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Abstract 

Background:  The TP53 tumor suppressor gene is one of the most mutated genes in 
lung adenocarcinoma (LUAD) and plays a vital role in regulating the occurrence and 
progression of cancer. We aimed to elucidate the association between TP53 mutations, 
response to immunotherapies and the prognosis of LUAD.

Methods:  Genomic, transcriptomic, and clinical data of LUAD were downloaded from 
The Cancer Genome Atlas (TCGA) dataset. Gene ontology (GO) analysis, Kyoto Ency-
clopedia of Genes and Genomes (KEGG) enrichment analysis, gene set enrichment 
analysis (GSEA). Gene set variation analysis (GSVA) were performed to determine the 
differences in biological pathways. A merged protein–protein interaction (PPI) network 
was constructed and analyzed. MSIpred was used to analyze the correlation between 
the expression of the TP53 gene, tumor mutation burden (TMB) and tumor micros-
atellite instability (MSI). CIBERSORT was used to calculate the abundance of immune 
cells. Univariate and multivariate Cox regression analyses were used to determine the 
prognostic value of TP53 mutations in LUAD.

Results:  TP53 was the most frequently mutated in LUAD, with a mutational frequency 
of 48%. GO and KEGG enrichment analysis, GSEA, and GSVA results showed a significant 
upregulation of several signaling pathways, including PI3K-AKT mTOR (P < 0.05), Notch 
(P < 0.05), E2F target (NES = 1.8, P < 0.05), and G2M checkpoint (NES = 1.7, P < 0.05). 
Moreover, we found a significant correlation between T cells, plasma cells, and TP53 
mutations (R2 < 0.01, P = 0.040). Univariate and multivariate Cox regression analyses 
revealed that the survival prognosis of LUAD patients was related to TP53 mutations 
(Hazard Ratio (HR) = 0.72 [95% CI, 0.53 to 0.98], P < 0.05), cancer status (P < 0.05), and 
treatment outcomes (P < 0.05). Lastly, the Cox regression models showed that TP53 
exhibited good power in predicting three- and five-year survival rates.

Conclusions:  TP53 may be an independent predictor of response to immunotherapy 
in LUAD, and patients with TP53 mutations have higher immunogenicity and immune 
cell infiltration.
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Introduction
Lung cancer is one of the deadliest malignancies, posing a major threat to human 
health. Its morbidity and mortality rates are increasing worldwide, in 2023; in 2023, it 
is anticipated that there will be 127,070 lung cancer deaths and 238,340 new cases [1]. 
Lung adenocarcinoma (LUAD), a main subtype of lung cancer, has displayed an increas-
ing incidence rate, accounting for 38.5% of all lung cancer cases [2]. Owing to recent 
advances in research on molecular markers for the diagnosis and prognosis of LUAD, 
immunotherapies are currently applied in its treatment. Nevertheless, the progno-
sis of LUAD remains unfavorable and the survival rate of patients with LUAD has not 
improved. Therefore, it is crucial to identify molecular markers and understand the 
mechanisms by which these biomarkers affect treatment and prognosis.
TP53, a critical DNA repair gene, has been dubbed as a "guardian of the genome" [3, 4] 

that maintains the stability and integrity of genes. Mutated TP53 leads to loss of tumor 
suppressor ability and accelerates tumor formation [5]. Although there is inadequate 
evidence to link TP53 gene mutations to the immunobiological behavior and clinical fea-
tures of lung cancer, there is evidence that TP53 gene mutations to alter the sensitivity of 
immune checkpoint inhibitors (ICIs) treatment and resistance evolution of EGFR tyros-
ine kinase inhibitors in non-small cell lung cancer (NSCLS) [6–8]. TP53 mutations have 
been reported to upregulate the expression of immune checkpoints, activate effector T 
cells, and affect a group of genes involved in cell cycle regulation, DNA replication, and 
damage repair in LUAD [8]. Sun et al. have demonstrated that a specific TP53 mutation 
is a biomarker for checkpoint inhibitors in LUAD, and patients with LUAD harboring 
a TP53 missense mutation show a superior response to immunotherapies [9]. Previous 
studies using bioinformatic analyses have identified several genes, including TP53, that 
are classified as effective prognostic markers and play critical roles in the initiation and 
progression of LUAD [10, 11]. However, the mechanism and clinical value of TP53 as 
a possible biomarker in terms of multi-omics analysis (immunology, molecular biology, 
and genetics) and prognostic value are not yet investigated. Therefore, identification of 
the mechanisms that affect drug response and prognosis is critical for overcoming the 
therapeutic challenges associated with LUAD and accurately predicting its prognosis.

Bioinformatic analysis provides a comprehensive method for studying diverse multi-
omics datasets. Therefore, in this study, we aimed to use bioinformatics and statistical 
analyses of data collected from patients with LUAD from The Cancer Genome Atlas 
(TCGA) dataset to determine the therapeutic and prognostic significance of TP53 
mutations. First, we searched gene expression profiling datasets for LUAD in TCGA to 
identify differences in gene expression. Second, we used the R package deconstruct Sigs 
to calculate tumor mutation burden (TMB) and microsatellite instability (MSI) in the 
mutated and wild-type TP53 groups (TP53-MUT and TP53-WT, respectively). Third, 
we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analyses, gene set enrichment analysis (GSEA), and gene 
set variation analysis (GSVA) to determine the differentially enriched signaling path-
ways. Furthermore, we constructed protein–protein interaction (PPI) networks and 
then used molecular complex detection (MCOD) to detect densely connected regions 
in these networks. Moreover, we applied ESTIMATE to quantify immunological activity 
in tumor samples and then calculated TP53-MUT and ESTIMATE score correlations. 
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Finally, we created a prognostic model using clinicopathological features to predict the 
long-term survival rate of patients with LUAD, which was then used to construct a nom-
ogram to guide clinical judgment. The workflow of our research is presented in Addi-
tional file 1: SF1.

Results
TP53 is the most frequently mutated gene in LUAD

We counted the number and frequency of different TP53 mutations in the top 10 (Addi-
tional file 2: ST1) and determined the most frequent types of mutations in patients with 
LUAD in the TCGA dataset (Fig. 1A). Of these, missense mutations were the most prev-
alent. We also determined the number of TCGA-LUAD-affected genes (Fig.  1B) and 
found that TP53 (48%), TTN (46%), and MUC16 (40%) had the highest mutational fre-
quencies. Since TP53 has the highest mutation frequency, we visualized its mutations. 
We found that most of the mutations in TP53 were missense variants (Fig. 1C). To deter-
mine the copy number variation (CNV) and identify genes with substantial amplification 
or deletion, we used the CNV data from TCGA (Fig. 1D) and GISTIC 2.0, respectively. 
Our results showed that TP53 did not exhibit any significant amplification or deletion 
(Fig. 1E–G). Therefore, TP53 was incorporated as the biomarker for the treatment and 
prognosis of LUAD.

The Human Protein Atlas (HPA) database (https://​www.​prote​inatl​as.​org/) is a free 
public database of over 26,000 antibodies targeting more than 17,000 human genes [12]. 
The immunohistochemical information on TP53 was obtained from the HPA database 
and found to be significantly high-expression in normal and LUAD tissues, suggesting 
that TP53 is a meaningful biomarker (Additional file 3: SF4).

TP53 mutation and response to immunotherapy

We tallied the mutations in the TP53-MUT and TP53-WT groups and found that the 
TMB of the former was greater than that of the latter (P < 0.05), This suggests that the 
TP53-MUT group may be more responsive to immunotherapy (Fig. 2A).

