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Abstract 

Background: For detecting genotype-phenotype association from case–control sin-
gle nucleotide polymorphism (SNP) data, one class of methods relies on testing each 
genomic variant site individually. However, this approach ignores the tendency for 
associated variant sites to be spatially clustered instead of uniformly distributed along 
the genome. Therefore, a more recent class of methods looks for blocks of influential 
variant sites. Unfortunately, existing such methods either assume prior knowledge of 
the blocks, or rely on ad hoc moving windows. A principled method is needed to auto-
matically detect genomic variant blocks which are associated with the phenotype.

Results: In this paper, we introduce an automatic block-wise Genome-Wide Associa-
tion Study (GWAS) method based on Hidden Markov model. Using case–control SNP 
data as input, our method detects the number of blocks associated with the pheno-
type and the locations of the blocks. Correspondingly, the minor allele of each variate 
site will be classified as having negative influence, no influence or positive influence 
on the phenotype. We evaluated our method using both datasets simulated from our 
model and datasets from a block model different from ours, and compared the perfor-
mance with other methods. These included both simple methods based on the Fisher’s 
exact test, applied site-by-site, as well as more complex methods built into the recent 
Zoom-Focus Algorithm. Across all simulations, our method consistently outperformed 
the comparisons.

Conclusions: With its demonstrated better performance, we expect our algorithm for 
detecting influential variant sites may help find more accurate signals across a wide 
range of case–control GWAS.

Keywords: Hidden Markov model, Genome-Wide Association Study, Block-wise 
Association, EM algorithm

Background
A central problem in genetics is determining which loci of a genome are responsible 
for the difference between two phenotypes of an organism. A typical approach uses the 
case–control study, which samples subjects with both phenotypes and looks for differ-
ences in the target variables between the two groups. In the case of genotype-phenotype 

*Correspondence:   
jinyduphd@gmail.com; 
xfan@cuhk.edu.hk

1 Department of Statistics, The 
Chinese University of Hong 
Kong, Shatin, New Territories, 
Hong Kong
2 School of Mathematical 
Science, Jiangsu University, 
Zhenjiang, Jiangsu Province, 
China
3 College of Finance 
and Statistics, Hunan University, 
Changsha, Hunan Province, 
China
4 Department of Surgery, The 
Chinese University of Hong 
Kong, Shatin, New Territories, 
Hong Kong

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05265-5&domain=pdf


Page 2 of 25Du et al. BMC Bioinformatics          (2023) 24:138 

association study specifically, this means looking for differences between the two groups 
in the frequencies of alleles. A case–control Genome-Wide Association Study (GWAS) 
does that across a large portion of the subjects’ genomes [28], which is very helpful for 
elucidating disease mechanisms. For example, GWAS have identified genome loci asso-
ciated with breast cancer [17, 18], ovarian cancer [21], coronary artery disease [19], type 
2 diabetes [23], osteoarthritis [35] and systemic lupus erythematosus [8]. Due to the ret-
rospective nature of case–control studies, they can prove only association rather than 
clear causal relationships [10] (however see [28] for follow-up methods for finding such 
causal relationships). Ideally, the control and case groups should be as similar as possi-
ble. An overview of GWAS experimental methodology, confounding variables that must 
be controlled, statistical techniques for pre- and post-processing, limitations and appli-
cations can be found in [28], while a discussion of the clinical implications of GWAS 
results can be found in [15]. A discussion about selecting matching controls to cases in 
case–control studies can be found in [3].

For GWAS, a genome can be represented as a sequence of variant sites, i.e. genomic 
locations that may have different genotypes. The simplest type of variant site is a single 
nucleotide polymorphism (SNP), in which variants differ by a single base pair. We may 
also simplify analysis by considering only the most common version of a gene (a major 
allele) and one rarer version (a minor allele). A diploid organism may have 0, 1 or 2 cop-
ies of a minor allele. In this paper, we will focus on a dichotomous phenotype Y and aim 
to detect variants which affect Y based on case–control SNP data.

Given case–control SNP data, the simplest GWAS methods study variant sites indi-
vidually [2]. A classic model is logistic regression, where the log-odds of a subject having 
a phenotype is assumed to be linear in each of the variants. One may also use p values, 
for instance by performing a Fisher’s exact test at each site with the null hypothesis that 
the given site has no effect on the phenotype, and then making a Bonferroni correction 
[7]. But this approach has been criticized because Bonferroni correction is too conserva-
tive. Furthermore, it assumes that variant sites are independent, when in fact sites that 
influence a given phenotype tend to be physically clustered into blocks [5, 28] due to 
reasons such as linkage disequilibrium among others. False discovery rate (FDR) meth-
ods [7] address the first criticism by applying tougher correction to lower p values and 
a more lenient correction to larger p values. This improves the sensitivity; but does not 
address the second criticism. Uffelmann et al. [28] suggests that the Bonferroni correc-
tion factor should be the number of independent variants, rather than the total number 
of variants; but this requires knowledge of which sites are independent. Uffelmann et al. 
[28] also suggests that the baseline threshold of 0.05 may need to be adjusted depending 
on intended population size and minimum detectable minor allele frequency (MAF).

More recent algorithms for identifying influential variant sites take into account the 
spatial clustering [2]. For instance, one approach is to group variant sites into blocks 
by linkage disequilibrium, and then recognize only associations that are confirmed by 
other variant sites in the same block [24]. Another approach is to collapse blocks of 
variant sites, where a block is counted as On if any site in the block has a minor allele 
and Off if none of them do [11]. Those two assume prior knowledge of the blocks. 
A more flexible approach is found in [31]: the Zoom-Focus algorithm (ZFA). In the 
zoom step, the algorithm divides the genome into a binary tree structure and tests 
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the significance of each half. In the focus step, the algorithm enumerates all possi-
ble adjustments of the boundaries of the halves, and tests their significance. Testing 
relies on other existing algorithms to obtain p values. The paper uses 4 such: SKAT 
[32], SKAT-O [9], burden [25] and wtest [27]. In this paper, we use as comparison the 
Fisher’s exact test with Bonferroni correction, the Benjamini–Hochberg FDR method, 
and ZFA with each of its 4 testing methods.

Yet another class of methods uses a deep-learning approach. For example, [14] 
applies convolutional neural networks to GWAS data (note that they assume a contin-
uous rather than dichotomous phenotype). Their method has the further advantage of 
bypassing the need to impute missing genotypes. The first focus of their method is to 
train the network to predict phenotype given a test genotype. The influence strength 
of individual SNPs is then measured using saliency values. These are calculated for 
each subject by taking the maximum gradient with respect to variables encoding the 
genotype at the given site. Then the overall influence strength is measured by taking 
the median saliency value over the testing set. In general, convolutional neural net-
works can take into account clustering by grouping nearby sites into the same kernel 
window, information about which will then be summarized and passed to the next 
layer. But a limitation is that it may not be clear which kernel window size to use in a 
given application. Complicating that further, there may be multiple influential blocks 
of different lengths, which would suggest the need for multiple kernel window sizes. 
Yet another issue with machine learning methods in general is that they require train-
ing data, i.e. a pre-existing set of sites with known influential/not-influential state.

