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Abstract 

Background: Mathematical models of haematopoiesis can provide insights on abnor-
mal cell expansions (clonal dominance), and in turn can guide safety monitoring 
in gene therapy clinical applications. Clonal tracking is a recent high-throughput tech-
nology that can be used to quantify cells arising from a single haematopoietic stem 
cell ancestor after a gene therapy treatment. Thus, clonal tracking data can be used 
to calibrate the stochastic differential equations describing clonal population dynamics 
and hierarchical relationships in vivo.

Results: In this work we propose a random-effects stochastic framework that allows 
to investigate the presence of events of clonal dominance from high-dimensional 
clonal tracking data. Our framework is based on the combination between sto-
chastic reaction networks and mixed-effects generalized linear models. Starting 
from the Kramers–Moyal approximated Master equation, the dynamics of cells duplica-
tion, death and differentiation at clonal level, can be described by a local linear approxi-
mation. The parameters of this formulation, which are inferred using a maximum 
likelihood approach, are assumed to be shared across the clones and are not sufficient 
to describe situation in which clones exhibit heterogeneity in their fitness that can lead 
to clonal dominance. In order to overcome this limitation, we extend the base model 
by introducing random-effects for the clonal parameters. This extended formulation 
is calibrated to the clonal data using a tailor-made expectation-maximization algo-
rithm. We also provide the companion  package RestoreNet, publicly available 
for download at https:// cran.r- proje ct. org/ packa ge= Resto reNet.

Conclusions: Simulation studies show that our proposed method outperforms 
the state-of-the-art. The application of our method in two in-vivo studies unveils 
the dynamics of clonal dominance. Our tool can provide statistical support to biolo-
gists in gene therapy safety analyses.
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Background
In gene therapy the correction of the defective gene(s) underlying the disease is, in 
principle, sufficient for inducing disease remission or even full recovery [1]. Since the 
blood system possesses a hierarchical structure with haematopoietic stem cells (HSCs) 
at its root [2], correction of large numbers of HSCs might be sufficient to eradicate a 
genetic disease [3, 4]. But genetic modification of large numbers of cells is associated 
with the higher probability of unintentional vector insertions near proto oncogenes, 
that may lead to insertional mutagenesis [5–7]. Insertional mutagenesis causes a sig-
nificant change in clone fitness that can lead to the clones’ abnormal expansion and to 
an unbalanced contribution of different clones to blood cells production. Clonal domi-
nance, characterised by the outgrowth of a small subset of clones (oligoclonality) or one 
clone (monoclonality) in the most extreme cases, poses serious concerns in the context 
of gene therapy clinical trials because they might represent the initial stage of a leu-
kemic transformation and are in general considered negative predictors of long term 
therapeutic benefit.

Clonal dominance in malignant haematopoiesis has been previously identified as 
a consequence of a clonal competition that is corrupted by disease progression [8, 9]. 
However, clonal dominance has also been observed in normal haematopoiesis, even in 
the case of truly neutral clonal markers [10–12]. Indeed, on the basis of various math-
ematical models, progression of monoclonality has been discussed also for normal (non-
leukaemic) stem cell systems [13–17]. While there is strong evidence for clonal selection 
inducing monoclonal systems in the crypts of the small intestine [18–21], such a pro-
cess has not been demonstrated for the haematopoietic system yet. There are several 
high-throughput systems that allow to quantitatively investigate those mechanisms. In 
gene therapy applications, clonal tracking is performed by using permanent molecular 
identifier integrated in the host cell genome. In pre-clinical animal studies, these are 
short fragments of random or semi-random DNA stretches called barcodes, whereas in 
clinical setting vector integration sites are in general used. After transplantation, all the 
progeny deriving through cell differentiation inherits the original labels, thus allowing 
computational modelling to unveil population dynamics and hierarchical relationships 
in vivo [22–25].

Here we extend the work by [26, 27] and propose a random-effects cell differentiation 
network to detect the dynamics of clonal expansion from high dimensional clonal tracking 
data. In particular, starting from the definition of the Master equation [28], a set of Ito-
type stochastic differential equations is derived to describe the first two-order moments 
of the process. We estimate the parameters of the Ito system from its Euler-Maruyama 
local linear approximation (LLA) [29] using a maximum likelihood approach. Although 
the base LLA model formulation has been shown to be effective in modelling cell differ-
entiation [27], it has some limitations as it considers all clone trajectories to be iid realiza-
tions of the same underlying stochastic process, and does not take into account possible 
heterogeneous behaviour across the clones. Therefore, the base LLA formulation cannot 
be used to model clonal dominance. In this work we further increase the flexibility of the 
base LLA model to take into account for potential heterogeneity in clones’ behaviour in 
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both duplication and differentiation rates. To this end we introduce random-effects for 
the clones inside the LLA formulation, providing a mixed-effects LLA model. Then, we 
use the inferred mixed-effects model to identify which clones are mainly expanding and 
in which cell compartments. Parameter inference in the mixed-effects formulation is per-
formed by means of an expectation-maximization algorithm, for which we developed an 
efficient implementation in the  package RestoreNet. Our random-effects LLA formu-
lation describes a stochastic process of clonal dominance on a network of cell lineages. 
We tested and validated our method in simulation studies, including a direct compari-
son with the state-of-the-art method GLS [27]. Subsequently, our method is applied to 
investigating the dynamics of clonal expansion in a in-vivo model of rhesus macaque 
haematopoiesis [23]. Finally, by analysing an in-vivo model of tumor prone mice, our 
method identifies the expected impact of vector genotoxicity on clonal dynamics [30].

