphasized the importance of our 
newly extracted Wave features. In addition, ASA_Wavelet accounted for a large propor-
tion after feature selection, and after it was removed, the MCC and AUC of the model 
decreased by 34.6% and 16.8%. It can be seen that these seven features show more con-
tribution correctly predicting hot spot residues. When only ASA_Wavelet is included, 
the AUC reaches 0.756, and when ASA features are added, the AUC reaches 0.794. ASA 
original features contained important information to predict hot spot residues. DWT 
and WPT can analyze the details and various entropy information in digital signals, we 

Table 2 Performance comparison of different feature selection methods on the training set

The highest value in each column is shown in bold. The numbers in parentheses represent the dimensionality of the 
features after dimensionality reduction

Method SEN SPE PRE F1 MCC ACC AUC 

mRMR-SFS (15) 0.794 0.735 0.749 0.766 0.537 0.765 0.852
mRMR (9) 0.706 0.724 0.740 0.709 0.444 0.715 0.792

SFS (13) 0.688 0.706 0.713 0.691 0.405 0.697 0.787

RF (18) 0.759 0.712 0.729 0.738 0.479 0.735 0.831

RF–SFS (14) 0.724 0.735 0.750 0.722 0.476 0.729 0.829

SVM–RFE (20) 0.600 0.582 0.595 0.592 0.186 0.591 0.591

Table 3 Comparison of prediction performance using different feature models on the training set

The highest value in each column is shown in bold. The numbers in parentheses represent the dimensionality of the 
features after dimensionality reduction

Features SEN SPE PRE F1 MCC ACC AUC 

All features (15) 0.794 0.735 0.749 0.766 0.537 0.765 0.852
Without-DSSP (13) 0.735 0.741 0.740 0.724 0.491 0.738 0.835

Without-ASA (13) 0.729 0.741 0.742 0.729 0.477 0.735 0.846

ASA_Wavelet (7) 0.700 0.700 0.706 0.696 0.409 0.700 0.756

Without-ASA_Wavelet (8) 0.688 0.653 0.668 0.669 0.351 0.671 0.714

ASA and ASA_Wavelet (9) 0.688 0.706 0.780 0.691 0.401 0.697 0.794

Without-DSSP_Wavelet (12) 0.765 0.747 0.753 0.754 0.519 0.756 0.828

Without Wavelet features (5) 0.635 0.647 0.641 0.632 0.286 0.641 0.719

Without-DPX and CX (13) 0.718 0.718 0.721 0.711 0.443 0.718 0.793
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fully excavated the important information through DWT and WPT. These results show 
that Wave features have great contribution to identifying hot spots and non-hot spots, 
and are complementary to other categories of features, which are helpful to predict the 
hot spots of protein–DNA complexes.

Performance comparison among different machine learning methods

In order to obtain the most suitable prediction model for hot residues in protein–DNA 
binding interface, we comprehensively evaluated the model performance of LightGBM, 
K-nearest neighbor (KNN), logistic regression (LR), SVM, RF and the classic deep 
learning model CNN(Convolutional Neural Network). To ensure the comparability 
of the results, the parameters of each machine learning method were adjusted. Addi-
tional file 1: Table S2 shows the performance comparison of the five machine learning 
classifiers with tenfold cross-validated on the training set. LightGBM is superior to the 
other four machine learning methods on the training set (SEN = 0.794, SPE = 0.735, 
F1 = 0.766, MCC = 0.537, ACC = 0.765, AUC = 0.852). Although RF has a slight advan-
tage in PRE, LightGBM model is more suitable for constructing protein–DNA hotspot 
residues prediction model.

Comparison with other methods

To accurately evaluate WTL-PDH performance, we performed tenfold cross-validation 
50 times on the training dataset, and the results are shown in Additional file 1: Table S3. 
WTL-PDH produced fairly good performance, and the average values of F1, MCC, 
ACC, AUC were 0. 771, 0.539, 0.768, and 0.851 respectively. These results show that the 
performance of our model is relatively efficient and reliable.

