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Abstract 

Motivation:  Compositional heterogeneity—when the proportions of nucleotides and 
amino acids are not broadly similar across the dataset—is a cause of a great number of 
phylogenetic artefacts. Whilst a variety of methods can identify it post-hoc, few metrics 
exist to quantify compositional heterogeneity prior to the computationally intensive 
task of phylogenetic tree reconstruction. Here we assess the efficacy of one such exist-
ing, widely used, metric: Relative Composition Frequency Variability (RCFV), using both 
real and simulated data.

Results:  Our results show that RCFV can be biased by sequence length, the number 
of taxa, and the number of possible character states within the dataset. However, we 
also find that missing data does not appear to have an appreciable effect on RCFV. We 
discuss the theory behind this, the consequences of this for the future of the usage 
of the RCFV value and propose a new metric, nRCFV, which accounts for these biases. 
Alongside this, we present a new software that calculates both RCFV and nRCFV, called 
nRCFV_Reader.

Availability and implementation:  nRCFV has been implemented in RCFV_Reader, 
available at: https://​github.​com/​JFFle​ming/​RCFV_​Reader. Both our simulation and real 
data are available at Datadryad: https://​doi.​org/​10.​5061/​dryad.​wpzgm​sbpn.
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Introduction
Addressing many evolutionary questions requires knowledge of how the investigated 
taxa are related to one another. As such, phylogenies must be reconstructed [1, 2]. 
These reconstructions should be as accurate as possible despite model inadequacies 
and data paucity. Modern phylogenetic reconstruction depends on the application of 
explicit substitution models with specific assumptions about the underlying molecu-
lar evolutionary processes and their statistical properties [3, 4]. For example, most of 
these models, including those in common use, assume that the evolutionary process 
is Markovian and stationary, implying that the sequences are likely to be composition-
ally homogeneous at any point in time [5–8]. Sometimes, this assumption is violated 
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by large amounts of change occurring along one or several edges in a tree, or by direc-
tionally selective amino acid changes that alter the tertiary structure of the protein. 
These violations may manifest themselves differently in phylogenetic analyses, rang-
ing from erroneously estimated edge lengths or poorly supported bipartitions, to top-
ological changes grouping taxa together solely based on shared composition. These 
effects have been widely reported and studied for many years [5–7, 9–17]. In some 
cases, but not all, these studies showed that these violations are also linked to long 
branch attraction artefacts [10]. Hence, compositional heterogeneity is a widespread 
and challenging problem within phylogenetic analyses and should be accommodated 
[6, 10, 17–19]

One common approach to address the problem of compositional heterogeneity is 
to identify which genes, partitions and taxa do not fulfil the assumptions of com-
positional homogeneity or stationarity and then exclude these from phylogenetic 
reconstructions to investigate what effect this exclusion has on the phylogenetic 
reconstruction [19]. In this approach, a statistical comparative measurement of com-
positional heterogeneity is applied across taxa and genes or partitions. The Relative 
Composition Variation (RCV) was one of the first of these measurements [20], though 
the RxC Chi-square test [21] was already available to compare between taxa. How-
ever, while the RCV metric is normalised over the number of taxa, the value is based 
on the number of actual occurrences of states and hence is influenced by changes in 
the length of the sequences in the dataset. As such, a comparison across both taxa 
and partitions is challenging, because RCV is not independent of the number of posi-
tions and so does not exclusively quantify variation in composition. To overcome this 
problem, a metric called Relative Compositional Frequency Variation (RCFV) was 
proposed and implemented in BaCoCa [22, 23]. Instead of number of occurrences, 
it uses the relative frequencies of the characters in the data. Therefore, it should not 
be susceptible to changes in sequence length and number of positions. This makes it 
a powerful tool when applied to large or otherwise computationally demanding phy-
logenetic datasets, and it can by itself act as an early-warning sign for compositional 
heterogeneity. Accordingly, it has been applied in many studies, including large-scale 
phylogenomic analyses [12, 24–29]. The data matrices generated from these measure-
ments can then be further explored using different statistical approaches and signifi-
cance tests based on the preferences of the user [23].