Methods
An outline of our proposed stochastic framework is as follows. RestoreNet takes a clonal 
tracking dataset as input, along with a set of reactions coding for cellular duplication, death 
and differentiation. The system of stochastic differential equations describing the clonal 
dynamics are translated into a generalized linear model formulation, that possibly includes 
clone-specific random-effects on the dynamics parameters. Subsequently, the parameters 
are inferred and, if an event of clonal dominance is detected, a pie-chart shows the clones 
that are expanding and in which cell lineage. A graphical representation of the framework is 
provided in Fig. 1. This section contains a concise description of the stochastic formulation 
of clonal dominance and the corresponding inference method. A more detailed description 
of the stochastic model can be found in the Additional file 1. 

A stochastic model for cell differentiation

Consistently with the definition of a stochastic quasi-reaction network of Section 1.1 of the 
Additional file 1, we consider a Markov process

(1)xxxt = (x1t , . . . , xnt) ,

Fig. 1 Schematic representation of the analysis: A three-dimensional clonal tracking dataset (left) is received 
as input from our proposed stochastic framework RestoreNet (middle). It mainly consists in two parts, such as 
a maximum likelihood step to infer the base LLA model, and an expectation-maximization step to infer the 
random-effects LLA formulation. Finally, a clonal piechart is returned, where each clone is identified by a pie 
whose slices are lineage specific and proportional to their expansion rates (right)
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for a single clone and n cell types ( i = 1, . . . , n ) that evolve, in a time interval (t, t +�t) , 
according to a set of K distinct biochemical reactions whose net-effect vectors {vvvk}Kk=1 
and hazard functions {hk(xxxt ,θθθ)}Kk=1 are defined as

where i(k) and j(k) are the cell types possibly involved in the k-th reaction, and 

where O(i) is called the offspring set of cell type i. The definitions of the hazard functions 
and the net-effects follow from the law of mass action, consistently with Eq. (7) of the 
Additional file 1. The hazard functions include a linear growth term xi(k)tαi(k) for cell lin-

eage i(k) with a duplication rate parameter αi(k) > 0 , a quadratic term x2i(k)tδi(k) for cell 
death of lineage i(k) with a death rate parameter δi(k) > 0 , and a linear term xi(k)t�i(k)j(k) 
describing cell differentiation from cell lineage i(k) to cell lineage j(k) ∈ O(i(k)) with a 
differentiation rate �i(k)j(k) > 0 . The vector parameter

appearing in the hazard functions, includes all the dynamic parameters, where ���iO(i) 
is the vector of all the differentiation rates from cell lineage i to its offspring set O(i) . 
Finally, we define the net-effect matrix and the hazard vector as

 

LLA formulation of clonal dominance

Let yyyt = (y1t , . . . , ynt)
′ be the vector of the measurements collected at time t for a 

n-dimensional counting process xxxt = (x1t , . . . , xnt)
′ obeying to a network of stochas-

tic biochemical reactions defined by a net-effect matrix VVV ∈ Z
n×K  , a vector parameter 

θθθ ∈ R
K  and an hazard vector h(xxx,θθθ) = (h1(xxx,θθθ), . . . , hK (xxx,θθθ))

′ and let

be the local linear approximation of the Kramers-Moyal approximated Master equation 
(see Section 1.3 of the Additional file 1 for details) where

(2)vvvk =

(· · · 1
i(k)

· · · )′

(· · · − 1
i(k)

· · · )′

(· · · − 1
i(k)

· · · 2
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· · · )′
hk(xxxt ,θθθ) =

xi(k)tαi(k) duplication

x2i(k)tδi(k) death

xi(k)t�i(k)j(k) differentiation

(3)j(k) ∈ O(i(k)) = {j|�i(k)j > 0} ,

(4)θθθ =
(
α1, . . . ,αn, δ1, . . . , δn,���

′
1O(1), . . . ,���

′
nO(n)

)′
,

(5)
VVV =

[
vvv1 · · ·vvvK

]
∈ Z

n×K ,

hhh(xxxt ,θθθ) = (h1(xxxt ,θθθ), . . . , hK (xxxt ,θθθ))
′ .

(6)






�yyyt0
...
�yyytT−1






� �� �

�yyy

=






MMMt0
...
MMMtT−1






� �� �

MMM

θθθ + εεε , εεε ∼ NnT











000,

���(θθθ ,σ 2)
� �� �





WWWt0(θθθ)

. . .

WtT−1(θθθ)






� �� �

WWW (θθθ)

+σ 2IIInT











,



Page 5 of 19Del Core et al. BMC Bioinformatics  2023, 24(1):228 

with σ 2 being the measurement noise variance, MMMtθθθ the mean drift, WWWt(θθθ) the diffu-
sion matrix, and �yyyt = yyyt+�t − yyyt is a finite-time increment of yyy in the time interval �t . 
From Eq. (6) it can be seen that all clones share the same vector parameter θθθ . To infer the 
parameters of Eqs. (6)–(7) we developed a maximum likelihood algorithm which is fully 
described in Section 1.4 of the Additional file 1.