To further verify the performance of our model, it was compared to state-of-the-
art methods including SAMPDI-3D, PremPDI, mmCSM-NA and sxPDH, PrPDH, 
inpPDH. sxPDH, PrPDH and inpPDH used classification models to distinguish hot 
spot residues in protein–DNA binding interface, while SAMPDI-3D, PremPDI and 
mmCSM-NA used regression models to predict changes in protein–DNA binding free 
energy. Figure 2 shows the performance of WTL-PDH compared to the five methods 

Fig. 2 Performance comparisons of WTL-PDH with four other methods on the test set
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on the test set. In our method WTL-PDH has SEN = 0.800, PRE = 0.706, F1 = 0.750, 
MCC = 0.533, ACC = 0.765. Only our SPE is smaller than that of mmCSM-NA, which 
is due to mmCSM-NA’s “preference” for non-hot spots. Since SAMPDI-3D, PremPDI, 
and mmCSM-NA were predicted by an online server, we plotted ROC curves on inde-
pendent test sets for the other methods. As shown in Fig. 3, it can be seen that WTL-
PDH achieved the best prediction performance with AUC = 0.838. These results 
indicate that WTL-PDH has impressive performance in predicting hot spots in pro-
tein–DNA binding interfaces. The detailed results of the performance comparison are 
listed in Additional file 1: Table S4.

Case study

As a case study, Fig.  4 shows the predicted results of WTL-PDH for two protein–
DNA complexes. The TN916 integrase protein (PDB ID: 1TN9, chain A) binds to 
DNA through its N-terminal domain [27]. For this complex, a total of five hot spots 
and eight non-hot spots were found on the protein chain, among which R24, K28, 
K40, K54 and R55 are hot spots, and R5, T15, S18, R20, K21, L26, F38 and R55 are 
considered as non-hot spots. The yellow residues represent the residues that were 
incorrectly predicted. The prediction results for WTL-PDH and PrPDH can be found 
in Fig.  4A, B. WTL-PDH identifies all hot spots and non-hot spots. PrPDH identi-
fied two non-hot spots (L26 and F38) incorrectly. The second one is the crystal struc-
ture of human flap nuclease FEN1 (WT) complexed with substrate 5’-flap DNA, 
SM3 + and K + (PDB ID: 3Q8L, chain A) [28]. There are two hot spots (Y40 and R100) 
in the protein chain. As shown in Fig. 4C, D, WTL-PDH correctly identified both hot 
spots, while PrPDH made all predictions incorrectly.

Fig. 3 ROC curves of different methods on independent test sets
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Conclusions
In this work, we propose a novel method named WTL-PDH to distinguish protein–
DNA binding hot spots. Based on our previous work, we integrated the recently pro-
posed Nabe and ProNAB to expand our data set, and generated minority (positive) class 
samples using the SMOTE algorithm to achieve data category balance. In addition to 
extracting traditional features, we also used DWT and WPT to extract wavelet energy 
features and wavelet entropy features, and 175-dimensional features were collected. In 
order to improve the prediction performance of the model, 15 optimal feature subsets 
were obtained based on the two-step feature selection method of mRMR-SFS. Finally, 
we built the final prediction model using LightGBM. The results show that the wave-
let feature can effectively describe the difference between hot spots and non-hot spots, 
and can effectively improve the prediction performance of the model. In addition, we 
compared our model with the existing methods on an independent test set,. The experi-
mental results show that our model is superior to the existing methods in identifying hot 
spots in protein–DNA binding interfaces. We believe our approach provides new ideas 
for accurately identifying hot spots.

In our future work, on the one hand, we will try to digitally encode protein sequences 
and combine them with common digital signal processing methods to develop more 

Fig. 4 Visualization of hot spots and non-hot spots in 1TN9 using WTL-PDH (A) and PrPDH (B). Visualization 
of hot spots and non-hot spots in 3Q8L using WTL-PDH (C) and PrPDH (D). The following color scheme was 
used: orange for DNA sequences and green for protein sequences. Red represents correctly predicted hot 
spots and purple represents correctly predicted non-hot spots. Yellow represents incorrectly predicted hot 
spots and non-hot spots
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efficient and simple prediction methods. On the other hand, we will continue to explore 
the valid information in the traditional features to make our models more powerful.