We propose modelling the unknown genotype-phenotype association state 
sequence using a Hidden Markov model (HMM). HMM offers a different outlook on 
association state clustering to existing methods. Unlike some methods such as col-
lapsing, it does not require knowing the locations of the blocks ahead of time. Fur-
thermore, it attempts to offer more than ZFA by finding not just locations of blocks, 
but a model for their formation: Blocks form because the state of each variant site 
affects the state of the next site. Also, our model is designed to accommodate both 
rare and common variants, making it more versatile than methods that perform well 
on only rare or only common variants. HMM has already been applied successfully in 
a wide variety of settings including speech recognition [22], image classification [12], 
musical key detection [20], precipitation [36], evolution [4] and gene segmenting [6]. 
Some literature studied the validity of the Markov property for DNA sequences [26, 
29, 34]. Most relevantly for us, HMM has been applied to the identification of genes 
encoding a particular phenotype in [16]; there, the phenotype is a variant surface pro-
tein in a particular disease-causing parasite.

We will regard variant sites as being in one of three possible unobserved states: Nega-
tive Influence, No Influence and Positive Influence. The influence of minor alleles on the 
phenotype will depend on which state the variant site is in. The states themselves will be 
governed by a Markov process, with the state of each variant site affecting the state of 
the next according to a transition probability matrix. The goal of the algorithm will be 
to determine the state of each variant site as accurately as possible. After describing the 
algorithm in detail, we will compare its performance to the Fisher’s exact test with Bon-
ferroni correction, FDR and ZFA.
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Methods
Suppose we have collected the genotypes and phenotypes of n subjects, with each 
genotype consisting of p variant sites. Let N and M be the numbers of phenotype 0 
(control) and phenotype 1 (case) subjects respectively. We assume that each site has 
one possible minor allele. The data will be organized in the form of a genotype matrix 
G of size n× p , with the (i, j)th entry representing the number of minor allele copies 
of the jth variant that the ith subject has, and a phenotype vector y of length n, whose 
ith component is the phenotype of the ith subject.

We assume that there are 3 possible states for a variant site: Negative Influence, No 
Influence and Positive Influence. We write Sj = −1, 0, 1 for the jth variant site being 
in each of these states respectively. The goal of HMM is to predict a state sequence 
�sj : j = 1, . . . , p� that best fits the observed data. HMM will have the following 
parameters:

• A null distribution [pj0, p
j
1, p

j
2] for each variant site, representing the probability of 

a phenotype 0 subject having 0, 1 and 2 copies of the minor allele at the jth site.
• Influence strength parameters θ−0 , θ−1 , θ+0 , θ+1  , controlling the magnitude by which 

the distribution for phenotype 1 subjects departs from that of phenotype 0 sub-
jects. The superscript indicates whether the parameter affects Negative Influence 
or Positive Influence. The subscript indicates whether the direct intent is to shift 
probability mass towards/away from genotype ‘AA’ or ‘aa’. See the “Appendix” for 
more details.

• Markov parameters π and A, where π = (π−1,π0,π1) is the vector of probabilities 
of the first variant site being in states −1, 0, 1 and A = (akℓ)k ,ℓ=−1,0,1 is the matrix 
of probabilities of transitioning to state ℓ in the next site given that the current site 
is in state k.

For brevity, we write �p for {[pj0, p
j
1, p

j
2] : j = 1, . . . , p} , θ for {θ−0 , θ−1 , θ+0 , θ+1 } and 

τ = {�p, θ ,π ,A} for the set of all parameters. At each variant site j and for each state 
k = −1, 0, 1 , HMM will produce parameterized emission distributions f jk (x|�p, θ) , that 
give the probability of observing contingency table x at that site.

In additional to the model parameters described above, our HMM uses threshold-
ing parameters to guarantee biologically meaningful and practically identifiable states. 
The minimum influence strength threshold θmin sets a lower bound on allowable val-
ues for θ−0 , θ+0 , θ−1 , θ+1  . This threshold is necessary because very low values of θ−0  and θ−1  
(respectively θ+0  and θ+1  ) make the Negative Influence (respectively Positive Influence) 
state almost indistinguishable from No Influence. This leads to the collapse of either 
sensitivity or specificity. We cautiously recommend θmin = 0.15 , but with caveats, for 
reasons that will be explained in later sections. The self-transition threshold amin sets a 
lower bound for the diagonal entries of the Markov transition matrix A. It is necessary to 
ensure that predicted influential sites come in blocks, with higher threshold values lead-
ing to longer predicted blocks. We used and recommend amin = 0.5.

HMM attempts to find the values of �p, θ ,π ,A that maximize the probability of 
obtaining the observed data. The master objective function is the logarithm of that 
probability. The algorithm is as follows: 
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1. Make starting estimates for �p, θ ,π ,A
2. Evaluate the master objective function
3. Using the values for �p, θ ,π ,A , evaluate the emission distribution functions at the 

observed values. Then calculate the forward and backward variables, update the 
marginal state probabilities, and perform the Viterbi Algorithm to update the most 
probable state sequence.

4. Using the marginal state probabilities, update the parameters values with the Expec-
tation-Maximization Algorithm.

5. Enforce thresholds on self-transition probabilities Akk , k = −1, 0, 1 and θ.
6. Repeat steps 2–5 until the master objective function has increased by less than a 

threshold ǫ . Then output the most probable state sequence from the iteration with 
highest master objective value and halt.

The forward α and backward β variables are explained in [30]. αj(k) is the probability of 
obtaining the observed sequence of contingency tables up to including the jth site and 
being in state k at the jth site. βj(k) is the probability of obtaining the observed sequence 
of contingency tables after but not including the jth site and given that the state is k at 
the jth site. The master objective function is calculated as αp(−1)+ αp(0)+ αp(1) . Mar-

ginal state probabilities are calculated as γj(k) =
αj(k)βj(k)

αj(−1)βj(−1)+αj(0)βj(0)+αj(1)βj(1)
 , where β 

is the backward variable. We use ǫ = 0.01.
We may also report the marginal state probabilities γj(k) from the iteration with high-

est master objective value. These do not necessarily capture the most probable state 
sequence; but are useful if we want to calibrate a balance between sensitivity and speci-
ficity, for instance when interpolating a ROC (receiver operating characteristic) curve. 
The entire algorithm is summarized in a flowchart in the “Appendix”. Example plots of 
the marginal state probabilities, and the true states of the variant sites, from one run 
(HMM threshold 0.1, Default Initials, trial 1, Simulation Group 2) is shown in Figs. 1 and 
2. To simplify the plot, Negative Influence and Positive Influence are collapsed into one, 
as are their corresponding marginal probabilities.

We will describe in detail the emission distribution functions, EM parameter re-
estimation process and initial parameter estimates. We omit an explanation of Step 
3 because that is already explained in detail in [30]. As one last consideration before 
we begin, note that many probabilities we work with will grow or shrink exponen-
tially with number of subjects or number of variant sites, which quickly leads to 

Fig. 1 True state of each variant site. 1 means negative influence or positive influence, 0 means no influence
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overflow or underflow errors. Viterbi [30] suggests using a scaling constant to keep 
numbers within machine limits. We found it was simpler to store only the logarithms 
of the probabilities. Thus while the formulas in this paper are shown in their original 
form, their implementations in computer code are in terms of the logarithms of the 
probability variables.