In some cases it may happen that the clones being analysed are drawn from a hier-
archy of J different populations that possibly behave differently in terms of dynamics. 
In this case it might be of interest to quantify the population-average θθθ and the clonal-
specific effects u around the average θθθ for the description of clone-specific dynamics. For 
achieving this goal, we extend the LLA formulation of Eq. (6) with a mixed-effects model 
[31] by introducing random-effects uuu for the J distinct clones on the vector parameter 
θθθ , leading to a random-effects stochastic reaction network (RestoreNet). The extended 
random-effects formulation becomes

where MMM is the block-diagonal design matrix for the random-effects uuu centered in θθθ , 
each block MMMj is clone-specific, and ⊗ is the Kronecker product. As in the case of the 
null model of Eq. (6), we estimate σ 2 based on data. From Section 1.5 of the Additional 
file 1 the conditional distribution of the random-effects uuu given the data �yyy is

where
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and ψψψ = (θθθ ′, σ 2, τ 21 , . . . , τ
2
p )

′ is the vector of all the unknown parameters. Once the 
parameters are estimated (see next section for inference details), the conditional expec-
tations Euuu|�yyy;ψψψ [uuu] can then be used as a proxy for the clone-specific dynamic param-
eters. This method allows to infer clone-specific dynamics by extremely reducing the 
problem dimensionality from J · p to 2 · p+ 1 ( J ≫ 2).

Inference procedure

In order to infer the maximum likelihood estimator ψ̂ψψ for ψψψ = (θθθ ′, σ 2, τ 21 , . . . , τ
2
p )

′ , we 
have developed an efficient expectation-maximization (E-M) algorithm where the col-
lected cell increments �yyy and the random-effects uuu take the roles of the observed and 
latent states respectively. The full analytical expression of the E-step function 
Q(ψψψ |ψψψ∗) = Euuu|�yyy;ψψψ∗ [ℓ(�yyy,uuu;ψψψ)] and its partial derivatives ∂

∂ψj
Q(ψψψ |ψψψ∗) are available 

(see Section 1.5 of the Additional file 1). In the E-M algorithm we iteratively update the 
E-function Q(ψψψ |ψψψ∗) using the current estimate ψψψ∗ of ψψψ and then we minimize the 
−Q(ψψψ |ψψψ∗) w.r.t. ψψψ . As the E-step function Q(ψψψ |ψψψ∗) is non-linear and the parameters are 
box-constrained, we used the L-BFGS-B algorithm from the optim() base R function for 
optimization, to which we provided the objective function, along with its gradient 
∇ψψψQ(ψψψ |ψψψ∗) , as input. The E-M algorithm is iterated until a convergence criterion is met, 
that is when the relative errors of the E-step function Q(ψψψ |ψψψ∗) and the parameters ψψψ∗ are 
lower than a predefined tolerance.

Once we get the E-M estimate ψ̂ψψ for the parameters we evaluate the goodness-of-fit of the 
mixed-effects model according to the conditional Akaike information criterion [32]. As 
every E-M algorithm, the choice of the starting point ψψψ s is very important from a computa-
tional point of view. We chose ψψψ s = (θθθ ′s, σ

2
s , τ

2
1 = 0, . . . , τ 2p = 0)′ as a starting point where 

(θθθ ′s, σ
2
s ) is the optimum found in the fixed-effects LLA formulation of Eq. (6). This is a rea-

sonable choice since we want to quantify how the dynamics E
uuu|�yyy;ψ̂ψψ

[uuu]j of each clone j 
departs from the average dynamics θθθ s . With the help of simulation studies (see Results sec-
tion), we empirically proved that this choice always led to a conditional expectation 
E
uuu|�yyy;ψ̂ψψ

[uuu] consistent with the true clone-specific dynamic parameters θθθ . Computational 
details can be found in Section 1.5 of the Additional file 1. The pseudocode of the E-M algo-
rithm is provided in Algorithm 3 of the Additional file 1. The maximum likelihood infer-
ence for the basal model and the expectation-maximization algorithm for the 
random-effects model are implemented in the  package RestoreNet, available for down-
load at https:// cran.r- proje ct. org/ packa ge= Resto reNet.

Model selection

The fixed-effects model M0 is scored according to the corrected Akaike information crite-
rion (AIC) [33] defined as

(11)AIC(M0) = −2ℓM0(θθθ , σ
2|�yyy)+

2dpM0

d − pM0 − 1
,

https://cran.r-project.org/package=RestoreNet
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where ℓM0 is the log-likelihood of the null model M0 , d = nT  is the size of �yyy , and pM0 
the corresponding number of parameters. The random-effects model M1 is ranked with 
the conditional Akaike information criterion (cAIC) [33] defined as

where ℓ(�yyy|uuu;ψψψ) is the conditional log-likelihood of the response measurements �yyy 
given the random-effects uuu , ψψψ is the vector of all the unknown parameters, and ρ is the 
effective degrees of freedom of M1 [34] defined as the trace ρ = tr(HHH) of the hat matrix