Signature.nature2013 [13], a known signature inference of mutational differences 
between the mutant and wild-type groups, was selected to determine the relationship 
between TMB and treatment response. In the signature4 group, we found that TP53-
MUT group was in the upper part of the boxplot, indicating a higher correlation with 
immunotherapy, but in the signature1A group, it was in lower part, indicating a poorer 
correlation (Fig. 2B). Based on the mutation data, we projected the state distribution of 
high microsatellite instability (MSI-H) and microsatellite stability (MSS) in the TP53-
MUT and TP53-WT groups and found that the proportion of MSI-H in the TP53-MUT 
group was considerably greater than that in the TP53-WT group (the ratio of TP53-
MUT group is 0.0971 and the ratio of TP53-WT group is 0.0208) (Fig. 2C). Therefore, 
we speculated that TP53-MUT samples would be more sensitive to immunotherapy 
and can thus benefit from immunotherapy. Simultaneously, we studied the variations in 
the expression of immune checkpoints between the TP53-MUT and TP53-WT groups 
(Fig. 2D). The expression of numerous common immune checkpoints, including LAG3, 
IDO1, PDCD1(PD-1), CTLA4, and TIGIT, was considerably higher in the TP53-MUT 

https://www.proteinatlas.org/
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group than in the TP53-WT group (TP53-MUT group was in the upper part of the 
whole boxplot). This result suggests that TP53-MUT cells were more susceptible to ICIs.

TP53 mutation and sensitivity to antineoplastic agents

To further identify drugs that might interact with the TP53-MUT group of patients with 
LUAD, we determined the susceptibility of the TP53-MUT and TP53-WT groups to the 
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Fig. 1  Analysis of copy number variation (CNV) and somatic mutation patterns of patients with lung 
adenocarcinoma (LUAD). A Mutation information statistic of LUAD patients in LUAD cohort of TCGA. B The 
top 10 most frequently mutated genes from LUAD patients in the cohort of TCGA. Left side of the panel 
shows the high mutation frequency genes in the waterfall plot, and the colors indicates different mutation 
types of the high mutation frequency genes in the right panel. (Genes are ordered by their mutation 
frequencies, and samples are ordered according to disease histology as indicated by the annotation bottom). 
C Lollipop plot displaying mutation distribution and protein domains for TP53 in LUAD with the labeled 
recurrent hotspots. Somatic mutation rate and transcript names are indicated by plot title and subtitle. D 
Schematic representation of the CNV in the TCGA-LUAD, the outermost ring represents the chromosomes, 
the red ring represents the gene expanded, and the green ring represents the gene deletion. E–G 
Identification of significantly differing gene amplifications and deletions. False discovery rates (Q-value) and 
score alteration of GISTIC2.0 (x axis) is plotted versus genome positions (y axis). The broken line represents 
centromeres. The green line represents the cut-off point of 0.25 Q for determining significance
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currently available LUAD-specific therapies using gene expression data from the TCGA-
LUAD dataset and drug sensitivity data from the GDSC database. The results indicated 
that individuals with TP53 mutations were more susceptible to most medications with 
lower 50% inhibitory concentration (IC50) values, such as lapatinib, docetaxel, and erlo-
tinib (Fig. 3A), all of which are often used in cancer treatment.

Furthermore, we calculated the influence of TP53-MUT on biological features and 
carcinogenic signaling pathways in TCGA-LUAD using GSVA. We found that cell cycle 
signaling and the Notch signaling pathway were upregulated in the TP53-MUT group 
(Fig. 3B). Additionally, the G2/M checkpoint and the PI3K-AKT-mTOR signaling path-
way were markedly upregulated in the TP53-MUT group than in the TP53-WT group 
(Fig. 3C). Erlotinib may have a synergistic effect with TP53 mutation in inhibiting the 
PI3K-AKT-mTOR signaling pathway, along with the significant upregulation of the latter 
in the TP53-MUT group, as shown above in the GSVA analysis.

Functional characteristics of TP53 mutations in LUAD

We examined the relationship between TP53 mutations and gene expression (Fig. 4A) 
and found that TP53 mutations may result in the signaling of gene expression. In 
addition, we identified 1298 differentially expressed genes (DEGs), including 277 dif-
ferentially expressed lncRNAs and 837 differentially expressed mRNA, between the 
TP53-MUT and TP53-WT groups. The remaining 184 DEGs belonged to other gene 
types. In the TP53-MUT group, we identified 277 differentially expressed lncRNAs, of 

Fig. 2  TP53 mutation and response to immunotherapy. AThe TP53 mutation has a significance effect on 
TMB in lung adenocarcinoma patients. B The effect of TP53 mutation on the mutational signature. C The 
MSI status predicted by TP53 mutation grouping. D Difference of immune checkpoints expression on the 
TP53-MUT
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which 184 were upregulated (P < 0.05, logFC ≥ 1) and 93 were downregulated (P < 0.05, 
logFC ≤ − 1) (Fig. 4B), 74 differentially expressed miRNAs, including 47 upregulated 
(P < 0.05, logFC ≥ 1) and 27 downregulated miRNAs (P < 0.05, logFC ≤ − 1) (Fig. 4C), 
837 differentially expressed mRNAs, of which 454 were upregulated (P < 0.05, 
logFC ≥ 1) and 383 were downregulated (P < 0.05, logFC ≤ − 1) (Fig. 4D).

To determine the functional characteristics of the upregulated and downregulated 
genes, we analyzed the biological processes, cell fractions, and molecular functions 
of 834 DEGs. First, we performed a functional enrichment analysis of GO (Fig. 4E, 
Table  1), which revealed that DEGs were significantly enriched in biological pro-
cesses, such as antimicrobial humoral response, neuron fate commitment, cellular 
processes involved in reproduction in multicellular organisms, serotonin recep-
tor signaling pathway, and gas transport. Several KEGG pathways (Fig. 4F, Table 2) 
enriched in our DEGs included genes involved in neuroactive ligand-receptor, 
nicotine addiction, drug metabolism-cytochrome P450, cAMP signaling pathway, 
xenobiotic metabolism by cytochrome P450, systemic lupus erythematosus, reti-
nal metabolism, taste transduction, arachidonic acid metabolism, and linoleic acid 
metabolism.

We also analyzed the biological function enrichment of TP53-MUT and TP53-
WT genes in GSEA (Fig.  5, Table  3). The results demonstrated that genes in the 
TP53-MUT and TP53-WT groups were largely enriched in the DNA packag-
ing complex, GOBP DNA packaging, GOBP DNA conformation change, and 
other GO pathways (Fig.  5A–C). KEGG functional pathways were enriched in 
ribosomes, systemic lupus erythematosus, and arachidonic acid metabolism. 
(Fig.  5D–F). Cancer-related pathways were enriched in Hallmark-E2f-targets, 

Fig. 3  Analysis of drug sensitivity and differences in biological characteristics in patients with lung 
adenocarcinoma harboring mutations in TP53. A Difference in drug Sensitivity to LUAD with TP53-MUT and 
TP53-WT TP53, the horizontal axis is the TP53 mutation grouping, and the vertical axis is the 50% inhibitory 
concentration (IC50). B The difference of KEGG pathway between TP53-MUT and TP53-WT, the horizontal 
axis is the KEGG pathway, and the vertical axis is the signaling pathway enrichment score. C The difference 
of Hallmark between TP53-MUTand TP53-WT, the horizontal axis is hallmark, and the vertical axis is hallmark 
enrichment score



Page 7 of 26Li et al. BMC Bioinformatics          (2023) 24:155 	

Hallmark-G2M-checkpoint, Hallmark-fatty-acid-metabolism, and Hallmark-Sper-
matogenesis (Fig. 5G-I). Based on the results, we assumed that DEGs may regulate 
the metabolic pathways, such as ribosomes, arachidonic acid metabolism, Hall-
mark-E2f-targets, and Hallmark-G2M-checkpoint.