Evaluation of our method, including descriptions of the simulations used to do so, 
are in the “Results” section.

Emission distribution functions

Classical HMM assumes we have an observation sequence [22]. For that we use the 
sequence of 2× 3 contingency tables for each variant site. Suppose the jth contin-
gency table xj is:

n0 n1 n2

m0 m1 m2

where ni is the number of phenotype 0 subjects with i copies of the minor allele 
and mi is the number of phenotype 1 subjects with i copies of the minor allele.

We assume that among the population of phenotype 0 individuals, there are 
underlying probabilities p0, p1, p2 for having 0, 1, 2 copies of the minor allele respec-
tively. Similarly, let q0, q1, q2 be the same for the population of phenotype 1 individu-
als. Then the probability of obtaining the contingency table above, and hence the 
emission distribution function, is given by N !

n0!n1!n2!
p
n0
0 p

n1
1 p

n2
2

M!
m0!m1!m2!

q
m0
0 q

m1
1 q

m2
2  . The 

pi are fixed by the null distribution parameters while the qi depend on the state of 
the variant site.

In the No Influence state, qi = pi . In the Negative Influence state, 
(q0, q1, q2)

= (
e
θ
−
0 p0

e
θ
−
0 p0+p1+e

−θ
−
1 p2

,
p1

e
θ
−
0 p0+p1+e

−θ
−
1 p2

,
e
−θ

−
1 p2

e
θ
−
0 p0+p1+e

−θ
−
1 p2

) . In the Positive Influence state, 

(q0, q1, q2) = (
e
−θ

+
0 p0

e
−θ

+
0 p0+p1+e

θ
+
1 p2

,
p1

e
−θ

+
0 p0+p1+e

θ
+
1 p2

,
e
θ
+
1 p2

e
−θ

+
0 p0+p1+e

θ
+
1 p2

) . A more detailed 

explanation of these formulas can be found in the “Appendix”.

Fig. 2 Marginal probability of being in negative influence or positive influence state, as predicted by HMM
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The EM step

Let τ (t) denote the value of τ after t iterations, i.e. t passes through steps 2–5 in the over-
all algorithm, and similarly for any other parameter or set of parameters. The purpose 
of the Expectation-Maximization step is to update the parameter values: Given τ (t) , find 
τ (t+1) that better fits the observations. EM consists of two steps.

In the E step, we find the function to be maximized. First, we find HMM’s likelihood 
function: L(x, S|τ ) = p

j=1 s∈{−1,0,1}(f
j
s (xj|�p, θ)P(Sj = s|π ,A, Sj−1))

1Sj=s.
The function to be maximized is:
ES|τ (t),x[log L(x, S|τ ])]

=
∑p

j=1

∑
s∈{−1,0,1} γ

(t)
j (s)(log(f

j
s (xj|�p, θ))+ log P(Sj = s|π ,A, Sj−1)),

where γ (t)
j (s) = P(Sj = s|x, τ (t)) was calculated in Step 3.

In the M step, we find values of �p, θ ,π ,A that maximize this function and take τ (t+1) to 
be this new set of values. Details are in the “Appendix”.

Initial parameter estimates

The last main component of HMM we will discuss is the choice of initial estimates for 
the model parameters. The EM algorithm is designed to converge to a local maximum, 
not necessarily the global maximum; hence HMM may likewise converge to a local but 
non-global maximum. In this subsection, we provide two choices of initial estimates 
called Default and Random. Default will always yield the same output, and hence need 
only be run once, while Random may produce a different output each time, and hence 
may be run multiple runs. The run with the highest final master objective value should 
be selected.

Default initials

At variant site j, recall that pji is the underlying probability that a phenotype 0 subject has 
i copies of the minor allele. Hence a reasonable initial estimate is niN  . To avoid numerical 
errors, we replace ni with the pseudocount 0.5 in case it is 0. This forms our estimate for 
�p(0).

In the “Appendix”, we see that:

Motivated by this, we define the strengths of the jth variant site as follows:

We search for these maxima using the alternating, one variable at a time, method in the 
“Appendix”. Once the strengths of all variant sites have been calculated, we use as our 
initial estimate: θ−0 = median{θ−0 (j) : θ−0 (j) > θmin} , unless this set is empty, in which 

(θ−0 )(t+1), (θ−1 )(t+1) = arg max

p∑

j=1

γ
(t)
j (−1) log(f

j
−1(xj|�p, θ

−
0 , θ−1 )),

(θ+0 )(t+1), (θ+1 )(t+1) = arg max

p∑

j=1

γ
(t)
j (1) log(f

j
1 (xj|�p, θ

+
0 , θ+1 )).

θ−0 (j), θ−1 (j) = arg max[log(f
j
−1(xj|�p, θ

−
0 , θ−1 ))],

θ+0 (j), θ+1 (j) = arg max[log(f
j
1 (xj|�p, θ

+
0 , θ+1 ))].
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case we take θ−0 = θmin . Initial estimates for the other three components of θ are defined 
analogously.

Next, we make initial estimates of P(Sj = k|x, �p, θ) . We take f
j
k (xj |�p,θ)∑1

k=−1 f
j
k (xj |�p,θ)

 , the Bayes’ 

posterior distribution given a prior distribution of [ 13 ,
1
3 ,

1
3 ] . To avoid numerical errors 

from probabilities too close to 0 or 1, we set a threshold minimum probability of e−30 , 
and then rescale so that the three probabilities sum to 1. Call these quantities bkj .

We then use as initial estimates: πk = bk1 and ak ,ℓ =
∑p−1

j=1 bkj b
ℓ
j+1∑p−1

j=1 bkj
 , where ak ,ℓ is the entry 

in the kth row and ℓ th column of A. The latter expression is the expected number of 
transitions from k to ℓ divided by the expected number of occurrences of k before the 
final site, if the sites were independent.

Random initials

Alternatively, we can start the EM algorithm with random parameter values. To explain 
the random initial, we first define a random triple function: sample u0,u1,u2 independent 
and identically distributed (i.i.d.) from U(0, 1), sort the set { u0

u0+u1+u2
, u1
u0+u1+u2

, u2
u0+u1+u2

} 
from largest to smallest, then output the set.
[p

j
0, p

j
1, p

j
2] are chosen i.i.d. for each variant site by calling the random triple function. 

θ−0 , θ−1 , θ+0 , θ+1  are chosen by sampling i.i.d. from U(0, 1). π = [π−1,π0,π1] is chosen by 
calling the random triple function, except that while π0 is taken to be the largest of the 
values, which of the two remaining values should be taken as π−1 and which as π1 is 
decided by a 50–50 Bernoulli draw. A = (ak ,ℓ)k ,ℓ=−1,0,1 is chosen as follows: The diago-
nal entries are drawn from U(0.5,  1). Then for each row, the remaining probability is 
distributed in proportion t, 1− t between the remaining two entries, where t is drawn 
from U(0, 1).