To measure the distance of the fixed-effects model M0 from the mixed-effects model 
M1 we use the the Kullback-Leibler (KL) divergence [35]

where p and q are the multivariate Gaussian density functions of Eqs. (6) and (8), whose 
mean vector and covariance matrix are given by

(12)cAIC(M1) = −2ℓ(�yyy|uuu;ψψψ)+ 2(ρ + 1) ,

(13)HHH =
[
MMM MMM

]
[
MMM′���−1(θθθ , σ 2)MMM MMM′���−1(θθθ , σ 2)MMM

MMM
′���−1(θθθ , σ 2)MMM MMM

′���−1(θθθ , σ 2)MMM+���−1
uuu

] [
MMM′���−1(θθθ , σ 2)

MMM
′���−1(θθθ , σ 2)

]

.

(14)

KLdiv(M0�M1) =

∫

p(�yyy) log
p(�yyy)

q(�yyy)
d(�yyy)

=
1

2

{

tr (���−1
1 ���0)− d + (µµµ1 −µµµ0)

′���−1
1 (µµµ1 −µµµ0)+ log

|���1|

|���0|

}

,

(15)
µµµ0 =MMMθ̂θθ0 , ���0 = ���(θ̂θθ0, σ̂

2
0 ) ,

µµµ1 =MMMθ̂θθ1 +MMME
uuu|�yyy;ψ̂ψψ

[uuu] , ���1 = ���(θ̂θθ1, σ̂
2
1 ) ,

Table 1 For each synthetic clone (row) the parameter values (columns) used in the synthetic studies

αA αB αC αD δA δB δC δD �A→B �A→C �C→D

c1 0.2 0.15 0.17 0.45 0.001 0.007 0.004 0.002 0.13 0.15 0.08

c2 0.2 0.15 0.17 0.09 0.001 0.007 0.004 0.002 0.13 0.15 0.08

c3 0.2 0.15 0.51 0.09 0.001 0.007 0.004 0.002 0.13 0.15 0.08

Fig. 2 Differentiation structure of four synthetic cell types A, B, C, D. Cell duplication, cell death and 
cell differentiation are indicated with green, red and grey arrows
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where (θ̂θθ0, σ̂ 2
0 ) and (θ̂θθ1, σ̂ 2

1 ) are the parameter estimates for M0 and M1 . To make model 
divergences comparable across different sized samples, we use the rescaled KL diver-
gence KLdiv(M0‖M1)/d.

Results
In silico validation study

We simulated the dynamics of J = 3 distinct clones in four synthetic cell types A, B, C, 
D following the differentiation network structure of Fig. 2. The net-effect matrix VVV  and 
the hazard vector h(xxx,θθθ) were derived from Eq. (2). To simulate the clonal tracking data 
we used the τ-leaping Algorithm 1 of the Additional file 1, with a time lag τ = 1 , that has 
been run independently for each clone. We designed each simulation so that the first 
clone dominates lineage D and the third clone dominates lineage C with a sampling fre-
quency T = 100 . The values that were used for the reaction parameters are reported in 
Table 1.

We first ran a single simulation under different magnitudes for the noise variance σ 2 . 
Then we fit the random-effects model of Eq. (8) to the simulated data using Algorithm 3 
from Additional file 1. We reported in Fig. 3 the simulated trajectories and a scatterplot 

Fig. 3 a Simulated trajectories. b Scatterplot between the clone-specific true parameters θθθ true and the 
conditional expectation E

uuu|�yyy;ψ̂ψψ
[uuu] . c Clonal pie-charts where each clone k is identified with a pie whose 

slices are lineage-specific and weighted according to Eq. (16). The diameter of the k-th pie is proportional 
to the Euclidean 2-norm of wwwk , as defined in Eq. (17). Each row refers to specific values of synthetic noise 
variance σ 2
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of the estimated conditional expectation E
uuu|�yyy;ψ̂ψψ

[uuu] for the random-effects model against 
the true clone-specific parameters. In the same figure we also reported a piechart where 
each clone k is identified with a pie whose slices are lineage-specific and weighted with 
wl
k , defined as the difference between the conditional expectations of the duplication and 

death parameters, that is

where ukαl and ukδl are the random-effects for duplication and death of clone k in cell line-
age l. The diameter of the k-th pie is proportional to the Euclidean 2-norm of

where n is the number of cell types. Therefore, the larger the diameter, the more the cor-
responding clone expanded into the lineage associated to the largest slice. The values of 
the estimated conditional expectations are reported in Table 2. The scatterplot of Fig. 3 
clearly indicates a strong agreement between the true parameters and the conditional 
expectations E

uuu|�yyy;ψ̂ψψ
[uuu] . In particular, as expected, as the noise variance σ 2 increased, 

(16)wl
k = E

uuu|�yyy;ψ̂ψψ
[ukαl ] − E

uuu|�yyy;ψ̂ψψ
[ukδl ] ,

(17)wwwk = (w
l1
k , . . . ,w

ln
k ) ,

Fig. 4 Boxplot of the AICs of the fixed-effects (base) and random-effects (re) models under a measurement 
noise level equal to 0.1 (a), 1 (b) and 10 (c)