Materials and methods
Data sets

In this study, compared with our previous work sxPDH [15], two new dataset sources 
were added, one from Nabe [22] and the other from ProNAB [23]. We collected 1627 
mutations in 293 complexes. To eliminate redundancy, proteins with > 40% sequence 
similarity were deleted by CD-HIT [29]. Interfacial residues with solvent accessible sur-
face area greater than 1 Å were selected using NACCESS [30].

Referring to the previous criteria [11], the interfacial residues with ∆∆G ≥ 1.0 kcal/mol 
were defined as hot spots and those with less than 1.0 kcal/mol were defined as non-
hot spots. Finally, we obtained 117 protein–DNA complexes containing 131 hot spots 
and 208 non-hot spots. Ninety-two complexes were randomly selected to constitute 
the training set, including 101 hot spots and 170 non-hot spots. The remaining 25 com-
plexes constitute the test set, which contains 30 hot spots and 38 non-hot spots. The 
final benchmark data sets used in our study are shown in Table 4.

Feature extraction

In order to better distinguish hot spots from non-hot spots, we extracted 43-dimen-
sional traditional features, which are solvent accessible surface area features and struc-
tural features, respectively. Then, the different classes of features were regarded as a 
group of digital signals, and 132-dimensional new features were extracted by DWT and 
WPT. In total, 175 features, whose details are given below.

Solvent accessible surface area features

Several studies have shown that ASA plays an important role in identifying hot spots 
in protein–protein and protein–DNA binding interfaces [11, 31, 32]. We used the 
NACCESS [30] to calculate the absolute ASA and relative ASA (RSA) features under 
four atomic properties of residues, including all atoms, nonpolar side chains, polar side 
chains, and all side chains, and obtained a total of 8-dimensional ASA features. The ASA 
and RSA of these four properties in monomer and complex state were calculated. The 
relative change in ASA and RSA between the two states were considered as features. A 
total of 24-dimensional ASA characteristics were quantified.

Secondary structure features

Definition of Secondary Structure of Proteins (DSSP) [33] was used to calculate the sec-
ondary structure features of proteins, which include the carbonyl angles, bond angles, 

Table 4 The final benchmark data sets used in our study

aindicates the ratio of positives to negatives in the training/test set

Data set Number of 
mutations

Number of 
PDBs

Number of hot 
spots

Number of non-hot 
spots

Ratioa

Training 271 92 101 170 0.594

Test 68 25 30 38 0.789
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torsion angles, and the number of water molecules. A total of 6-dimensional features were 
quantified.

Depth index and protrusion index

Depth index (DPX) and protrusion index (CX) can improve the prediction performance 
of the model for hot residues [32]. We used PSAIA [34] to calculate two atomic property 
values of a residue between the bound and unbound states, including the mean value of 
all atoms and the standard deviation of side chain atoms, a total of 8-dimensional fea-
tures. The relative changes of DPX and CX between the two states were also calculated 
respectively, a total of 4-dimensions. In total, 12-dimensional features were quantified.

Hydrogen bond

Hydrogen bonds affect protein–DNA recognition [14, 19, 35]. Here, we used HBPLUS 
[36] to calculate the hydrogen bonds of protein–DNA complexes.