Construction of protein–protein interaction (PPI) networks

We constructed PPI networks based on 814 DEGs between TP53-MUT and TP53-WT 
groups (Fig.  6A) which included 2767 PPIs. The average degree of nodes was 6.8 and 
PPI enrichment had P < 1.0e−16. Three subnet modules in the DEG-PPI network were 
discovered using multicontrast delayed enhancement (MCODE). The first module was 
separated into 20.1, which included 21 gene nodes (Fig.  6B); the second module was 
divided into 12.462, which included 14 gene nodes (Fig. 6C); and the third module was 
divided into 12.167, which included 13 gene nodes (Fig. 6D). These PPI network con-
struction results demonstrated that the gene nodes were closely associated with tumor 

Fig. 4  Differentially expressed genes analysis in mutated and wild-type TP3 groups in the cohort of 
patients with lung adenocarcinoma. A Association between the TP53 mutation and the TP53 expression. 
B–D Differential expression analysis. The horizontal axis is the log2 Fold Change, and the vertical axis is 
-log10(Adjust P value), Red nodes represent upregulation, blue node represent downregulation, and the 
gray node represents non-significant expression. B represents differentially expressed lncRNA, C represents 
differentially expressed miRNA, and D represents differentially expressed mRNA. E GO enrichment analysis 
was performed on differentially expressed mRNA. (F)KEGG pathway enrichment analysis
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Table 1  GO enrichment analysis

ONTOLOGY ID Description P adjust

BP GO:0019730 Antimicrobial humoral response 1.85E−05

BP GO:0048663 Neuron fate commitment 5.55E−05

BP GO:0022412 Cellular process involved in repro-
duction in multicellular organism

5.55E−05

BP GO:0007210 Serotonin receptor signaling path-
way

0.000151

BP GO:0015669 Gas transport 0.000298

BP GO:0007187 G protein-coupled receptor signaling 
pathway, coupled to cyclic nucleo-
tide second messenger

0.000855

BP GO:0003407 Neural retina development 0.001234

BP GO:0019731 Antibacterial humoral response 0.001294

BP GO:0007281 Germ cell development 0.001294

BP GO:0098664 G protein-coupled serotonin recep-
tor signaling pathway

0.001493

BP GO:0007586 Digestion 0.002012

BP GO:0042445 Hormone metabolic process 0.011584

BP GO:0042403 Thyroid hormone metabolic process 0.012553

BP GO:0021953 Central nervous system neuron dif-
ferentiation

0.01564

BP GO:0007188 Adenylate cyclase-modulating G 
protein-coupled receptor signaling 
pathway

0.020789

BP GO:0007193 Adenylate cyclase-inhibiting G 
protein-coupled receptor signaling 
pathway

0.022382

BP GO:0007286 Spermatid development 0.022382

BP GO:0006590 Thyroid hormone generation 0.022394

BP GO:0007389 Pattern specification process 0.022394

BP GO:0042744 Hydrogen peroxide catabolic process 0.027606

BP GO:0006323 DNA packaging 0.027619

BP GO:0048515 Spermatid differentiation 0.027619

BP GO:0009954 Proximal/distal pattern formation 0.029486

BP GO:0015671 Oxygen transport 0.029486

BP GO:0090596 Sensory organ morphogenesis 0.029486

BP GO:0018958 Phenol-containing compound meta-
bolic process

0.031485

BP GO:0060078 Regulation of postsynaptic mem-
brane potential

0.03358

BP GO:0034508 Centromere complex assembly 0.034661

BP GO:0042743 Hydrogen peroxide metabolic 
process

0.034661

BP GO:0051321 Meiotic cell cycle 0.034661

BP GO:0042391 Regulation of membrane potential 0.036642

BP GO:0042737 Drug catabolic process 0.036642

BP GO:0051932 Synaptic transmission, GABAergic 0.038723

BP GO:0043486 Histone exchange 0.039256

BP GO:0006959 Humoral immune response 0.039355

BP GO:0000280 Nuclear division 0.039355

BP GO:0140013 Meiotic nuclear division 0.041515

BP GO:0060294 Cilium movement involved in cell 
motility

0.041769

BP GO:0048562 Embryonic organ morphogenesis 0.041769
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metabolism, e.g., KIFC1 may contribute to the movement of early endocytic vesicles and 
regulates cilium formation and tumorigenesis.

We identified differentially expressed mRNAs (deg-mRNA), miRNAs (deg-miRNA), 
and lncRNAs (deg-lncRNA) between TP53-MUT and TP53-WT groups and acquired 
mRNAs (target-mRNA) and lncRNA (target-lncRNA) sequences matching the deg-
miRNA in the miRNet database. Next, we took the intersected of deg-mRNA and tar-
get-mRNA, the intersection of deg-lncRNA and target-lncRNA. And then we used these 
two intersections to construct the mRNA-miRNA-lncRNA network. The intersecting 
mRNA-miRNA-lncRNA network revealed 765 interactions among 327 mRNAs, 60 
miRNAs, and 26 lncRNAs (Fig. 6E). The high interactions of all these mRNAs, miRNAs, 
and lncRNAs were associated with suppression of cell multiplication and induced apop-
tosis in TP53-MUT group.

Immune infiltration analysis

The total immune infiltration of the TP53-MUT and TP53-WT cohorts was ana-
lyzed. We compared the stromal and immune scores of the two groups and found 

Table 1  (continued)

ONTOLOGY ID Description P adjust

BP GO:0007143 Female meiotic nuclear division 0.041769

BP GO:0007214 Gamma-aminobutyric acid signaling 
pathway

0.041769

BP GO:0035235 Ionotropic glutamate receptor signal-
ing pathway

0.041769

BP GO:0048665 Neuron fate specification 0.041769

… … … …

MF GO:0070330 Aromatase activity 0.040267

MF GO:0004252 Serine-type endopeptidase activity 0.043303

MF GO:0015079 Potassium ion transmembrane trans-
porter activity

0.043303

MF GO:0047498 Calcium-dependent phospholipase 
A2 activity

0.043303

MF GO:0017171 Serine hydrolase activity 0.049034

Table 2  KEGG enrichment analysis

ID Description P adjust

hsa04080 Neuroactive ligand-receptor interaction 1.65E−13

hsa05033 Nicotine addiction 0.000143

hsa00982 Drug metabolism-cytochrome P450 0.000789

hsa04024 cAMP signaling pathway 0.001009

hsa00980 Metabolism of xenobiotics by cytochrome P450 0.001102

hsa05322 Systemic lupus erythematosus 0.001329

hsa00830 Retinol metabolism 0.005698

hsa04742 Tastetransduction 0.008404

hsa00590 Arachidonic acid metabolism 0.009237

hsa00591 Linoleic acid metabolism 0.013333
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no statistically significant difference in immune infiltration between the two groups 
(Fig.  7A). Next, we compared and analyzed the number of tumor-infiltrating immune 
cells (TIICs) between the two groups. The results indicated that the number of several 
immune cells, such as CD8, CD4 memory cells, and T follicular helper cells were consid-
erably greater in the TP53-MUT group than in the TP53-WT group (Fig. 7B, Additional 
file  4: SF3). We examined the associations between immune cells in the TP53-MUT 
group and discovered that most immune cells had negative correlations (Fig.  7C). We 
used correlation curve fitting to analyze TP53 expression and infiltration of different 
immune cells and found that TP53 expression was significantly correlated with plasma 
cell infiltration (Fig. 7D).