RCFV is a relatively simple calculation that compares the relative frequency of a 
given nucleotide or amino acid for a given taxon versus the mean relative frequency 
of the same nucleotide or amino acid over the entire dataset, expressed as follows:

with n being the number of taxa and j = 1 to j = m being the possible character states—
for example: 4 for nucleotide data and 20 for amino acid data. μij represents the relative 
frequency of character j in sequence i, and µj  is the average relative frequency of charac-
ter j across the entire dataset. This means that a higher RCFV is more indicative of com-
positional heterogeneity within the dataset than a small RCFV [22]. These values can 
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n
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then be calculated for character-specific (csRCFV, Eq.  2) and taxon-specific (tsRCFV, 
Eq. 3) variations to better assess the variability of these factors within a dataset for the 
purposes of excluding potentially heterogeneous taxa or characters [23].

These values, thereby, do not only comprise individual taxa and character states, 
but also monophyletic groups of taxa or character states (e.g., purines vs pyrimidines). 
Within the RCFV framework, csRCFV and tsRCFV can be assessed as divisions of the 
total RCFV. This means that through a simple division, the user can assess the percent-
age RCFV that a single taxa or character contributes to the total dataset. For example, 
in a given nucleotide dataset, if RCFV is 0.1, and csRCFV(A) is 0.025, then A is contrib-
uting 25% of the total RCFV score. This ought to be expected in a dataset where com-
positional heterogeneity is not dependent on over or under-representation of a single 
character.

Phylogenetic datasets grow more and more in both length and depth in response to 
both broader and deeper sampling and increasing computational power. More data calls 
for a more rigorous selection of the data that is included in actual analyses, through 
excluding data strongly violating the assumptions of the applied models of reconstruc-
tions [30]. However, this requires that the selection criteria assess what they are sup-
posed to assess and that they are not influenced by other aspects of the dataset. As 
mentioned above, the normalization over the number of taxa and the usage of relative 
frequencies should theoretically render RCFV values independent of the number of taxa 
and positions. However, this theoretical assumption has never been tested, especially 
over the large datasets that are now commonplace in phylogenetics in the 2020s. Only 
if this assumption is correct can RCFV guarantee that taxa or partitions are excluded 
based on variation in composition, and not in the number of taxa and/or positions in the 
alignment.

RCFV-type metrics have an important place in understanding compositional het-
erogeneity, that makes them unique, and complementary, to other approaches, such as 
matched-pair tests [17]. When compared to alternative tests, RCFV allows research-
ers to explore and directly compare the effect of compositional heterogeneity on their 
dataset at the character state, taxon and partition level. Rather than informing the user 
that a certain sequence or taxa is compositionally heterogeneous, RCFV allows users to 
understand whether recoding or masking might be better for their dataset (indicated 
by skewed csRCFV values), or whether taxon removal might be necessary (indicated by 
skewed tsRCFV values). In this way, RCFV explores and quantifies variation in charac-
ter state distribution across a dataset, where other metrics identify and distinguish. In 
addition, whilst the homogeneity at any given site, as measured by matched-pair tests, is 
an important component of understanding compositional heterogeneity, the vast major-
ity of currently used models assume homogeneity is a property of the whole alignment 
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[31]. Average relative frequencies (or equilibrium frequencies) are taken from the source 
alignment to inform the substitution matrix Q, hence the deviation from the average 
relative frequency is of key importance to understanding compositional heterogeneity 
in a model that assumes homogeneity. In empirical models such as WAG [5] that do 
not source their equilibrium frequencies from the source alignment, tsRCFV, csRCFV 
and RCFV can inform users as to how closely their own alignment reflects these empiri-
cal frequencies. In CAT models [32], Q matrices are applied to Dirichlet-selected site 
categories and hence have their own unique equilibrium frequencies. As sites are classi-
fied into a higher number of substantially different categories they are less susceptible to 
strong deviations from estimated equilibrium frequencies of the whole alignment. How-
ever, in these cases, tsRCFV is still informative with regards to compositional heteroge-
neity between taxa, and csRCFV and RCFV-type metrics can help users understand the 
dataset CAT is partitioning into categories. Seeing the dataset as your model is liable to 
see it—through average relative frequencies—and being able to take measures to ame-
liorate these problems from a shared perspective is important when working with large 
datasets.