Results
We carried out nine groups of simulations, each consisting of 20 trials, except for groups 
7 and 8 which consisted of 40 trials each. Each trial consisted of running HMM together 
with 6 comparison methods on a synthesized dataset where the true state of each vari-
ant site is known. We recorded the sensitivity, specificity and MCC (Matthews correlation 
coefficient) of each method in each trial and calculated means. In trials with no true influ-
ential sites, sensitivity and MCC were marked as ‘NA’ and excluded from the mean. Unless 
otherwise stated, the trials consisted of 1000 phenotype 0 subjects and 1000 phenotype 
1 subjects. Although HMM results distinguish between Negative Influence and Positive 
Influence, we collapsed these two categories into one for the purposes of calculating sensi-
tivity and MCC averages. A table displaying the means is shown near the end of each of the 
following subsections. Standard deviations of MCCs are shown in parentheses.

HMM was run with three θ thresholds: 0.1, 0.15 and 0.2. Within each threshold value, 
HMM was run 4 times: Once with Default initials and three times with Random initials, 
and only the output of the run with the highest final value of the master objective func-
tion was recorded as HMM’s “official” output. For comparison purposes, HMM with 
each of the three thresholds was run and reported as if it were a separate method.
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The comparison methods used were: Bonferroni, FDR and ZFA with four p value 
methods: SKAT, SKATO, burden and wtest. The first two consisted of extracting a p 
value from the Fisher’s exact test separately for each variant site. Bonferroni marked the 
site as influential if the p value was below 0.05 divided by the number of variant sites. We 
use a version of FDR due to Benjamini and Hochberg [1], which ranks the variant sites 
by p value (the site with lowest p value having rank 1, the site with second lowest having 
rank 2, etc.) and multiplies Bonferroni’s significance threshold by the p value ranking. 
The four ZFA methods were run from the package zfa in R; we used CommonRare_Cut-
off = 0.5, fast.path = FALSE and called each of the four methods with the test argument.

The simulation groups we used are summarized in Table 1. Sample Size is the num-
ber of phenotype 0 subjects, followed by the number of phenotype 1 subjects per data-
set. Site Strengths is the way Negative Influence and Positive Influence sites’ degree of 
influence were set: ‘HMM’, which has its own influence strength parameters, ‘MAF-
dependent’ (see “First block model simulations” section) or ‘uniform’ (see any of the 
later subsections). MAFs is the way minor allele frequencies were generated: ‘mixed’ (see 
“First block model simulations” section) or ‘low’ (see “Low MAFs” section). Noise Terms 
is whether or not two additional terms, unrelated to genotype, were included in the phe-
notype logit-probability equation (see third subsection). Impurity is the probability that 
a site in an influential block is No Influence.

HMM model simulations

As a preliminary test for our method, the first group of simulations generated data 
according to the HMM model itself. High performance for HMM on these datasets was 
thus expected. First, we generated values for �p, θ ,π ,A similarly to as in Random Initials 
but with some differences:

• �p was generated the same as in Random Initials.
• Each component of θ was sampled from U(0.05, 1). The lower bound prevented influ-

ences from being too weak.
• π was generated the same as in Random Initials.
• The diagonal entries were a0,0 = 0.5+ 0.5β1 , a−1,−1 = 0.5+ 0.5β2 and 

a1,1 = 0.5+ 0.5β3 , where β1 was drawn from Beta(99, 1) and β2,β3 were 
drawn from Beta(90, 10) . For the off-diagonal entries, draw t1 from U(0,  1) and 

Table 1 Summary of simulation groups

Group Model Sample size Site strengths MAFs Noise terms Impurity

1 HMM 1000,1000 HMM – – –

2 Block 1000,1000 MAF-dependent Mixed No 0

3 Block 1000,1000 Uniform Mixed Yes 0.25

4 Block 1000,1000 Uniform Mixed Yes 0.5

5 Block 1500,500 Uniform Mixed No 0

6 Block 1500,500 Uniform Mixed Yes 0.25

7 Block 150,150 Uniform Mixed No 0

8 Block 200,100 Uniform Mixed No 0

9 Block 2500,2500 Uniform Low No 0
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t2, t3 from Beta(99, 1) . Then a0,−1 = t1(1− a0,0) , a0,1 = (1− t1)(1− a0,0) , 
a−1,0 = t2(1− a−1,−1) , a−1,1 = (1− t2)(1− a−1,−1) , a1,0 = t3(1− a1,1) and 
a1,−1 = (1− t3)(1− a1,1).

We then generated a true state sequence �ŝj : j = 1, . . . , 1024� , with π used to generate ŝ1 
and A used to generate ŝj+1 from ŝj.

At each variant site j, using the true state ŝj as well as θ and the null distribution 
[p

j
0, p

j
1, p

j
2] , we calculated the phenotype 1 distribution [qj0, q

j
1, q

j
2] from the formu-

las in Emission Distribution Functions. Then we generated the contingency tables 
by sampling from the multinomial distributions: multinomial(1000, [p

j
0, p

j
1, p

j
2]) and 

multinomial(1000, [q
j
0, q

j
1, q

j
2]).

Lastly, we generated the genotypes and phenotypes as follows: The first 1000 subjects 
were phenotype 0 while the second 1000 were phenotype 1. Thus the phenotype vec-
tor consisted of 1000 0’s followed by 1000 1’s. As for the genotype matrix, we knew that 
the first 1000 rows would correspond to phenotype 0 subjects while the second 1000 
rows would correspond to phenotype 1 subjects. We furthermore knew from the contin-
gency tables, for each variant site, how many subjects of phenotype 0 had 0 copies of the 
minor allele, how many had 1, how many had 2, and the same for phenotype 1 subjects. 
To determine which phenotype 0 subjects had each genotype, we randomly shuffled a 
temporary copy of the list of subjects and filled the quota for genotype 0, followed by 
genotype 1, followed by genotype 2, according to the shuffled order. Then we did the 
same for phenotype 1 subjects. This process was repeated for each variant site. Results 
summarized in Table 2 and Fig. 3.

As expected, HMM outperforms all comparison methods. HMM does well under all 
three θ thresholds, but does best with 0.15.

First block model simulations

The rest of the simulations generated data according to a block model, intended to be 
neutral between HMM and the comparison methods. Influential sites were assumed to 
come in blocks of defined length and position. Unlike in the HMM model, genotypes 
were fixed before phenotypes, with the former assumed to exert a causal effect on the 
latter. We modeled this causal effect with a logistic regression equation from Wu et al. 
[32]: logitP(Y = 1) = β +

∑p
j=1 βjGj , where βj is a coefficient measuring the effect of 

Table 2 HMM model simulation results. 1000 phenotype 0, 1000 phenotype 1 subjects

Each dataset was generated according to HMM, with the parameters generated as above

Method Sensitivity Specificity MCC

HMM 0.1 0.9945 0.9950 0.9598 (0.0373)

HMM 0.15 0.9849 0.9981 0.9712 (0.0327)

HMM 0.2 0.9420 0.9977 0.9409 (0.0764)

Bonferroni 0.4679 0.9999 0.6215 (0.2432)

FDR 0.8040 0.9748 0.6877 (0.1875)

SKAT 0.2009 0.9941 0.3676 (0.1458)

SKATO 0.3099 0.9861 0.4610 (0.1715)

burden 0.3023 0.9872 0.4493 (0.1928)

wtest 0.8688 0.9710 0.8163 (0.1850)
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the jth variant and β is a constant term. Larger values of βj , either positive or negative, 
imply the variant is more influential.