In addition, we evaluated the correlation between immune-related genes, HLA fam-
ily genes, and TP53 mutations. The results (Fig.  7E) showed negative correlation pat-
terns between PGC, HTR38, NOS1, and GALP genes in the TP53-MUT and TP53-WT 
groups. For HLA genes (Fig. 7F), the correlation patterns between typical HLA genes in 
the two groups were mostly negative, whereas those of atypical HLA genes were mostly 
positive. The above results indicated that TP53 mutations might upregulate the expres-
sion of immune response genes without significantly impacting immune stromal cells or 
the related genes.

Construction and evaluation of the prognostic model

Owing to the strong association between TP53 and immunotherapy, we directly ana-
lyzed the effect of TP53-MUT on prognosis, and the results (Fig. 8A) indicated that the 

Fig. 5  Gene set enrichment analysis (GSEA) function enrichment analysis. A–G Results of GSEA enrichment 
analysis. A–C Top 3 GO enrichments. D–F Top 3 KEGG pathway enrichments. G–I Top 3 Hallmark pathway 
enrichments
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Table 3  GSEA enrichment analysis

ID NES P value P adjust

GSEA GO

GOCC_DNA_PACKAGING_COMPLEX 1.976383 8.88E−10 6.01E−06

GOBP_DNA_PACKAGING 1.783477 2.62E−09 8.87E−06

GOBP_DNA_CONFORMATION_CHANGE 1.668193 7.22E−09 1.48E−05

GOBP_NUCLEOSOME_ASSEMBLY 1.902487 8.74E−09 1.48E−05

GOBP_NUCLEOSOME_ORGANIZATION 1.81451 1.28E−08 1.74E−05

GOBP_CHROMATIN_ASSEMBLY_OR_DISAS-
SEMBLY

1.732312 6.18E−08 6.97E−05

GOBP_CHROMOSOME_SEGREGATION 1.616316 8.28E−08 8.01E−05

GOBP_NEGATIVE_REGULATION_OF_GENE_
EXPRESSION_EPIGENETIC

1.837812 1.76E−07 0.000149

GOCC_PROTEIN_DNA_COMPLEX 1.723961 2.38E−07 0.000179

GOBP_ORGANELLE_FISSION 1.518382 3.71E−07 0.000232

GOBP_PROTEIN_DNA_COMPLEX_SUBUNIT_
ORGANIZATION

1.655031 3.77E−07 0.000232

GOCC_NUCLEAR_CHROMOSOME 1.660653 5.66E−07 0.000315

GOBP_MEIOTIC_CELL_CYCLE_PROCESS 1.712118 6.30E−07 0.000315

GOBP_NUCLEAR_CHROMOSOME_SEGREGA-
TION

1.63877 6.51E−07 0.000315

GOCC_MULTIVESICULAR_BODY −2.26426 9.31E−07 0.00042

GOBP_CHROMATIN_ORGANIZATION_
INVOLVED_IN_REGULATION_OF_TRANSCRIP-
TION

1.748391 1.08E−06 0.000458

GOCC_CHROMOSOMAL_REGION 1.559684 1.23E−06 0.00049

GOBP_MEIOTIC_CELL_CYCLE 1.642938 1.45E−06 0.000544

GOBP_NEURON_FATE_COMMITMENT 1.902468 2.48E−06 0.000882

GOMF_SERINE_HYDROLASE_ACTIVITY −1.74924 2.97E−06 0.001006

GOCC_CONDENSED_CHROMOSOME 1.644496 3.86E−06 0.001245

GOCC_CYTOSOLIC_RIBOSOME −1.93214 4.94E−06 0.001518

GOBP_MITOTIC_NUCLEAR_DIVISION 1.559838 1.16E−05 0.00342

GOBP_MEIOSIS_I_CELL_CYCLE_PROCESS 1.723002 1.29E−05 0.003639

GOBP_DOUBLE_STRAND_BREAK_REPAIR 1.536981 2.65E−05 0.006998

GOBP_REGULATION_OF_GENE_EXPRESSION_
EPIGENETIC

1.594629 2.69E−05 0.006998

GOBP_CHROMOSOME_ORGANIZATION_
INVOLVED_IN_MEIOTIC_CELL_CYCLE

1.792989 2.87E−05 0.007197

GOBP_MITOTIC_SISTER_CHROMATID_SEGREGA-
TION

1.653645 3.52E−05 0.008504

GOBP_REGULATION_OF_NUCLEAR_DIVISION 1.686256 3.66E−05 0.008541

GOBP_POSITIVE_REGULATION_OF_LYMPHO-
CYTE_APOPTOTIC_PROCESS

1.88292 4.13E−05 0.009313

GOCC_CILIARY_PLASM −1.74751 5.04E−05 0.010778

GOCC_BRUSH_BORDER_MEMBRANE −2.01561 5.23E−05 0.010778

GOCC_DENSE_CORE_GRANULE 1.84658 5.38E−05 0.010778

GOCC_CHROMOSOME_CENTROMERIC_REGION 1.558626 5.42E−05 0.010778

GOBP_MEIOTIC_CHROMOSOME_SEGREGATION 1.732776 5.70E−05 0.011016

GOCC_CONDENSED_NUCLEAR_CHROMOSOME 1.724235 6.16E−05 0.01129

GOBP_SISTER_CHROMATID_SEGREGATION 1.580149 6.22E−05 0.01129

GOBP_CILIUM_MOVEMENT −1.61535 6.34E−05 0.01129

GOBP_FLUID_TRANSPORT −2.16657 7.20E−05 0.012489

GOMF_CALCIUM_DEPENDENT_CYSTEINE_
TYPE_ENDOPEPTIDASE_ACTIVITY

−2.11512 8.01E−05 0.013254



Page 12 of 26Li et al. BMC Bioinformatics          (2023) 24:155 

Table 3  (continued)