Table 2 Conditional expectations E
uuu|�yyy;ψ̂ψψ

[uuu] of the random-effects obtained from the estimated 

parameters ψ̂ψψ for each reaction rate (rows) under different magnitudes of the noice variance σ 2 
(outer columns) for each clone (inner columns)

σ
2
= 0.1 σ

2
= 1 σ

2
= 10

c1 c2 c3 c1 c2 c3 c1 c2 c3

αA 0.198 0.198 0.199 0.183 0.191 0.198 0.151 0.139 0.127

αB 0.151 0.152 0.148 0.146 0.148 0.145 0.163 0.148 0.137

αC 0.171 0.168 0.509 0.163 0.168 0.518 0.166 0.175 0.649

αD 0.446 0.094 0.098 0.450 0.100 0.121 0.479 0.199 0.319

δA 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001

δB 0.007 0.007 0.007 0.007 0.007 0.007 0.008 0.007 0.007

δC 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.005 0.005

δD 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.004

δA→B 0.129 0.130 0.130 0.129 0.130 0.133 0.127 0.126 0.110

δA→C 0.149 0.150 0.148 0.148 0.149 0.151 0.154 0.155 0.153

δC→D 0.081 0.079 0.079 0.079 0.080 0.078 0.082 0.079 0.058
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the parameter estimates gradually moved away from the diagonal, so that the precision 
decreased. Also, our model correctly detected the dominance of clones 1 and 3 in line-
ages D and C respectively, even for large values of σ 2 , as suggested by the pie-charts of 
Fig. 3 and by the values of Table 2.

Subsequently, to check goodness-of-fit, we ran 100 independent simulations sepa-
rately for each noise variance setting. After fitting both the base model of Eq. (6) and the 
random-effects model of Eq. (8), using Algorithms 2 and 3 of the Additional file 1, the 
latter always reached a significantly lower AIC compared to the null model, as suggested 
by the boxplots of Fig. 4. This result clearly indicates that our proposed random-effects 
stochastic reaction network was able to measure variation between clones in terms of 
differentiation dynamics and to detect events of clonal dominance.

Comparison with GLS method

We compared our proposed method with the state-of-the-art method GLS [27]. To this 
end, we have designed two different simulation studies. In the first simulation study all 
the clones shared the same vector parameter, while in the second study we induced the 
same clonal expansions of previous section. In both studies we used the differentiation 
network structure of Fig. 2 as the true generative model from which we simulated clonal 
trajectories, using the τ-leaping Algorithm  1 of the Additional file  1, with a time lag 
τ = 1 . The net-effect matrix VVV  and the hazard vector h(xxx,θθθ) were derived from Eq. (2). 
For each simulation, we ran 100 independent simulations under different noise variance 
settings (σ 2 ∈ {0.1, 1, 10}) . Subsequently we fit both our proposed method RestoreNet 
and the competitor method GLS. We reported the results in Fig. 5, showing boxplots of 

Fig. 5 Boxplots of the relative errors between the true parameters and the estimated parameters provided 
by each candidate method (x-axis) for simulation study 1 (a) and 2 (b) under each noise variance setting 
(columns)
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the relative errors between the true parameters and the estimated parameters provided 
by each method.

Figure 5 clearly indicates that our proposed inference method RestoreNet overall out-
performed the competitor method GLS. Indeed, while in the first simulation study (no 
clonal dominance) both methods provided similar parameter estimates, in the second 
simulation study (with clonal dominance) our proposed method RestoreNet provided 
better parameter estimates compared to GLS. This result suggests that our proposed 
method RestoreNet was able to infer a cell differentiation network with clone-specific 
parameters. In conclusion, results from this synthetic study show that our method out-
performed the competitor one for the identification of clonal dominance.

Clonal dynamics in rhesus macaques

We analysed the cellular barcode data collected from an established hematopoietic 
stem cell model, previously used to investigate hematopoietic reconstitution in rhesus 
macaques [23]. Mobilized peripheral blood (MPB) CD34+ cells from three macaques 
were transduced with barcoded vectors and, following engraftment, myeloid Granulo-
cytes (G), Monocytes (M), and lymphoid T, B, and Natural Killer (NK) cells were flow 
sorted for 9.5 months (ZH33), 6.5 months (ZH17), and 4.5 months (ZG66) [36]. The 
total numbers of clones collected are 1165 (ZH33), 1280 (ZH17), and 1291(ZG66). Fur-
ther details on transduction protocols and culture conditions can be found in the origi-
nal study.