Prior to starting any of the individual synthesized datasets, we first fixed a dis-
tribution for number of influential sites as follows: We generated 10,000 datasets 
as in HMM Model Simulations, but saved only the number of influential sites, and 
excluded instances with more than 300 influential sites. Then, for each block model 
simulation, we sampled one number randomly from this list, and took this as our 
approximate number of influential sites.

Next, we decided the influential blocks. For each simulation, we set the number of 
blocks as 1, 2, 3 or 4 with equal probability. Having decided this, for each block the 
length was sampled i.i.d. from Poisson( #(influential sites)#(blocks)

) , with length 0 replaced by 1 if 
this sample drew a 0. The locations of the blocks were selected randomly with uni-
form probability, subject only to the constraint that blocks could not overlap. Then 
each block was set to either Negative Influence or Positive Influence with 50–50 
probability, while sites outside of any block were marked No Influence. This formed 
the true state sequence.

Then we generated the genotypes and phenotypes. For each variant site j, the minor 
allele frequency q was q = 0.001 · 500u , where u ∼ U(0, 1) i.i.d. That is, MAFs could 
range from 0.1 to 50% with more weight on lower MAFs. Following [31, 32] we then set 
βj = ±0.3| log10(q)| so that rarer minor alleles had stronger influence. The full geno-
type of a prospective subject was set by choosing the number of minor alleles indepen-
dently for each variant site according to the Hardy Weinberg Formula for each site’s 
value of q. Recall that in this group of simulations, logitP(Y = 1) = β +

∑
j<p βjGj , 

where the constant term β controls the proportion of phenotype 0 subjects to phe-
notype 1 subjects. In order to produce an expected number of phenotype 0 subjects 
equal to the desired number, β should be set to −µ+ log(b/a) , where a is the desired 
number of phenotype 0 subjects, b is the desired number of phenotype 1 subjects 
and µ = E(

∑p
j=1 βjGj) . To estimate µ , 1000 genotypes were generated as above, and 

µ was taken to be the mean. We then filled in the desired number of subjects for our 
simulation using a quota system: We generated a genotype Gi as above, followed by a 
phenotype yi set to 1 with logit probability as above, and 0 otherwise. The subject was 
then added to the study if and only if the relevant phenotype’s quota had not yet been 
filled; and this process was repeated until both quotas were filled. As a final step for 

Fig. 3 Individual trial MCCs
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the benefit of the ZFA methods, variant sites where no subjects had at least one copy 
of the minor allele were removed.

These simulations are conceptually more challenging than the HMM model simula-
tions because whereas in the HMM model each influential site directly affects the cor-
responding column of the genotype matrix, in the block model, all such influences are 
mixed together under a sum, which is then further hidden behind a dichotomous vari-
able. Thus, even before considering the specifics of a classification algorithm, lower clas-
sification performance is to be expected. Results summarized in Table 3 and Fig. 4.

HMM again outperforms all comparison methods. HMM does best with threshold 
0.1; performance declines with increasing threshold value.

Block model with i.i.d. site strengths, noise terms and impurity

We generated two more groups of block model simulations, but with the following 
modifications:

• βj ∼ ±U(0.6, 1.2) . This was the range of possible individual site strengths in the sim-
ulations from [31], but with the dependence on MAF removed and replaced with an 
i.i.d. uniform draw.

• Noise Terms. Following [31], we add two noise terms to the logistic regression equa-
tion: 0.5X1 + 0.5X2 , where X1 is a standard normal variable and X2 is a 50–50 coin 
flip between 0 and 1.

Table 3 Block model simulation results: 1000 phenotype 0, 1000 phenotype 1 subjects

Influential site strengths are set higher for rarer minor alleles. No added noise terms. Pure blocks

Method Sensitivity Specificity MCC

HMM 0.1 0.8543 0.9926 0.8700 (0.1282)

HMM 0.15 0.7936 0.9958 0.8469 (0.1327)

HMM 0.2 0.6739 0.9965 0.7719 (0.1427)

Bonferroni 0.0173 0.9999 0.0886 (0.0927)

FDR 0.2546 0.9816 0.3074 (0.0610)

SKAT 0.7456 0.9019 0.5649 (0.3174)

SKATO 0.6672 0.9383 0.5754 (0.2924)

Burden 0.6090 0.9572 0.6111 (0.3048)

wtest 0.6034 0.9609 0.6356 (0.2558)

Fig. 4 Individual trial MCCs
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• Impurity: Sites within an influential block had a probability of reverting to No Influ-
ence.

In the first additional simulation group, impurity was set to 0.25. In the second, it was set 
to 0.5. To compensate, the approximate number influential sites was scaled by 4/3 and 2 
respectively. Results summarized in Tables 4, 5 and Figs. 5, 6.

HMM outperforms the comparison methods under both impurity levels. Different 
thresholds don’t change the performance very much. All methods tend to perform worse 
with the higher impurity level.

Block model with imbalanced phenotypes

Next, we generated two groups of block model simulations with imbalanced pheno-
types, i.e. more phenotype 0 subjects than phenotype 1. Specifically, we used 1500 of 
the former and 500 of the latter. The first group featured just the imbalanced pheno-
types and the uniform i.i.d. individual site strengths, with the simulations otherwise 
set up as in the first group of block model simulations. The second group added to 
this the noise terms and an impurity of 0.25 as in the preceding subsection. Results 
summarized in Tables 6, 7 and Figs. 7, 8.

Table 4 Block model simulation results: 1000 phenotype 0, 1000 phenotype 1 subjects

Influential site strengths independent of MAFs. Added noise terms. Impurity 0.25

Method Sensitivity Specificity MCC

HMM 0.1 0.8533 0.9721 0.7908 (0.0815)

HMM 0.15 0.8428 0.9774 0.7963 (0.0807)

HMM 0.2 0.8243 0.9816 0.7936 (0.0803)

Bonferroni 0.2631 1.0000 0.4843 (0.1304)

FDR 0.4741 0.9805 0.4734 (0.0654)

SKAT 0.5297 0.9266 0.4509 (0.2406)

SKATO 0.6622 0.9371 0.5651 (0.2464)

Burden 0.5232 0.9533 0.5091 (0.2494)

wtest 0.7218 0.9657 0.7024 (0.1890)

Fig. 5 Individual trial MCCs



Page 14 of 25Du et al. BMC Bioinformatics          (2023) 24:138 

HMM outperforms the comparison methods in both groups. All three threshold 
values show similar performance. All methods show worse performance in the noise 
and impurity group, except Bonferroni.