ID NES P value P adjust

GOBP_CHROMATIN_SILENCING 1.756168 8.03E−05 0.013254

GOBP_AXONEME_ASSEMBLY −1.8582 9.71E−05 0.015641

GOBP_HYDROGEN_PEROXIDE_BIOSYNTHETIC_
PROCESS

−2.10282 9.95E−05 0.015653

GOCC_BRUSH_BORDER −1.74031 0.000108 0.016545

GOMF_PEPTIDASE_REGULATOR_ACTIVITY −1.53378 0.000116 0.017381

GOBP_DNA_DEPENDENT_DNA_REPLICATION 1.588182 0.000119 0.017563

GOBP_CELL_CYCLE_DNA_REPLICATION 1.751897 0.000122 0.017604

GOBP_VASCULAR_PROCESS_IN_CIRCULA-
TORY_SYSTEM

−1.55854 0.000127 0.017821

GOCC_NEURONAL_DENSE_CORE_VESICLE 1.815389 0.000131 0.017821

GOBP_REGULATION_OF_MITOTIC_NUCLEAR_
DIVISION

1.662135 0.000134 0.017821

GOBP_POSITIVE_REGULATION_OF_T_CELL_
APOPTOTIC_PROCESS

1.813644 0.000134 0.017821

GOCC_BASAL_PART_OF_CELL −1.52966 0.000145 0.01858

GOMF_ENDOPEPTIDASE_REGULATOR_ACTIVITY −1.53689 0.000146 0.01858

GOBP_CENTROMERE_COMPLEX_ASSEMBLY 1.746264 0.00018 0.022575

GOBP_DNA_REPLICATION 1.470602 0.000195 0.023955

GOBP_RDNA_HETEROCHROMATIN_ASSEMBLY 1.781571 0.000205 0.024659

GOMF_SERINE_TYPE_ENDOPEPTIDASE_INHIBI-
TOR_ACTIVITY

−1.74739 0.000208 0.024659

GOBP_HYPOTHALAMUS_DEVELOPMENT 1.816552 0.000235 0.026771

GOBP_SENSORY_PERCEPTION_OF_SMELL 1.412688 0.000235 0.026771

GOBP_EPITHELIAL_STRU​CTU​RE_MAINTENANCE −2.07214 0.000237 0.026771

GOBP_WATER_TRANSPORT −2.08751 0.000252 0.027924

GOBP_LIPID_OXIDATION −1.65664 0.000313 0.0342

GOMF_HORMONE_ACTIVITY 1.60724 0.000329 0.035296

GOBP_HISTONE_EXCHANGE 1.722975 0.00034 0.035964

GOBP_HOMOLOGOUS_CHROMOSOME_SEG-
REGATION

1.7319 0.000353 0.036167

GOBP_MICROTUBULE_BUNDLE_FORMATION −1.68493 0.000353 0.036167

GOBP_SENSORY_PERCEPTION_OF_CHEMI-
CAL_STIMULUS

1.364093 0.000405 0.04081

GOBP_MAINTENANCE_OF_GASTROINTESTI-
NAL_EPITHELIUM

−2.02779 0.000413 0.04081

GOCC_MICROVILLUS −1.69866 0.000423 0.04081

GOBP_CELLULAR_MODIFIED_AMINO_ACID_
METABOLIC_PROCESS

−1.46584 0.000424 0.04081

GOBP_POSITIVE_REGULATION_OF_LEUKO-
CYTE_APOPTOTIC_PROCESS

1.788148 0.000428 0.04081

GOMF_OXIDOREDUCTASE_ACTIVITY_ACT-
ING_ON_CH_OH_GROUP_OF_DONORS

−1.57945 0.000451 0.042352

GOMF_OLFACTORY_RECEPTOR_ACTIVITY 1.405798 0.000461 0.042709

GOMF_WATER_TRANSMEMBRANE_TRANS-
PORTER_ACTIVITY

−2.05169 0.000547 0.049989

GSEA KEGG

KEGG_RIBOSOME −2.32914 2.45E−09 4.57E−07

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 1.690071 4.76E−05 0.004424

KEGG_ARACHIDONIC_ACID_METABOLISM −1.82198 0.000218 0.013522

KEGG_LINOLEIC_ACID_METABOLISM −1.93402 0.000932 0.033491

KEGG_VASCULAR_SMOOTH_MUSCLE_CON-
TRACTION

−1.54076 0.001054 0.033491
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TP53-MUT group had a poor prognosis. Therefore, we further analyzed variables influ-
encing the prognosis, such as TP53-MUT data of patients with LUAD, TP53 expression 
data, and patient age, sex, clinical staging, and tumor staging in univariate and multi-
variate Cox regression analyses. Univariate Cox regression analyses revealed that age, 
gender, and TP53 expression (TP53-exp) had no effect on prognosis, whereas TP53 
mutations, cancer status, and treatment outcomes affected the prognosis of patients with 
LUAD (Fig.  8E and Table  4; Age, HR = 1.01 [95% CI, 0.994 to 1.02], P = 0.24; Gender, 
HR = 1.05 [95% CI, 0.78 to 1.4], P = 0.765; TP53-exp, HR = 0.921 [95% CI, 0.762 to 1.11], 
P = 0.392; TP53-WT, HR = 0.745 [95% CI, 0.556 to 0.998], P < 0.05; additional therapy, 
P < 0.05; cancer status, P < 0.05). According to the results of the multivariate Cox regres-
sion analysis (Fig.  8F, Table  5), TP53 mutations, cancer status, and new tumor events 
after initial treatment affected the prognosis (TP53-WT, HR = 0.72 [95% CI, 0.53 to 
0.98], P < 0.05; new tumor event after initial treatment, P < 0.05; cancer status, P < 0.05). 
We included these indicators in a prognostic model, created a clinical prediction line 
chart (Fig. 8B), and assessed the model’s predictive ability. The results showed that this 
model is highly predictive of the 3-, 5-, and 10-year survival rates of patients with LUAD. 
The model was calibrated, and the calibration curve indicated that the 3- and 5-year pre-
dictive values of the model were strong (Fig. 8C–D).

Discussion
LUAD is associated with a high mortality rate. Although the mortality rate of lung can-
cer is decreasing annually, current treatment and prognosis are not promising [14]. 
Owing to the high heterogeneity of LUAD, treatment modalities such as small-molecule 
targeted therapy and immunotherapy have limitations [15], such as sensitivity of tumor 
cells to various target drugs, the degree of drug resistance, and the target for antitumor 
immunotherapy. Hence, there is an urgent need to discover new immune checkpoints 
and treatment targets and understand the relationship between biomarkers and LUAD 
development and growth. Recently, several studies have suggested that TP53 mutations 
in combination with mutations in KRAS, EGFR and STK11 could affect the efficacy of 
ICIs, which makes TP53 gene a good candidate for newly biomarkers. In this study, 
first we validated that TP53 confers a high immunogenicity of tumors by calculating 
the association between TP53 mutations, TMB, and MSI. Based on these calculations, 
we then investigated which TP53 mutations affect the key immune checkpoints and 
demonstrated that TP53 mutations may upregulate the expression of immunological 

Table 3  (continued)

ID NES P value P adjust

KEGG_COMPLEMENT_AND_COAGULATION_
CASCADES

−1.70657 0.00108 0.033491

KEGG_FATTY_ACID_METABOLISM −1.75378 0.001699 0.045149

GSEA HALLMARK

HALLMARK_E2F_TARGETS 1.806064 5.45E−09 2.72E−07

HALLMARK_G2M_CHECKPOINT 1.70655 4.59E−07 1.15E−05

HALLMARK_FATTY_ACID_METABOLISM −1.52192 0.000714 0.011892

HALLMARK_SPERMATOGENESIS 1.507066 0.002415 0.030192
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checkpoints including CTLA4 and PDCD1. Secondly, we analyzed the correlation 
between TP53 mutation and targeted drug sensitivity. We found that the TP53-MUT 
group showed a lower IC50 for drugs such as erlotinib. We further analyzed the associa-
tion between TP53 mutations and inhibition of metabolic pathways by drugs. We found 
that TP53 mutations have synergistic effects with targeted drugs in inhibiting tumor 
metabolism. Third, on the basis of the regulation of TP53 on metabolic pathways, we 
performed GO and KEGG enrichment analyses, and the results showed that the PI3K-
AKT-mTOR signaling pathway was regulated. Then, we constructed PPI networks to 
identify hub genes such as KIFCI that are related to the inhibition metabolism of LUAD. 
Finally, by investigating the TIICs and tumor immune response genes in the TP53-
MUT group, we found that TP53 mutations may upregulate the expression of HLA and 
increase TIICs to improve the immune response of patients with LUAD.