Although the sample DNA amount was maintained constant during the whole experi-
ment (200 ng for ZH33 and ZG66 or 500 ng for ZH17), the sample collected resulted in 
different magnitudes of total number of reads (see Table 2 from Additional file 1). This 
discrepancy made all the samples not directly comparable. Therefore we rescaled the 
barcode counts according to Eq.  (34) of the Additional file 1 before analysis. We com-
pared the base and the  random-effects models on the rhesus macaques clonal track-
ing data. Since the CD34+ cells were not collected, we only estimated the duplication 
parameters αT , αB , αNK  , αM , αG and the death parameters δT , δB , δNK  , δM , δG of the 
lymphoid (T, B, NK) and myeloid (M, G) cells. Therefore the differentiation parameters 
were not considered in our model, and the net-effect matrix and the hazard vector were 
obtained from Eqs. (2)–(5) accordingly. Thus, the biochemical reactions were defined as

where the left and right columns list the duplication and death reactions, respectively. 
The corresponding model became effectively a birth/death model including 10 dynamic 
parameters, one duplication and death rate for each cell lineage. We fit both the fixed-
effects model of Eq. (6) and the mixed-effects model of Eq. (8) separately to the data of 
each animal. To further remove bias, we focused our analyses on the clones that were 

(18)

xT
αT
→ 2 · xT , xT

δT
→ ∅ ,

xB
αB
→ 2 · xB , xB

δB
→ ∅ ,

xNK
αNK
→ 2 · xNK , xNK

δNK
→ ∅ ,

xM
αM
→ 2 · xM , xM

δM
→ ∅ ,

xG
αG
→ 2 · xG , xG

δG
→ ∅ ,
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Table 3 Comparison between fixed-effects M0 and mixed-effects M1 models: Number of 
parameters (p), AIC, KL divergence KLdiv(M0‖M1) and rescaled KL divergence KLdiv(M0‖M1)/d in 
each rhesus macaque

p AIC KLdiv(M0‖M1) KLdiv(M0‖M1)/d

ZH33 M0 11.00 81377.27

M1 434.16 38160.15 21062.95 1.87

ZH17 M0 11.00 336752.11

M1 478.43 29478.05 291854802.44 114228.89

ZG66 M0 11.00 31194.60

M1 410.92 21384.85 232030.37 83.77

Table 4 Parameter estimated for the proposed mixed-effects model: Fixed-effects ( θθθ ) and variance 
( τ 2 ) of the random-effects for both the duplication α and death δ parameters for each cell lineage 
and each rhesus macaque

ZH33 ZH17 ZG66

θθθ τ
2

θθθ τ
2

θθθ τ
2

αT 0.813 1.176 2.246 1.051 1.081 2.702

αB 0.193 0.597 6.503 4.648 0.055 0.876

αNK 0.758 2.253 2.435 2.364 1.095 1.943

αG 0.197 0.403 10.931 53.216 0.847 1.318

αM 0.360 0.547 3.298 4.256 2.198 1.800

δT 0.155 0.074 0.172 0.741 0.039 0.059

δB 0.102 0.059 2.159 36.268 0.006 0.051

δNK 0.228 0.089 0.223 0.406 0.098 0.100

δG 0.039 0.029 13.211 70.756 0.018 0.017

δM 0.100 0.059 0.012 0.018 0.035 0.019

Fig. 6 For each animal analyzed (a–c), the boxplots of the conditional expectations 
E
uuu|�yyy;ψ̂ψψ

[ukαl ] − E
uuu|�yyy;ψ̂ψψ

[ukδl ] computed from the estimated parameters ψ̂ψψ for the clone-specific net-duplication 

αl − δl in each cell lineage l (different colors). The whiskers extend to the data extremes
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recaptured at least 5 times. This resulted in a number of clones J equal to 481 (ZH33), 
139 (ZH17), and 202 (ZG66), and in 6 (ZH33), 5 (ZH17), and 4 (ZG66) time points. We 
reported the results on model selection in Table 3, and the estimated parameters ψ̂ψψ in 
Table 4.

Using the estimated parameters ψ̂ψψ , following Eq. (10), we computed the net conditional 
expectations of Eq. (16), which we used as a proxy for the clone-specific net-duplication 
αl − δl in each cell lineage l. The resulting values are reported in Fig.  6 in a box-plot 
fashion. Subsequenty, in Fig. 7 we proposed to use a weighted pie chart to visualize our 
findings at clonal level. Consistently with previous section, each pie, corresponding to a 
particular clone, was weighted by its net conditional expectations, as defined in Eq. (16). 

As a result, according to the AIC values, in each animal the mixed-effects model ( M1 ) 
outperformed the fixed-effects one ( M0 ). This means that the clones did not follow the 
same average dynamics for the birth/death process. Instead, the dynamic of some clones 
departed from the average dynamics with a significant (random) effect. In particular, the 
conditional net-duplication rates E

uuu|�yyy;ψ̂ψψ
[ukαl ] − E

uuu|�yyy;ψ̂ψψ
[ukδl ] of Figs. 6 - 7 suggest events 

of clonal dominance in specific cell lineages. As an example, for the animals ZH33 and 
ZG66 we observed clonal expansions into NK cells. Whereas, for the animal ZH17 we 
observed clonal expansions into G and B cell lineages. Finally, for the animal ZG66 we 
also observed events of clonal dominance into M and T cell lineages. Furthermore, the 
weighted pie charts from Fig. 7 revealed different gradients of clonal dominance between 
the three rhesus macaques. As an example, by looking at the size of the pies, it is possible 
to observe an higher clonal dominance of NK cells in ZH33, and of G cells in ZH17, 
compared to the expansions of M, NK and T cells detected in ZG66, where the diame-
ters of the clone-specific pies are rather similar. Not only the proposed mixed-effects 
model detected clonal dominance in certain cell types, it also detected which clones 
were responsible.