In this study, we assess whether RCFV values are truly independent of the number 
of taxa and positions in the compared datasets. Using 10,000 simulated datasets, we 
recorded the variation in RCFV values across 10 taxon categories (ranging from 50 to 
500 taxa in 50 taxa steps) and 10 site categories (ranging from 900 to 9000, in steps of 
900, for DNA, and from 300 to 3000, in steps of 300, for amino acids). We then expanded 
our simulations to account for the super-long phylogenetic datasets that are becoming 
commonplace, accounting for both 100,000 and 500,000 nucleotide and amino acid posi-
tions. As RCFV type metrics were shown to be affected by changing sequence length, 
we additionally explored the effect of missing data. In response to our findings, we 
introduce a truly normalised Relative Compositional Frequency Variation value family 
(nRCFV, ncsRCFV, ntsRCFV). These new metrics add a normalisation constant to each 
of the different RCFV values (total, character-specific, taxon-specific) to mitigate the 
effect of increasing taxa number and sequence length. Finally, we explore the effect of 
nRCFV on real data when compared to RCFV by reanalysing the Kocot et al. [14] data-
set and find a large effect of sequence length on data selection in empirical data which 
results in marked topological differences, even when analysed under the same model.

Methods
To assess the utility of RCFV, 10,000 simulation datasets were generated. Nucleotide 
simulation datasets were generated under the GTR model [33] using Seq-Gen v1.3.2 
[34], and amino acid simulation datasets were generated under the WAG model [5], with 
an equal rate of evolution applied to all edges, using simSeq in Phangorn 2.1 in R [35]. A 
uniform distribution of probability of change across sites was also used. The command 
line used for each program was as follows:

seq-gen-m GTR-n 100-l $Length-of <$Tree> $Output
simSeq($Tree, l = $Length, type = “AA”, model = “WAG”)
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Simulation datasets were calculated in 1000 ‘bins’ of 100 datasets each—taxa at inter-
vals of 50 from 50 taxa to 500 and sequences at intervals of 300 from 300 to 3000 (Fig. 1) 
positions for amino acids and 900 to 9000 positions for nucleotides. Rtree in ape 5.6-2 
was used to create one randomly generated tree for each taxa bin [35, 36], with edge 
lengths drawn from a continuous uniform distribution, and the same trees were used 
for each taxa bin at every sequence length interval. These trees are available in our Sup-
plemental Information, hosted at our DataDryad link. As the ability of RCFV to describe 
compositional heterogeneity was not in question [12], these simulation datasets were 
created with the intent of being compositionally homogenous, thus allowing any biasing 

Fig. 1  Flow chart showing the analyses conducted in this study to determine the effect of the number of 
positions and taxa on RCFV, csRCFV and tsRCFV and thereafter the normalization constant of RCFV, csRCFV 
and tsRCFV
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effect due to an increasing number of taxa or positions to be easily identifiable as the 
only changing variables. The total, taxon-specific and character-specific RCFVs for each 
dataset were collected using BaCoCa v1.1 [23] under default conditions. Goodness of 
fit was assessed using linear regression modelling in R 4.1.0 to fit a curve based on both 
dataset length and taxa number.

To accommodate for the size of modern “super massive” phylogenetic datasets, a fur-
ther four datasets for both amino acids and nucleotides were simulated using the same 
methods—50 taxa and 500 taxa at both 100,000 and 500,000 positions. These datasets 
were then used to assess the consistency of the normalisation constant applied in the 
following step.

Normalization of RCFV values

Following the calculation of lines of best fit for the RCFV dataset vs both dataset 
sequence length and taxon number, a new normalising constant was determined from 
the line by observing the R2 value. This constant was then applied to RCFV to create the 
new normalised RCFV, henceforth referred to as nRCFV. The same methodology was 
then applied to the character-specific and taxon-specific RCFV values to create the nor-
malised character-specific and taxon-specific RCFV value (or ncsRCFV and ntsRCFV), 
which both explained significant amounts of variation in the dataset. This normalization 
procedure was applied independently to both nucleotide and amino acid datasets as that 
they are different owing to the change in the number of character states between amino 
acid and nucleotide datasets (from 20 to 4).