In summary, using bioinformatics analysis, we identified TP53 as a key gene with good 
prognostic and therapeutic values in LUAD and suggested three mechanisms. First, 
TP53 mutations increased the responsiveness of LUAD patients to ICIs by upregulat-
ing the expression of immune checkpoints. Second, TP53 gene mutations increased 
the sensitivity of LUAD patients to antineoplastic drugs and reduced the risk of LUAD 
progression by upregulating the expression of the PI3K-AKT-mTOR pathway and 
G2/M checkpoint signaling. Thirdly, TP53 mutations improved the immune response 
of patients with LUAD, by upregulating the expression of HLA. Some studies have 
demonstrated that higher TMB and MSI in LUAD would probably induce a potent 

Fig. 6  Protein–protein interaction network analysis. A Protein–protein intersection network of differentially 
expressed genes in TP53-MUT and TP53-WT patients. Node size represents the degree of connectivity of 
the indicated protein in the network. B The sub-network module 1 in PPI. Color node denote the MOCDE 
score for the module and node size represent the degree of connectivity of the module. C The sub-network 
module 2 in PPI. Color node denote the MOCDE score for the module and node size represent the degree of 
connectivity of the module. D The sub-network module 3 in PPI. Color node denote the MOCDE score for the 
module and node size represent the degree of connectivity of the module. E ceRNA (mRNA-miRNA-lncRNA) 
network. Yellow dots indicate miRNA and red arrows indicate mRNA, whereas green rectangles indicate 
lncRNA
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immunogenic neoantigen that improves the response to immune checkpoint inhibi-
tor treatments [16–18]. A previous study has reported the effect of TP53 mutations on 
the immune checkpoints of patients with LUAD [19]. Additionally, Biton et al. showed 
that TP53 mutations predict the response of patients with LUAD to anti-PD-1 through 

Fig. 7  TP53 mutation and tumor infiltrates immune cells (TIICs). A Overall immune infiltration in the 
TP53-MUT and the TP53-WT. B Immune cell content in TP53-MUT and TP53-WT group. The horizontal axis 
is the immune cell, the vertical axis is the immune cell content. C Immunocyte-associated Heatmap. Blue 
is positive correlation and red is negative correlation. D Association between TP53-MUT and Plasma cell. E 
Association between TP53-MUT and the immune gene. F Association between the family of HLA gene
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lymphocyte infiltration in the tumor immune microenvironment (TIME) [20]. However, 
the above studies had limitations in that they lacked the multi-omics approach on the 
mechanism and clinical prognostic value of TP53 in LUAD. LncRNAs regulated by the 
TP53 gene play crucial roles in the expression of immune checkpoints [21]. Addition-
ally, a previous study has shown that TP53 regulates programmed cell death 1 ligand 1 
(PDL1) via miR-34 and that the immune checkpoints of tumor cells were transcription-
ally regulated [22]. In this study, we first explored the role of TP53 mutations in LUAD 
by calculating the TMB and MSI between the TP53-MUT and TP53-WT groups of a 
cohort of patients with LUAD. We found that the TP53-MUT group had higher TMB 
and MSI values. We also found that the TP53-MUT group may upregulate the expres-
sion PDCD1 and CTLA4. Next, we constructed PPI networks to verify the result.

Fig. 8  Construction and validation of a prognostic model in lung adenocarcinoma (LUAD). A Survival analysis 
of TP53 mutation. B Nomogram. C, D Prediction curve of 3-year survival and 5-year survival of LUAD patients 
with NOMO model. E Univariate COX Analysis. F Multivariate COX Analysis
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Table 4  Univariate and multivariate Cox regression analysis of TP53 gene mutation combined with 
clinicopathologic features

HR (95% CI) P value

Univariates

 TP53-exp 0.921 (0.762–1.11) 0.392

 Group-WT 0.745 (0.556–0.998) 0.0484

 Gender 1.05 (0.78–1.4) 0.765

 Age 1.01 (0.994–1.02) 0.24

 Eastern cancer oncology group 1.72 (1.25–2.35) 0.000742

Person neoplasm cancer status

 TUMOR FREE 0.165 (0.104–0.259) 4.81E−20

 WITH TUMOR 1.33 (0.963–1.84) 4.81E−20

New tumor event after initial treatment

 NO 0.274 (0.185–0.407) 5.89E−13

 YES 0.966 (0.681–1.37) 5.89E−13

Radiation therapy

 NO 0.375 (0.265–0.531) 1.11E−08

 YES 0.825 (0.524–1.3) 1.11E−08

Additional pharmaceutical therapy

 NO 2.71 (1.9–3.85) 1.30E−07

 YES 1.68 (1.13–2.48) 1.30E−07

Additional radiation therapy

 NO 2.1 (1.47–3.01) 7.82E−06

 YES 2.05 (1.39–3.01) 7.82E−06

Additional surgery locoregional procedure

 NO 2.29 (1.68–3.14) 1.13E−06

 YES 0.986 (0.363–2.67) 1.13E−06

Additional surgery metastatic procedure

 NO 2.36 (1.69–3.28) 1.85E−06

 YES 1.65 (0.887–3.06) 1.85E−06

Primary therapy outcome success

 Complete Remission/Response 0.297 (0.21–0.421) 1.12E−15

 Partial Remission/Response 0.493(0.0683–3.55) 1.12E−15

 Progressive Disease 1.5 (1.02–2.21) 1.12E−15

 Stable Disease 0.482 (0.241–0.965) 1.12E−15

Pathologic-T

 T1a 1.59 (0.768–3.27) 0.000469

 T1b 1.08 (0.496–2.36) 0.000469

 T2 1.72 (1.09–2.71) 0.000469

 T2a 1.31 (0.679–2.54) 0.000469

 T2b 1.08 (0.411–2.86) 0.000469

 T3 3.41 (1.88–6.18) 0.000469

 T4 3.24 (1.58–6.64) 0.000469

 TX 5.18 (1.21–22.2) 0.000469

Tumor stage

 Stage 0.787 (0.0712–8.69) 6.43E−09

 Stage IA 0.908 (0.216–3.82) 6.43E−09

 Stage IB 0.979 (0.235–4.09) 6.43E−09

 Stage IIA 2.67 (0.62–11.5) 6.43E−09

 Stage IIB 2.03 (0.483–8.52) 6.43E−09

 Stage IIIA 3.5 (0.838–14.6) 6.43E−09
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We also found that by regulating biological signaling pathways, TP53 may affect the 
response to immunotherapy and the prognosis of LAUD. In our study, the results of GO 
and KEGG enrichment analyses on DEGs showed that the metabolic pathways of tumor 
progress were significantly enriched in the TP53-MUT, which verified TP53 mutations 
can prevent progression of LUAD. A previous study has demonstrated that TP53-regu-
lated downstream pathways, such as PI3K-AKT-mTOR, can alter immune responses by 
inducing a shift in anabolism, which is essential for T lymphocytes [23]. TP53 encodes a 

Table 4  (continued)