Fig. 7 Estimated clonal pie-charts for the rhesus macaques ZH33 (a), ZH17 (b) and ZG66 (c): Each k-th clone 
is identified with a pie whose slices are lineage-specific and weighted according to Eq. (16). The diameter 
of the k-th pie is proportional to the Euclidean 2-norm of wwwk , as defined in Eq. (17). The legend scales are 
different across the three plot panels
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Genotoxic effects on clonal dynamics

We analyzed an in-vivo clonal tracking dataset previously used in [30] to investi-
gate clonal diversity in tumor-prone mice under two different treatment conditions. 
Cdkn2a−/− tumor prone Lin− cells were ex-vivo transduced with a lentiviral vec-
tor expressing GFP under either spleen focus-forming virus (SFV) or PGK promoter/
enhancer sequence. Cells are then transplanted into lethally irradiated wild-type mice. 
To recover enough DNA material, equal amounts of blood from two or three mice 
belonging to the same experimental group were pooled before cell sorting. Integration 
sites were then retrieved by polymerase chain reaction (PCR) at different time points 
from sorted T (CD3+) and B (CD19+) lymphocytes, from myeloid cells (CD11b+) and 
unsorted blood cells (total MNC). Clonal tracking samples were collected under hetero-
geneous technical conditions as reported in Table 2 of the Additional file 1. These con-
founding effects made the samples not directly comparable. Therefore we rescaled the 
samples following the description in Section 2.2 of the Additional file 1 before analysis. 
The total number of distinct clones collected were 45186 and 20471 for the PGK and 
SFV treatments respectively. To further remove bias, we focused our analyses on the top 
J = 1000 most recaptured clones across lineages and time. The number of time-points T 
was equal to 7 (PGK) and 6 (SFV).

Next, we compared the fixed-effects model of Eq.  (6) and the random-effects model 
of Eq. (8) on the rescaled clonal tracking data, so as to compare the dynamics of clonal 
dominance under the two viral vector conditions. Since the HSCs were not collected, we 
only estimated the duplication parameters αT , αB , αM and the death parameters δT , δB , 
δM of the lymphoid (T, B) and myeloid (M) cells. Therefore, in analogy to the previous 

Table 5 Comparison between fixed-effects M0 and mixed-effects M1 models: Number of 
parameters (p), AIC, KL divergence KLdiv(M0‖M1) and rescaled KL divergence KLdiv(M0‖M1)/d in 
each treatment group

p AIC KLdiv(M0‖M1) KLdiv(M0‖M1)/d

PGK M0 7.00 115997.43

M1 471.40 65083.07 17098.71 1.29

SFV M0 7.00 63520.89

M1 842.00 30147.56 52431.53 6.51

Table 6 Parameter estimated for the proposed mixed-effects model: Fixed-effects ( θθθ ) and variance 
( τ 2 ) of the random-effects for both the duplication α and death δ parameters for each cell lineage 
and each treatment group

PGK SFV

θθθ τ
2

θθθ τ
2

αM 0.058 1.014 1.287 5.781

αB 0.092 0.872 0.024 0.408

αT 0.632 2.625 3.367 2.824

δM 0.095 0.041 0.232 0.085

δB 0.079 0.028 0.156 0.080

δT 0.127 0.044 0.437 0.193
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section the differentiation parameters were not considered in our model, and the net-
effect matrix and the hazard vector were obtained from Eqs. (2)–(5) accordingly. There-
fore, the biochemical reactions were defined as

where the left and right columns list the duplication and death reactions, respectively. 
We fit both the fixed-effects model of Eq. (6) and the mixed-effects model of Eq. (8) sep-
arately to the data of each vector treatment. Both models included six dynamic parame-
ters, that is one scalar value for each combination of cell type with duplication and death 
reactions. We reported the results on model selection in Table  5, and the estimated 
parameters ψ̂ψψ in Table 6.

Then, from the estimated parameters ψ̂ψψ we computed the conditional expectations 
of Eq.  (16), which we used as a proxy for the clone-specific net-duplication αl − δl in 
each cell lineage l. In analogy to the previous section, the resulting values are reported 
in Fig. 8 in a box-plot fashion, while in Fig. 9 we proposed to use a weighted pie chart to 
visualize our findings at clonal level.

(19)

xT
αT
→ 2 · xT , xT

δT
→ ∅ ,

xB
αB
→ 2 · xB , xB

δB
→ ∅ ,

xM
αM
→ 2 · xM , xM

δM
→ ∅ ,

Fig. 8 For each treatment group (a, b), the boxplots of the conditional expectations of Eq. (16) computed 
from the estimated parameters ψ̂ψψ for the clone-specific net-duplication αl − δl in each cell lineage l (different 
colors). The whiskers extend to the data extremes

Fig. 9 Estimated clonal pie-charts under the vector treatments PGK (a) and SFV (b): Each k-th clone is 
identified with a pie whose slices are lineage-specific and weighted according to Eq. (16). The diameter of the 
k-th pie is proportional to the Euclidean 2-norm of wwwk , as defined in Eq. (17). The legend scales are different 
across the two plot panels
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As a result, according to the AIC values, under each treatment the mixed-effects 
model ( M1 ) outperformed the fixed-effects one ( M0 ). This means that the clones exhib-
ited heterogeneity in their dynamics for the birth/death process. The dynamics of some 
clones departed from the average dynamics with a significant (random) effect. In par-
ticular, the conditional net-duplication rates of Eq. (16) from Figs. 8 - 9 suggest events 
of clonal dominance in specific cell lineages. For example, under the PGK treatment we 
observed clonal expansions into T cells. Whereas, under the SFV treatment we observed 
clonal expansions into M and T cell lineages with even higher conditional rates com-
pared to PGK. Furthermore, the Kullback–Leibler divergence from Table 5 revealed a 
different gradient of clonal dominance between the two treatments, suggesting that the 
clonal expansions identified in the SFV case were more significant compared to PGK.