Discrete wavelet transform (DWT)

DWT and WPT have long been used in signal analysis and processing [37, 38], they 
were time domain analysis methods which can effectively process various types of non-
stationary random signals. DWT and WPT have been widely used in image process-
ing and bioinformatics [39–43]. DWT can decompose the original signal into a crude 
approximation coefficient (lower frequency) and a specific detailed coefficient (higher 
frequency), and then the approximate coefficients are further decomposed into high 
and low frequencies [44]. The total number of low and high frequencies is 2n [45] after 
a signal is decomposed by DWT for n levels, DWT can be expressed by the following 
equation:

x , y denote the scale and translation variables, respectively. f (t) is the signal, and ψ t−y
x  

represents the wavelet function at a particular scale x and translation y.
In fact, the DWT can be implemented with a low-pass filter g[k] and a high-pass fil-

ter h[k] [46]. The approximation coefficients are obtained by convolving the input sig-
nal f (t) with the scaling filter and performing a dyadic decimation. The approximation 
coefficients are obtained by convolving the input signal a with the scaling filter and then 
performing a dyadic decimation. Similarly, the signal f (t) is convolved with the wavelet 
filter and then performing a dyadic decimation to produce the detail coefficients. In this 
way, the signal is decomposed into low-frequency and high-frequency components, as 
follows:

where Ej,L is the approximate coefficient of the signal, which represents the low fre-
quency component. Ej,H is the detailed coefficient, which means the high frequency 
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component, and s[k] , j are the level of discrete signal and the split scale,. We use Ea, Ed 
to further characterize the information contained in Ej,L and Ej,H . Ea and Ed are the per-
centage of energy in the approximate and detailed coefficients, respectively.

Entropy is a measure of the uncertainty of a random variable. It is proposed to solve the 
problem of quantifying information [47]. Wavelet entropy is usually used to analyze non-
stationary signals and can better characterize the information contained in the signal [48]. 
In order to better describe the information inside the traditional features, we extract five 
kinds of wavelet entropies from the signal. In the following formula, s is the signal and si is 
the coefficient of s in the orthogonal basis.The entropy E must be an additive cost function 
such that E[0] = 0 and E(s) =

∑

i E(si) . The five wavelet entropies are described as follows:
The Shannon entropy:

The logarithm of the “energy” entropy:

The other three wavelet entropies are: compute the threshold entropy of s using a thresh-
old value of 0.2, compute the Sure entropy of s with the threshold equal to 3, compute the 
norm entropy of s with power equal to 1.3.

ASA has been shown to play an important role in predicting protein–DNA hotspot resi-
dues [11, 31, 32]. Therefore we divided the extracted 24-dimensional ASA features into 
three groups, each containing 8-dimensional features, namely ASA (four attributes of ASA 
and RSA in the monomeric state), uASA (complex), and dASA (relative change between 
monomeric and complex states). Similarly, we divided the secondary structure features (6 
dimensions) into a single group. These 4 groups of features were treated as 4 channels of 
digital signals, which were processed by DWT. The wavelet function we selected is db1, 
which performed three levels of decomposition by DWT. Their Ea (3 dimensions), standard 
deviation of Ea(1 dimensions), mean of Ea(1 dimensions), Ed(1dimensions) and the above 
wavelet entropy features(5 dimensions) were calculated respectively. A total of 4 × 11 = 44 
dimensional features were obtained based on DWT.

Wavelet packet transform (WPT)

To obtain more richer information from conventional features, WPT is used to further 
decompose the detailed information in the high frequency region of the digital signal [38]. 
The function ψ(n) is called a wavelet packet with respect to the scale function ϕ(x) . If WPT 
is used to decompose the signal at the third level [44], the equation can be unified as:

If ϕ(t) is the wavelet function and ψ(t) is its corresponding scaling function, when 
s0 (t) = ϕ(t) and s1 (t) = ψ(t) , the signal is decomposed as:

(3)Es (s) = −
∑

i
s2i log

(

s2i

)

(4)El (s) =
∑

i
log

(

s2i

)

(5)















s2n (t) =
√
2
�

k
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k

sn (2t − k)g(k)
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where ai,n represents the wavelet coefficients of level i under n sub-bands, j is the num-
ber of wavelet coefficients. As shown in Fig. 5, a WPT that performs the third level of 
splitting produces a total of 8 sub-bands, each of which covers 1/8 of the frequency 
information.