The new normalized RCFV (nRCFV) values can be calculated from the original RCFV 
values using the following equation:

where p is the number of positions, n is the number of taxa and c is the number of char-
acter states in the dataset.

The new normalisation constant that was discovered for taxon-specific RCFV is as 
follows:

The normalization model for character specific RCFV, measuring the relative compo-
sitional frequency of individual amino acids and nucleotides as well as combination of 
these based on specific properties like hydrophilia, polarity, and charge for amino acids 
and purines/pyrimidines and AT/GC for nucleotides was the same:

Exploring the effect of missing data on RCFV

Considering the biasing effect of sequence length and taxon number, we then considered 
missing data. Using the Kocot et al. [14] dataset for Lophotrochozoa, we simulated 100 

(4)nRCFV =
RCFV

p−0.5 ∗ n0.01 ∗ c ∗ 100
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datasets using alisim’s alignment mimic option as implemented in IQTree v2.2.0 [37, 38] 
for each of the 6 missing dataset categories present in that analysis, ranging from 18.17 
to 38.43%. As per Kocot et al. [14] methodology, missing data was classified as the pres-
ence of ambiguity characters, gaps or a lack of sampling (or absence) of the target gene 
in the taxon. The alignment mimic takes the properties of the original dataset, including 
missing data, and constructs a simulation dataset that replicates these conditions. As 
alisim includes a “no gaps” option, we used this to then remove missing data from each 
of the 7 categories, creating a further 600 simulation datasets to directly compare the 
effect of missing data against dataset mimics without missing data. The command used 
for alisim was as follows:

For “Gapped” datasets: iqtree2 –alisim < Output > -s < Missing Data Dataset > 
For “Ungapped” datasets: iqtree2 –alisim < Output > -s < Missing Data 

Dataset > –no-copy-gaps.

Comparing RCFV and nRCFV on real data

We then compared the effect of the normalization constants on real data by taking an 
example from an existing publication, Kocot et al. [14]. Here, the authors split their data-
set into sextiles based on the RCFV value of the individual genes in their multi-locus 
dataset, producing 10 datasets—one for each sextile specifically, and four compiled data-
sets of increasing size (the 1st and 2nd sextile, 1st–3rd sextile, 1st–4th sextile and 1st–
5th sextile respectively). We first calculated the nRCFV values of each of the 638 genes 
in the complete dataset, then divided these genes into sextiles in the same manner as 
the original study, with the 1st sextile comprising 107 genes, the 2nd, 3rd and 6th 106, 
the 4th 104 and the 5th 109. We then compared the proportion of genes unique to each 
RCFV/nRCFV sextile pair, and the lengths of each corresponding alignment. For the 1st 
sextile and the four compiled datasets of increasing size, we reconstructed phylogenies 
using the new nRCFV-selected genes in IQTree, under the original model conditions 
(LG + F) used by Kocot et  al. [14], and retaining the original multiple sequence align-
ment. We assessed whether the selection by RCFV or nRCFV influenced the recon-
structed topology by calculating the Robinson-Fould (RF) distances of the trees by Kocot 
et al. [14] based on RCFV values and our new trees based on nRCFV values (Supple-
mental data on DataDryad) in relation to the tree obtained for all genes (i.e., all six sex-
tiles combined).

Results
Evaluating RCFV

Across our 10 × 10 analysis, we found that RCFV was heavily biased by both sequence 
length and taxa number. As sequence length increases, the RCFV value quickly falls to a 
plateau, suggesting that at small sequence lengths, RCFV is less capable of distinguishing 
compositional heterogeneity, and that RCFV becomes more comparable between data-
sets consisting of longer sequence lengths (Figs. 2A and 3A). In the case of increasing 
sequence length, this was found to be significantly related (ANOVA p-value =  < 2e−16) 
to decreasing RCFV. The same can be shown for nucleotide data, csRCFV and 
tsRCFV values, but it is less pronounced for csRCFV (Figs. 2C, E and 3C, E, ANOVA 
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p-value =  < 2e−16). This is a cause of some concern, as it suggests that the statistical 
power of RCFV is lower with less data and that longer genes are favoured over smaller 
ones.