HR (95% CI) P value

 Stage IIIB 2.4 (0.484–11.9) 6.43E−09

 Stage IV 3.61 (0.824–15.8) 6.43E−09

Multivariates

 Group-WT 0.72 (0.53–0.98) 0.035

Additional pharmaceutical therapy

 NO 2.3 (0.99–5.2) 0.052

 YES 1 (0.44–2.4) 0.96

New tumor event after initial treatment

 NO 0.29 (0.19–0.44) 1.20E−08

 YES 0.67 (0.29–1.5) 0.35

Pathologic T

 T1a 3.4 (1.6–7.4) 0.0016

 T1b 1.5 (0.66–3.4) 0.33

 T2 1.7 (0.9–3.2) 0.099

 T2a 1.6 (0.73–3.3) 0.25

 T2b 0.67 (0.24–1.9) 0.45

 T3 2 (0.94–4.4) 0.072

 T4 3.5 (1.2–9.9) 0.019

 TX 5.6 (1.1–29) 0.039

Tumor stage

 Stage I 1 (0.092–12) 0.97

 Stage IA 0.8 (0.18–3.6) 0.77

 Stage IB 0.78 (0.18–3.4) 0.75

 Stage II 4.8 (0.39–59) 0.22

 Stage IIA 3 (0.65–14) 0.16

 Stage IIB 1.5(0.34–6.4) 0.61

 Stage IIIA 2.8 (0.66–12) 0.17

 Stage IIIB 0.66 (0.11–4.1) 0.66

 Stage IV 1.8 (0.39–8.3) 0.45

Table 5  Baseline clinical data

Data types Sample numbers Sample numbers of TP53-
MUT

Sample numbers of 
TP53-WT

Somatic mutation (Mutect2) 568 278 289

Transcriptome expression 
Profile

585 249 260

miRNA expression Profile 567 249 260

Clinical data 510 247 255
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transcription factor that plays an important role in the cell cycle. DNA damage or muta-
tions in oncogenes, such as Ras and MYC, induce the activation of p53, leading to the 
activation of the tumor suppressor p21, which in turn inhibits tumor formation. The p53 
blocks the G2/M checkpoint, which is the last barrier preventing damaged DNA from 
entering the mitotic phase by regulating the expression of cyclin B. Cyclin B can form a 
complex with cyclin B (Cdc2[Cdk1]-cyclin B), which is a key factor in G2/M checkpoint 
regulation [24]. Additionally, p53 is highly expressed in lung cancer. Collectively, these 
findings support the notion that mutated TP53 is a potential target for signaling path-
way suppression. Overall, these results are consistent with our findings of upregulated 
expression of pathways in the GO and KEGG enrichment analyses.

We were also interested in the relationship between TP53 mutations and the TIME. 
In terms of tumor, we discovered that PGC and HLA downregulated and upregulated 
immune genes respectively. The PGC is a co-inhibitory molecule in the T cells. A study 
suggested that PGC1α-overexpressing T cells may appear exhausted as a result of loss of 
mitochondrial capacity and glucose metabolism defects [25]. HLA is a crucial immune 
gene, and the antigen-presenting HLA class I and II molecules are fundamental for trigger-
ing anti-tumor immunity. Another study suggested that when HLA expression is strong, 
high HLA allelic diversity may help more with tumor eradication by presenting a varied 
pool of neoantigens [26]. Immunotherapy for LUAD relies primarily on the role of T lym-
phocytes, which depends on their surface receptors to bind to the antigens presented by 
HLA molecules on the tumor cell surface. Based on the idea that TP53 has a potential 
effect on the TIME and enhances the immune response [27]. We analyzed the expression 
of immune genes with TP53-MUT and suggested that TP53 mutations regulate the TIME 
via upregulating expression of HLA and downregulating PGC. Additionally, previous stud-
ies have demonstrated that CD8 and CD4 T cell infiltration activation is not only the basis 
of tumor immunotherapy but also a prognostic indicator of whether the patient is respon-
sive to immunotherapeutic agents [28]. In our study, we found that T cells CD4 memory 
and plasma cells were comparatively upregulated in the TP53-MUT group.

Our study, however, has some limitations. First, we simply discussed the potential of 
TP53 as a new therapeutic target and did not perform a thorough analysis of functional 
enrichment or loss in the TP53 mutation. Second, while we evaluated the prognosis of 
the TP53-MUT and TP53-WT groups, the prognostic analysis of the TP53-MUT group 
could not distinguish between different therapies. However, varying treatments may 
have different outcomes, and the different TP53 mutation types of LUAD have a variable 
prognosis. Finally, our study has not been confirmed in further experiment. Neverthe-
less, our study provides valuable information and insights for future LUAD research.

Conclusion
In conclusion, our study demonstrated the immunotherapeutic and prognostic value of 
TP53 in patients with LUAD. These findings were used to elucidate the mechanism through 
which TP53 mutations enhance the response to immunotherapy and helped construct 
a prognostic model to effectively predict the overall survival of patients with LUAD. We 
would like to perform more careful examinations of the diagnosis and treatment effects of 
TP53 by combining in vivo and in vitro techniques, which will be conducive to the develop-
ment of novel techniques targeting TP53 for the treatment of LUAD in the future.
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Methods
Data collection

We used TCGAbiolinks package (v2.23.1) [29] to download somatic mutation 
(MUTECT2 version), transcriptome expression profile, miRNA expression profile, and 
TCGA-LUAD clinical data (The TCGA version is Hg38 (downloaded 2021-11-13). SNP6 
GRCh38 served as reference information for copy number variation (CNV) data for 
GISTIC2 analysis, and the mapped probe file for CNV analysis data was retrieved from 
the TCGA-GDC database (https://​portal.​gdc.​cancer.​gov). The clinicopathological char-
acteristics and predictive information of patients with LUAD, such as sex, age, and stage, 
were also retrieved (Table 5).

Mutational analysis

We used the maftools package (version 2.8.5) [30] to present the mutation panorama of 
LUAD and the mutant lollipop of TP53 based on the somatic mutation data of LUAD. 
Based on the CNV data and other information about the cancer sample, the GISTIC 
tool module (version 2.0.23, default parameter) of the GenePattern website (https://​
cloud.​genep​attern.​org/​gp/​pages/​index.​jsf ) was used to view the missing and consider-
ably amplified regions of the LUAD sample and the reference genome was GRCH38 [31].

TMB and MSI analyses

Patients with LUAD were separated into TP53-MUT and TP53-WT groups based on 
their gene expression profiles to investigate the differences between them. The number 
of mutated bases per million bases in each tumor was calculated as the TMB. The TMB 
score was calculated for each LUAD sample as the total number of somatic mutations 
(including non-synonymous point mutations, insertions, and deletions)/target region 
size in mutations per Mb [32]. In addition, we used the R package deconstructSigs 
(v1.8.0) to determine the variance in the mutational signatures [13]. Microsatellites (MS) 
are short tandem repeats (STR) in the human genome, which include single nucleotide 
repeats, double nucleotide repeats, and higher nucleotide repeats. MSI is defined as an 
alteration in the length of the microsatellite that occurs in tumor tissue due to the inser-
tion or deletion of a repeat unit and can be calculated using the number of insertions or 
deletions that occur in repeated sequences. The association between TP53-MUT and 
TP53-WT, TMB, and MSI was determined using MSIPRED [33]. To better understand 
the response of the TP53-MUT and TP53-WT groups to immunotherapy, we explored 
the differences in the expression of the immune checkpoints LAG3, IDO1, PDCD1, 
CTLA4, and TIGIT.

Drug sensitivity and GSVA analyses

The LUAD cell line drug susceptibility dataset was downloaded from GDSC [34]. Onco-
Predict (v0.2) [35] was used to analyze the expression data of TP53-MUT and TP53-WT 
in patients with LUAD in the TCGA-LUAD dataset for drug sensitivity, and their sus-
ceptibilities to various LUAD treatments were compared.

GSVA is a nonparametric, unsupervised method used to calculate the enrichment 
score of a specific gene set in each sample [36, 37]. To study the biological variation 
between TP53-MUT and TP53-WT groups, we analyzed the differential expression of 

https://portal.gdc.cancer.gov
https://cloud.genepattern.org/gp/pages/index.jsf
https://cloud.genepattern.org/gp/pages/index.jsf
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dysregulated pathways in these groups in the TCGA dataset using the R package GSVA 
(v1.40.1) [36, 37]. In addition, to calculate the normalized enrichment score (NES) of 
each sample in each pathway, we downloaded the reference gene sets “h.all.v7.4. sym-
bols.gmt, and c2.cp.kegg.v7.4. symbols.gmt” in the MSigDB database (https://​www.​gsea-​
msigdb.​org/​gsea/​msigdb) [36].