Similar to DWT, four groups of features, ASA, uASA, dASA and secondary structure, 
were treated as digital signals and processed by WPT, and the with wavelet function was 
db1. We extracted the relative energy (8 dimensions), absolute energy (8 dimensions), 
absolute energy sum (1 dimension), and wavelet entropy features (5 dimensions) of the 
terminal nodes in the third layer of the wavelet packet tree. So far, a total of 22 × 4 = 88 
dimensions were extracted based on WPT.

SMOTE algorithm

SMOTE is a modified scheme based on the random oversampling algorithm. The basic 
idea is to analyze the minority class samples, and then artificially synthesize new sam-
ples to add to the data set based on the minority class samples. For each sample X in 
the minority class, calculate its distance to all samples in the minority class sample set S 
using Euclidean distance to get its K nearest neighbor. For each randomly selected near-
est neighbor Xn , a new sample is constructed according to the following formula:

To make the experiment reproducible, put random_rate at 114 in all of the model 
based on SMOTE.

Feature selection

Too high feature dimensionality can lead to overfitting of the classifier. For our data-
set, 175-dimensional candidate features appear redundant and large. Therefore, feature 
selection is essential to improve the prediction performance of the classifier. In fact, we 
adopted a two-step feature selection strategy to remove irrelevant and redundant fea-
tures. In the first step, we ranked all features using the maximum relevance minimum 

(6)



















ai+1,2n =
�

j

ai,n h
�

j − 2k
�

ai+1,2n+1 =
�

j

ai,n g
�

j − 2k
�

(7)Xnew = X + |X − Xn| × rand(0, 1)

Fig. 5 Schematic diagram of WPT with signal undergoing third level splitting
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redundancy (mRMR) [49]. In the second step, we used SFS method to process the 
mRMR-derived feature sequences to obtain an optimal feature subset. We also com-
pared the results with five common feature selection methods. These methods are ran-
dom forest (RF) [50], SVM-based recursive feature elimination (SVM–RFE) [51], SFS, 
mRMR, and RF based on sequential forward selection (RF–SFS) [52].

Model building

LightGBM has achieved the better results in many Machine Learning challenges. It is a dis-
tributed gradient boosting framework based on the decision tree algorithm. To meet the 
industry’s demand for shorter model times, LightGBM uses a histogram-based decision 
tree algorithm. To avoid overfitting as much as possible, LightGBM includes a parameter 
that limits the depth of the tree. Compared with XGBoost, it has faster training speed and 
higher accuracy. On the training set, we use grid search method to adjust its parameters, and 
obtain the optimal parameters of max_depth = 15, num_leaves = 50, n_estimators = 1000.

Evaluation criteria

We employed tenfold cross-validation method on the training set for feature selection 
to obtain the best features and tune the parameters of LightGBM. To evaluate the per-
formance of the model, we used some common evaluation metrics: including sensitivity 
(SEN), specificity (SPE), precision (PRE), F1 score (F1), accuracy (ACC), and Matthews 
correlation coefficient (MCC). These measurements are defined as follows:

where TP, FP, TN and FN represent the number of true positive (correctly predicted hot 
spot residue), false positive (non-hot spot residue incorrectly predicted as hot spot), true 
negative (correctly predicted non-hot spot residue) and false negative (hot spot residue 
incorrectly predicted as non-hot spot), respectively. For completeness, we also calcu-
lated the area of the ROC curve called AUC to evaluate our performance.

(8)SEN =
TP

TP + FN

(9)SPE =
TN

TN + FP

(10)PRE =
TP

TP + FP

(11)F1 =
2× SEN × PRE

SEN + PRE

(12)ACC =
TP + TN

TP + TN + FP + FN

(13)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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SMOTE  Synthetic minority over-sampling technique
DWT  Discrete wavelet transform
WPT  Wavelet packet transform
LightGBM  Light gradient boosting machine
mRMR  Maximum relevance minimum redundancy
SFS  Sequential forward selection
RF–SFS  RF based on sequential forward selection
SVM–RFE  SVM-based recursive feature elimination
SEN  Sensitivity
SPE  Specificity
PRE  Precision
F1  F1 score
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MCC  Matthews correlation coefficient
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