Block model with small sample size

Lastly, we generated two groups of block model simulations with small sample sizes. 
In the first group, we used 150 phenotype 0 subjects and 150 phenotype 1 subjects. In 

Table 5 Block model simulation results: 1000 phenotype 0, 1000 phenotype 1 subjects

Influential site strengths independent of MAFs. Added noise terms. Pure blocks

Method Sensitivity Specificity MCC

HMM 0.1 0.6028 0.9685 0.5731 (0.1576)

HMM 0.15 0.6156 0.9724 0.5670 (0.1653)

HMM 0.2 0.5805 0.9782 0.5774 (0.1611)

Bonferroni 0.2379 1.0000 0.4393 (0.1813)

FDR 0.4626 0.9817 0.4661 (0.0934)

SKAT 0.5088 0.9126 0.3742 (0.1767)

SKATO 0.5840 0.9115 0.4171 (0.1920)

Burden 0.4052 0.9330 0.3476 (0.1946)

wtest 0.6396 0.9184 0.4719 (0.2105)

Fig. 6 Individual trial MCCs

Table 6 Block model simulation results: 1500 phenotype 0, 500 phenotype 1 subjects

Influential site strengths independent of MAFs. No added noise terms. Pure blocks

Method Sensitivity Specificity MCC

HMM 0.1 0.8960 0.9949 0.9018 (0.1115)

HMM 0.15 0.9087 0.9943 0.9082 (0.0797)

HMM 0.2 0.9135 0.9949 0.9211 (0.0640)

Bonferroni 0.1861 1.000 0.3980 (0.1320)

FDR 0.3867 0.9798 0.4292 (0.0717)

SKAT 0.5342 0.9380 0.4820 (0.2129)

SKATO 0.5789 0.9499 0.5852 (0.2017)

Burden 0.4931 0.9712 0.5866 (0.1822)

wtest 0.6692 0.9597 0.6812 (0.2358)
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the second group, we used 200 phenotype 0 subjects and 100 phenotype 1 subjects. 
Due to the large variance in performance, the number of trials in each group was dou-
bled to 40. Settings were as in the first group of block model simulations, except with 
uniform i.i.d. individual site strengths. Results summarized in Tables 8, 9 and Figs. 9, 
10.

While all three HMM thresholds outperform the comparison methods, there is a clear 
preference for higher threshold values, with HMM 0.2 doing best.

Fig. 7 Individual trial MCCs

Table 7 Block model simulation results: 1500 phenotype 0, 500 phenotype 1 subjects

Influential site strengths independent of MAFs. Added noise terms. Impurity 0.25

Method Sensitivity Specificity MCC

HMM 0.1 0.8620 0.9717 0.7786 (0.0707)

HMM 0.15 0.8611 0.9718 0.7828 (0.0626)

HMM 0.2 0.8230 0.9750 0.7845 (0.0597)

Bonferroni 0.2208 1.000 0.4302 (0.1620)

FDR 0.4060 0.9797 0.4187 (0.0623)

SKAT 0.6059 0.9121 0.4611 (0.2418)

SKATO 0.6834 0.9178 0.5671 (0.1495)

Burden 0.6417 0.9251 0.5602 (0.1505)

wtest 0.7781 0.9161 0.6124 (0.1762)

Fig. 8 Individual trial MCCs
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Block model with low MAFs

Lastly, bearing in mind that ZFA was primarily designed for testing rare variants, we 
generated a group of block model simulations with low MAFs. MAFs for each site 
were set i.i.d. to q = 0.001 · 10u , where u ∼ U(0, 1) . That is, MAFs could range from 
0.1% to 1% . To compensate for the low MAFs, i.e. to capture a sufficient number of 
subjects with the minor alleles, sample size was increased to 2500 phenotype 0 sub-
jects and 2500 phenotype 1 subjects. Other settings were as in the first group of block 

Table 8 Block model simulation results: 150 phenotype 0, 150 phenotype 1 subjects

Influential site strengths independent of MAFs. No added noise terms. Pure blocks

Method Sensitivity Specificity MCC

HMM 0.1 0.8220 0.9483 0.7605 (0.2191)

HMM 0.15 0.8202 0.9843 0.8300 (0.1299)

HMM 0.2 0.8176 0.9893 0.8429 (0.1250)

Bonferroni 0.0164 1.000 0.0782 (0.0984)

FDR 0.1232 0.9884 0.1964 (0.0786)

SKAT 0.1099 0.9792 0.0948 (0.2103)

SKATO 0.2921 0.9792 0.3324 (0.3060)

Burden 0.3279 0.9605 0.3289 (0.2956)

wtest 0.6496 0.9695 0.6577 (0.2653)

Fig. 9 Individual trial MCCs

Table 9 Block model simulation results: 200 phenotype 0, 100 phenotype 1 subjects

Influential site strengths independent of MAFs. No added noise terms. Pure blocks

Method Sensitivity Specificity MCC

HMM 0.1 0.6765 0.9545 0.6279 (0.3620)

HMM 0.15 0.7257 0.9868 0.7178 (0.2885)

HMM 0.2 0.7371 0.9896 0.7398 (0.2716)

Bonferroni 0.0196 1.000 0.0831 (0.1037)

FDR 0.1609 0.9843 0.1903 (0.0846)

SKAT 0.0883 0.9884 0.0798 (0.1983)

SKATO 0.3554 0.9741 0.3370 (0.3386)

Burden 0.3940 0.9670 0.3926 (0.3317)

wtest 0.6602 0.9540 0.6022 (0.2458)
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model simulations, except with uniform i.i.d. individual site strengths. Results sum-
marized in Table 10 and Fig. 11.

We again see a preference for higher HMM threshold values. HMM 0.15 outper-
formed the comparison methods in mean MCC, but at the cost of higher variance. 
HMM 0.2 achieved the highest mean MCC of them all, with lower variance than the 
ZFA methods.

Discussion
Identification of significant genes

HMM is only designed to detect influential sites, not genes directly. The latter is gen-
erally the next step in studying genetic causal pathways for the phenotype [28]. We 
suggest the simplest approach: If a site is marked as influential, look for a gene on 
which it may exert a direct influence, i.e. a gene for which the site is either in the cod-
ing region or the regulatory region [13].

Comparison with other methods

Both HMM and ZFA improve on individual site testing methods by using information 
from neighboring sites, on the presumption that influential sites come in clusters. However, 
HMM has several advantages. It offers greater versatility because it is designed for both rare 
and common variants, whereas ZFA is designed for just rare variants and wtest for com-
mon variants. Furthermore, ZFA predicts that influential sites come in (pure) blocks. This 

Fig. 10 Individual trial MCCs

Table 10 Block model simulation results: 2500 phenotype 0, 2500 phenotype 1 subjects

Influential site strengths independent of MAFs. Low MAFs. No added noise terms. Pure blocks

Method Sensitivity Specificity MCC

HMM 0.1 0.6706 0.9907 0.6402 (0.3950)

HMM 0.15 0.7492 0.9957 0.7510 (0.3184)

HMM 0.2 0.8117 0.9958 0.8139 (0.2441)

Bonferroni 0.0789 1.0000 0.2496 (0.1079)

FDR 0.4308 0.9831 0.4545 (0.1158)

SKAT 0.8103 0.9716 0.6705 (0.2533)

SKATO 0.7347 0.9899 0.7171 (0.2436)

Burden 0.6946 0.9920 0.6996 (0.2455)

wtest 0.7099 0.9902 0.6933 (0.2460)
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may be too idealized an assumption. HMM offers more flexibility because while it prefers 
purity, by disfavoring too many transitions to different states, it does not insist on it.