Identification of differentially expressed genes (DEGs)

We downloaded TCGA-LUAD mutational data and divided the TCGA dataset into TP53-
MUT and TP53-WT groups, to calculate DEGs between the two groups. The R package 
DESeq2 (v1.32.0) was used to perform variation analysis of TP53-MUT and TP53-WT. 
DEGs were set as follows: (logFC ≥ 1 or P < 0.05), the difference in upregulated expres-
sion was set as (logFC ≥ 1, P < 0.05), and the difference in downregulated expression was 
set as (logFC ≤ − 1, P < 0.05). We also divided DEGs into differentially expressed mRNAs, 
micro RNAs (miRNAs), and long non-coding RNAs (lncRNAs). Volcano plots were used 
to identify the differentially expressed mRNAs, miRNAs, and lncRNAs.

Functional enrichment analysis

GO enrichment analysis is a general and functional method for large-scale functional 
enrichment analysis of genes across different dimensions and levels. It is typically con-
ducted at three levels: biological process (BP), molecular function (MF), and cellular 
component (CC) [38]. KEGG is a popular database for storing data on genomes, biologi-
cal pathways, illnesses, and medications [39–41]. The R package clusterProfiler (v4.0.5) 
[42] was used to identify the significantly enriched processes by GO functional annota-
tion of DEGs and KEGG pathway enrichment analysis (Processes were considered sig-
nificantly enriched at P < 0.05).

GSEA is a computational method used to determine whether a predefined set of genes 
exhibits statistical differences between two biological states; it is frequently used to 
evaluate changes in the activity of pathways and biological processes in expressed data-
set samples [43]. To investigate the genetic differences in biological processes between 
the TP53-MUT and TP53-WT groups, we collected gene expression profiling data 
from patients in the TCGA-LUAD dataset and downloaded the reference gene sets "c5.
go.v7.4. enttrez.gmt", "c2.cp.kegg.V7.4. entrez.gmt," and "H.ALL.V7.4. symbols.gmt" 
from the MSigDB database. We performed enrichment analysis of gene expression pro-
filing data using the GSEA method included in the R package cluster Profiler. Statistical 
significance was set at P < 0.05.

PPI and competing endogenous (CeRNA) networks

The STRING database searches for known proteins and predicts PPI [44]. In this study, 
the STRING database (https://​string-​db.​org) [45] was used to construct a PPI network 
(default parameter) related to DEGa. Cytoscape (v3.8.2) was used to visualize the PPI 
network [46]. The tightly connected local regions in the PPI network may represent 
molecular complexes with specific biological functions. The MCODE network clustering 
algorithm can be used to mine protein complexes or corresponding functional modules 
from complex protein networks [47]. We extracted hub genes in the PPI subnetwork and 
those in the PPI subnetwork with an MCODE score greater than 10.

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://string-db.org
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Single-stranded RNA molecules that are not encoded by endogenous genes are called 
miRNAs. They are approximately 19–25 NT in length and play a major role in biological 
evolution. miRNAs regulate the expression of target genes by participating in post-tran-
scriptional regulation, playing an important role in tumorigenesis, biological develop-
ment, organ formation, epigenetic regulation, and viral defense [48]. In other words, 
the network of miRNA regulation is extremely complicated, and a single miRNA may 
simultaneously affect several target genes [49]. LncRNA molecules regulate epigenetic 
processes, transcription, and post-transcription of protein-coding genes, but do not 
encode proteins [50]. Competing endogenous RNA (ceRNA) is a functional element that 
competes with binding genes to control the binding of RNA-coding genes. The ceRNA 
regulation network (ceRNA) is composed of mRNA, miRNA, and lncRNA. To analyze 
the relationship between miRNAs, lncRNAs and DEGs at the post-transcriptional stage, 
differentially expressed miRNAs in the miRNet database (https://​www.​mirnet.​ca) and 
differentially expressed lncRNAs in the TCGA-LUAD database were collected and inter-
sected to construct the network regulation of the mRNA-miRNA-lncRNA regulatory 
network. The R package Cytoscape was used to construct the mRNA-miRNA-lncRNA 
network [51].

Immune infiltration analysis

The immune microenvironment is composed of the tumor, immune, stromal, and extra-
cellular environments. ESTIMATE analysis is an algorithm for quantifying immunologi-
cal activity (the amount of immune invasion) in tumor samples using gene expression 
data, which might reflect the number of gene features in the matrix and immune cells. 
The R package estimate (v1.0.13) was used to evaluate the stromal and immune cell con-
tents in TCGA-LUAD [52]. To calculate the immune-associated scoring for input sam-
ples, we used the ESTIMATE database.

CIBERSORT is an algorithm based on linear support vector regression that decon-
volves the expression matrix of immune cell subtypes using RNA-Seq data to estimate 
the abundance of immune cells in tissues [53]. We used the CIBERSORT algorithm to 
evaluate the proportion of the 22 immune cell subtypes in the immune microenviron-
ment of TCGA-LUAD. Samples with accurate estimates of immune cell infiltration 
abundance were set using 1000 permutations (P ≤ 0.05). Based on Pearson’s correlation 
analysis, we calculated the correlation between the expression of characteristic genes 
and TP53 in the prognostic model and 22 types of LUAD immune cells. We downloaded 
the expression data of infiltrating immune cells from CIBERSORTx (https://​ciber​sortx.​
stanf​ord.​edu/). And then, based on the LM22 background gene in CIBERSORTx, we cal-
culated the content of 22 immune cells in each patient to represent the infiltration level, 
selected the data with an immune cell enrichment score greater than zero, and then 
obtained and displayed the specific results of the immune cell infiltration abundance 
matrix. In addition, we used the R package IOBR (v0.99.9) [54] to calculate the immune 
infiltration results of xCell, EPIC, TIMER, CIBERSORTx, MCPcounter, QuanTIseq, and 
IPS, and pheatmap (v1.0.12) to display the heatmap, and the Wilcoxon test in the stats 
(v4.1.0) package to determine the significance of the difference between the TP53 MUT 
group and the TP53 WT group.

https://www.mirnet.ca
https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
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In addition, immune-related genes were downloaded from the ImmPort database 
(https://​www.​immpo​rt.​org) [55] and cross-linked with differential mRNA to analyze the 
relationship between cross-linked immune genes and TP53 mutations. We also exam-
ined the association of HLA genes (both typical HLA genes, such as HLA-DPA and HLA-
DRB and atypical HLA genes, such as HLA-Z and TAP2) recorded in the IMGTLAHLA 
database(http://​hla.​allel​es.​org/​genes/​index.​html) with TP53-MUT and TP53-WT [56].

Prognostic model

We used the clinical and mutation information to construct a prognostic model. First, we 
performed univariate and multivariate Cox analyses according to age, sex, clinical stage, 
and tumor stage in patients with LUAD harboring mutant TP53. We then calculated the 
independent predictive power of clinicopathological features for overall survival (OS), 
incorporated the corresponding indicators into the model, and created a nomogram.

Statistical analysis

All statistical analyses were performed using the R software (https://​www.r-​proje​ct.​org/, 
R 4.1.0). The false-discovery rate (FDR) was corrected to P values using the Benjamini-
Hochberg (BH) method, to reduce the false-positive rate. The Mann–Whitney U test 
(Wilcoxon rank-sum test) was used to analyze the difference between non-normally 
distributed variables when comparing two sets of continuous variables. The R package 
Survival (v3.2.11) [57] was used to perform survival analysis, Kaplan–Meier analysis 
to determine survival differences, log-rank test to show the survival time differences, 
and uni- and multi-variate Cox regression analyses to identify independent prognostic 
factors. All P values in this study were two-sided. P ≤ 0.05 was considered statistically 
significant.
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