Discussion and conclusion
In this work we proposed a random-effects cell differentiation network which takes into 
account heterogeneity in the dynamics across the clones. Our framework extends the 
clone neutral local linear approximation of a stochastic quasi-reaction network, written 
in the Ito formulation, by introducing random-effects for the clones on the dynamics 
parameters to allow for clonal dominance. We used a maximum likelihood approach to 
infer the parameters of the base (fixed-effects only) model that are than used as initial 
values for the estimation of the random-effects model by means of an E-M algorithm. 
We tested our framework with a τ-leaping simulation study, showing accurate perfor-
mance of the method in the identification of a clonal expansion and in the inference 
of the true parameters. Then, by means of an additional in-silico study, we have shown 
that our method outperforms the state-of-the-art method GLS [27]. Subsequently, the 
application of our proposed method on a rhesus macaque clonal tracking study revealed 
significant clonal dominance for specific cell types. Particularly interesting is that the 
NK clonal expansions detected by our model were already observed by former studies 
[23, 37, 38], and therefore our findings are consistent with those previously obtained. 
Indeed [37] described the oligoclonal expansions of NK cells and the long-term persis-
tence of HSPCs and immature NK cells. Finally, our proposed method allowed to detect 
the expected impact of vector genotoxicity on clonal dynamics in a tumor-prone mice 
model of haematopoiesis, as already observed in a previous study [30].

The main approximation, in both the basal and random-effects formulations, is the 
piece-wise linearity of the process. In both cases we consider first a local linear approxi-
mation of the Kramers-Moyal approximated Master equation, which is then used to 
infer the process parameters either with or without random-effects. Although the linear-
ity assumption makes all the computations easier, this approximation becomes poor as 
the time lag increments (the �t s) of the collected data increase. This can be addressed by 
introducing in the likelihood higher-order approximation terms than the ones consid-
ered by the Euler-Maruyama method. The Milstein approximation is a possible choice 
[39]. Another, completely different, approach is to employ extended Kalman filtering 
(EKF) which is suitable for non-linear state space formulations [40]. Also, our framework 
cannot consider false-negative errors or missing values of clonal tracking data. Also for 
this issue, an EKF formulation could be a possible extension. The frequentist-based 
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inference step of our proposed E-M algorithm may be replaced by Bayesian alternatives. 
For example, the E-step function Q(ψψψ |ψψψ∗) could be replaced by a Metropolis-Hastings 
step [41, 42]. Alternatively, a variational Bayes method could be employed, where the 
unknown vector parameter ψψψ is treated as an additional latent variable [43]. Our future 
work will aim to extend the  package RestoreNet by including other types of reactions 
(besides cell duplication, cell death and cell differentiation).

Our tool can be considered as complementary to the classical Shannon entropy index 
[30] in detecting fast and uncontrolled growing of clones after a gene therapy treatment. 
Indeed, while the Shannon entropy measures the diversity of a population of clones as 
a whole, RestoreNet provides a clone-specific quantification of dominance in terms of 
conditional mean and variance of the expansion rates. Our proposed method provides 
a prototype model of clonal haematopoiesis whose parameters are calibrated to fit high-
dimensional clonal tracking data. Our data-driven model can be integrated with those 
obtained with alternative approaches, where the unknown parameters are either set to 
experimentally-derived quantities, computed from the steady states, or based on inde-
pendent studies [44, 45].

In conclusion, our proposed stochastic framework is able to detect deviant clonal behav-
iour relative to the average dynamics of haematopoiesis. This is an important aspect for 
gene therapy applications where is crucial to quickly detect any adverse event that may 
be related to clonal dominance. Therefore our tool can provide statistical support in gene 
therapy surveillance analyses. Our proposed method also has potential applications in 
other biomedical longitudinal studies with subject-specific dynamics, such as population 
infection dynamics [46, 47], population analysis of tumor development [48], and genetic 
regulatory networks [49]. Moreover, our proposed mixed-effects formulation of stochastic 
quasi-reaction networks can potentially be applied to more general, non-Markovian, classes 
of network models, such as stochastic hybrid systems with memory (SHSM). This more 
general class of models suits history-dependent biological systems, such as neural dynam-
ics and immune responses [50, 51]. A mixed-effects formulation of dynamical systems may 
find room also in optimal investments problems, such as stochastic games in a continuous-
time Markov regime-switching environment [52]. Indeed, if such models can be written in 
a Ito-type formulation, mixed-effects on sensible subjects (e.g. groups of investors in a mar-
ket) can be incorporated.
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