Directions for future improvements

We suggest four possible modifications to our method.
First, the method assumes that all sites in the same state exert the same influence 

strength on the phenotype, as summarized by two parameters ( θ−0  and θ−1  for Negative 
Influence sites, θ+0  and θ+1  for Positive Influence sites). But this assumption is simplistic; 
we should expect that in reality, some influential sites will exert a stronger influence than 
others. An alternative would be for individual Negative Influence (respectively Positive 
Influence) sites to have their strengths drawn i.i.d. from distributions. The θ parame-
ters would then be interpreted not as the strengths of individual sites, but as the means 
of these distributions. We experimented with such a hierarchical HMM model, using 
exponential distributions for site strengths; but found that the runtime was unaccept-
ably high. However, with algorithmic improvements or more computational resources, a 
hierarchical HMM model could be a direction for future research.

Secondly, the method assumes that the transition probability from state k to state ℓ 
should a priori be constant. But this assumption too is simplistic. In a real GWAS, the 
variant sites studied will not be equally spaced; some variant sites will be much closer to 
their neighboring sites than others. We should expect greater preference for remaining 
in the same state, i.e. larger diagonal values of the Markov transition matrix, when a site 
is close to its successor. The simplest way to model for this would be to insert a break-
point whenever the number of base pairs between a site and its successor is larger than 
some threshold. Then the genome would be divided into segments bounded by these 
break points, and HMM run separately on each segment. After HMM has finished on 
all the segments, we could either accept the outputs as is or pool the parameter esti-
mates for θ ,π ,A across all the segments and use those to re-estimate the most probable 
state sequence in each segment one last time. The advantage of this approach is that it 
splits most of the computation into separate jobs that can be run in parallel. But a dis-
advantage is that it still treats all transitions from state k to state ℓ in a single segment 
as a priori the same. Furthermore, if the GWAS contains a cluster of a few, or even just 
one, variant site far away from all other sites, this will result in a very short segment, on 
which it is not possible to make good inferences for Markov transition probabilities.

Fig. 11 Individual trial MCCs
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An alternative is to make the transition probabilities functions of genomic distance 
between a site and its successor. Small distances would yield “distinctive” transition 
probabilities with large diagonal values, while large distances would in the limit converge 
towards a background probability distribution π , as if the next site were a fresh start.

Thirdly, Markov chains are memoryless, in the sense that after just one step, the state 
at the current step becomes irrelevant to subsequent steps, a property that HMM inher-
its. This is not the best fit for accurately classifying variant sites in influential blocks with 
impurities because the correct classification of even a single No Influence site renders 
irrelevant all previous correct classifications of Negative/Positive Influence sites to clas-
sifications of later sites. It would be preferable for the model to “remember” nearby influ-
ential sites so that it will be more likely to correctly classify influential sites while still 
within an impure influential block. For this, we may look to kth order Markov chains, 
where the state of a site depends on the states of k preceding sites, and from there 
develop an analogous theory of kth order HMMs. We caution however that the size of 
the transition matrix grows as 3k , and with it the computational cost.

Fourthly, an even more interesting direction for future work would be to develop a bi-
directional version of our method; a theory of bi-directional HMMs is introduced in [33].

Conclusions
In this paper, we developed a Hidden Markov Model for the classification of influen-
tial sites using data from a GWAS. Our model assumes that states come in three states: 
Negative Influence, No Influence and Positive Influence. Each state has an emission dis-
tribution function, which assigns probabilities to the contingency tables at each variant 
site. The No Influence state assumes that phenotype 1 subjects have the same distribu-
tion of genotypes as phenotype 0 subjects, while the Negative Influence and Positive 
Influence states are departures from this null, with magnitude of departure controlled 
by two parameters each. The states themselves are governed by a Markov process, with a 
starting state probability vector for the first site and a transition probability matrix when 
passing from one site to the next. Our algorithm accepts as input a matrix of genotypes 
and a vector of phenotypes from a GWAS, makes some initial estimates for the model 
parameters, and alternates between updating the most probable state sequence and 
updating the model parameters, until finally halting and outputting its best estimate of 
the most probable state sequence.

Our model provides a mechanism for why influential sites should tend to cluster 
into blocks: Each site affects its successor because staying in the same state is a priori 
more probable than transiting to a different state. The model offers versatility, in being 
designed for both rare and common variants, and flexibility, in preferring influential 
sites to come in uninterrupted blocks but without insisting on it. Across diverse groups 
of simulations based on block models of influential sites, HMM consistently outper-
forms both simple comparison methods (Fisher’s exact test with corrections to the p 
value significance threshold) and more complex comparison methods (ZFA with four 
different algorithms to obtain subsequence p values). We anticipate that HMM may offer 
improved performance in classifying influential sites from GWAS, a strong first step in 
the study of genotype-phenotype causal relationships.
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Appendix
HMM flowchart
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Explanation of emission distribution functions

Recall that in the No Influence State, qi = pi , whereas in the Negative Influence and 
Positive Influence states, the qi depart from pi according to the formulas in Emission 
Distribution Functions. This section will explain the reason for those formulas. Begin 
by noting that under Negative Influence, we expect more phenotype 1 subjects to have 
the AA genotype and less to have the aa genotype, while under Positive Influence, we 
expect less phenotype 1 subjects to have the AA genotype and more to have the aa 
genotype. However, such departures should avoid extreme changes to the MAF; rare 
alleles should not become common, nor common alleles become rare. We accomplish 
this using the softmax transformation.

Let ϕ(t0, t1, t2) = ( et0

et0+et1+et2
, et1

et0+et1+et2
, et2

et0+et1+et2
) . This is a transformation that 

takes triples of real numbers to triples of positive numbers that sum to 1. It has the 
following properties:

• If ϕ(t0, t1, t2) = (p0, p1, p2) , then one possible choice is ti = log(pi) . However, it is 
not the only choice because of the following

• ϕ(t0, t1, t2) = ϕ(t0 + c, t1 + c, t2 + c) for any c This means for a given triple of 
probabilities (p0, p1, p2) , the triple that maps to it is well-defined only up to adding 
a constant to all entries.

• If ϕ(t0, t1, t2) = (p0, p1, p2) and ϕ(t0 + c, t1, t2) = (p′0, p
′
1, p

′
2) with c > 0 , then 

p′0 > p0 , p′1 < p1 and p′2 < p2 . Similarly for both other positions This means that 
increasing one entry transfers mass from the other two probabilities to the corre-
sponding probability.

Specifically, we take ti = log(pi) , shift the ti , and then transform back using ϕ . For 
Negative Influence, we use the shifts t0 = t0 + θ−0  and t2 = t2 − θ−1  . For Positive Influ-
ence, we use the shifts t0 = t0 − θ+0  and t2 = t2 + θ+1  . This yields the formulas for qi in 
Emission Distribution Functions.

M step of EM algorithm

In this section, we will need to maximize functions in which all arguments must 
be positive, and triples of arguments must sum to 1. That is, functions of the form 
f (x0, x1, . . . , x3k+2) where x0, . . . , x3k+2 > 0 and x3i + x3i+1 + x3i+2 = 1 for i = 0, . . . , k.

Consider first the simplest case, where the domain of f consists of only one such triple. 
We will use a transformation h : {(x0, x1, x2) : x0, x1, x2 > 0, x0 + x1 + x2 = 1} → [0, 1]2 
with h(x0, x1, x2) = (t,u) , where t = x0 and u = x1

x1+x2
 . The idea is to transform the 

problem of maximizing a function on {(x0, x1, x2) : x0, x1, x2 > 0, x0 + x1 + x2 = 1} 
to maximizing on [0, 1]2 via h. Next, we maximize with respect to t while fixing u, 
then maximize with respect to u while fixing t. Finally, we transform back using 
h−1(t,u) = (t,u(1− t), (1− u)(1− t)).

More generally, the procedure we use for maximizing these functions is as follows: 

1. Initialize starting values of x0, . . . , x3k+2

2. For i = 0, . . . , k : 
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(a) Regard f as a function of only x3i, x3i+1, x3i+2 , with all other variable values 
temporarily fixed.

(b) Apply the procedure of the previous paragraph. Update values of 
x3i, x3i+1, x3i+2

3. Repeat Step 2 until the value of f (x0, . . . , x3k+2) increases by ≤ 10−8

Call this procedure triplet optimization.
Turning to the main problem of this section, recall the function we wish to maximize: ∑p
j=1

∑
s∈{−1,0,1} γ

(t)
j (s)(log(f

j
s (xj|�p, θ))+ log P(Sj = s|π ,A, Sj−1)) , over the parameters 

�p, θ ,π ,A . This problem naturally splits into two components:

• Maximize 
∑p

j=1

∑
s∈{−1,0,1} γ

(t)
j (s) log(f

j
s (xj|�p, θ)) over �p, θ

• Maximize 
∑p

j=1

∑
s∈{−1,0,1} γ

(t)
j (s) log P(Sj = s|π ,A, Sj−1) over π ,A

Maximization over �p, θ

This part calls for maximizing a function with 3p terms over 2p+ 4 independent variables, 
which is computationally too costly. To simplify, we maximize over these sets of variables 
one at a time. More specifically, our algorithm works as follows: 

1. Initialize �p, θ to their current values �p(t), θ(t)

2. Maximize with respect to �p while holding θ constant and update values of �p
3. Maximize with respect to θ while holding �p constant and update values of θ
4. Repeat Steps 2 and 3 until objective function increases by less than 10−8

In step 2, since [pj0, p
j
1, p

j
2] is now free to vary independently for each variant site j, we maxi-

mize 
∑

s∈{−1,0,1} γ
(t)
j (s) log(f

j
s (xj|�p, θ)) independently for each j using triplet optimization.

For step 3, note that terms with s = −1 depend on only θ−0 , θ−1  while terms with s = 1 
depend on only θ+0 , θ+1  ; and terms with s = 0 do not depend on θ at all. So this step reduces 
to

• Maximize 
∑p

j=1 γ
(t)
j (−1) log(f

j
−1(xj|�p, θ)) with respect to θ−0 , θ−1

• Maximize 
∑p

j=1 γ
(t)
j (1) log(f

j
1 (xj|�p, θ)) with respect to θ+0 , θ+1

Each of these is a two-variable optimization problem. We solve them by maximizing 
with respect to the first variable while holding the second constant, then maximizing 
with respect to the second variable while holding the first constant. These single-variable 
searches are done over the interval [0, 10]. This loop is repeated until the objective function 
improves by ≤ 10−8.

Maximization over π ,A

We use the classical Baum–Welch formulas:
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where ζj(k , ℓ) is the marginal probability of being in state k at site j and state ℓ at site 
j + 1 ; it too is explained in [30].

Threshold sensitivity analysis

A question researchers using our method should consider is the choice of values 
for the thresholding parameters θmin and amin . Higher values mean stronger prior 
assumptions. Therefore, from a conceptual point of view, lower values are prefera-
ble. A Markov diagonal threshold value of amin = 0.5 assumes that sites in any state 
should be at least as likely to stay in the same state as to change states. This is already 
a conservative assumption, and given HMM’s consistently better performance than 
the comparisons, it is adequate. Therefore, we can confidently recommend using 
amin = 0.5.

More challenging is the choice of value for θmin . Too small a value, and HMM may 
expect little difference between influential and non-influential sites, causing a loss of 

π(t+1) = γ
(t)
0 ,

A
(t+1)
kℓ =

�
p−1
j=1 ζ

(t)
j (k , ℓ)

�
p
j=1γ

(t)
j (k)

,

Fig. 12 Individual trial MCCs

Table 11 Performance of HMM 0.05 in all simulation groups

Groups are numbered in the order they are listed in the main paper

Group Sensitivity Specificity MCC

1 0.9945 0.9930 0.9512 (0.0486)

2 0.7775 0.9879 0.7625 (0.3110)

3 0.8587 0.9696 0.7928 (0.0846)

4 0.6296 0.9597 0.5464 (0.1556)

5 0.9115 0.9943 0.9161 (0.0699)

6 0.8804 0.9702 0.7768 (0.0859)

7 0.7406 0.6377 0.3817 (0.3859)

8 0.7130 0.6949 0.4077 (0.3923)

9 0.6451 0.9957 0.6288 (0.4294)
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sensitivity or specificity. Indeed, in our experience, a threshold value of 0.05 sometimes 
produced worse results than the comparison methods. Table 11 and Fig. 12 summarize 
the performance of HMM 0.05 in each of the simulation groups, using the same perfor-
mance measures.

On the other hand, too large a value will force HMM to expect a stronger signal from 
influential sites than is actually the case. Based on our simulation results, we gener-
ally expect that any choice within the range [0.1, 0.2] should be ok, with a small prefer-
ence for 0.15 for being in the middle of this tested range. However, some of the groups 
showed significant differences in performance depending on θmin . In the Small Sample 
Size groups, higher threshold values are preferred. We expect this is due to the behav-
ior of the multinomial distribution; the smaller the sample size, the larger the relative 
width of the distribution, and hence the smaller the differences between the emission 
distribution functions of different states. A larger θ threshold is thus needed to compen-
sate. Larger threshold values are also preferred for the low MAFs group. However, the 
first block model simulation group shows just the opposite trend; lower threshold values 
are preferred. The distinctive feature of this group is the dependence of individual site 
strength on MAF. Perhaps a lower threshold is needed to correctly identify influential 
sites with common minor alleles with weak influence.
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