Fig. 2  A series of violin plots showing the effect of an increasing number of positions and increasing number 
of taxa on amino acid data under RCFV, csRCFV, tsRCFV and nRCFV, ncsRCFV and ntsRCFV. Panels A, C and 
E show the effect of an increasing number of amino acid positions. Panels B, D and F show the effect of an 
increasing number of taxa
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In the case of taxa number, the trend is a little bit more complicated for RCFV val-
ues. We found that the proportional decrease was instead in variation across a higher 
and a lower data point, with decreasing variation being found at higher numbers of 
taxa (Figs. 2B and 3B, ANOVA p-value = 0.0001807), though the mean value of RCFV 

Fig. 3  A series of violin plots showing the effect of an increasing number of positions and increasing number 
of taxa on nucleotide data under RCFV, csRCFV, tsRCFV and nRCFV, ncsRCFV and ntsRCFV. Panels A, C and 
E show the effect of an increasing number of nucleotide positions. Panels B, D and F show the effect of an 
increasing number of taxa
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remained relatively stable across taxa number. A similar, but non-significant pat-
tern can be found for the csRCFV values (Figs. 2C and 3C, ANOVA p-value = 0.0945). 
The tsRCFV values display a far less pronounced effect when comparing an increas-
ing number of positions to an increasing number of taxa (Figs.  2E and 3E, ANOVA 
p-value = 0.0005761). With an increasing number of taxa, tsRCFV values decrease. 
Again, the results for the nucleotide datasets mirror the amino acid results, with higher 
significance for RCFV and tsRCFV and non-significance for csRCFV (Fig.  2B, D, E 
respectively, RCFV ANOVA p-value =  < 2e−16, csRCFV ANOVA p-value = 0.3078, 
tsRCFV ANOVA =  < 2.2e−16).

Normalization of the RCFV values

As the RCFV value was shown to be biased with regards to both taxon number and 
sequence length, we then resolved to discover and implement the theoretical normalisa-
tion constant that would ameliorate the effect of these factors on RCFV. The normalisa-
tion procedure with respect to the number of positions and taxa resulted in different 
normalisation formulae for the RCFV values for the complete dataset, as well as the 
character- and taxon-specific values.

This new nRCFV was then cross-referenced against the original dataset to ensure that 
both dataset size factors no longer biased the value. This was established first by observ-
ing the trendline of the data. In both cases, there is no longer an increase or decrease 
of the values with respect to the number of positions and taxa (Figs. 2C–F and 3C–F). 
By adjusting for taxa, the splitting into two optima, one at a higher and one at a lower 
value, is no longer observable (Fig. 2D). By multiplying the number of character states 
by 100, nRCFV produces values that are comparable with the difference between the 
character state frequencies and mean character state frequencies present in the dataset, 
increasing usability. Then, we assessed the residuals within our predicted linear model to 
ensure that the new nRCFV value explained a significant amount of dependent variation 
within the dataset (Adjusted R2 = 0.9988). Accordingly, the remaining minor variation 
could be explained by dataset-to-dataset differences independent of the above dataset 
size factors.

Our linear model for taxon-specific RCFV returned an adjusted R2 value of 0.9376. 
Plotting the new normalized taxon-specific RCFV values against either number of posi-
tions or taxa (Figs.  2E, F and 3E, F) revealed change similar to that of nRCFV values 
for amino acid datasets (Fig. 2C, D). Moreover, ntsRCFV values increased substantially 
more than nRCFV did for higher values. This results in ntsRCFV values up to a 100-
fold larger than the original tsRCFV, which allows them to be reasonably compared with 
total nRCFV (Figs. 2E, F and 3E, F).

This normalised taxon-specific RCFV had the lowest adjusted R2 of all normalizations 
at 0.9376 on our combined nucleotide and amino acid dataset. We explain this anoma-
lous variation in the final value through the ability of tsRCFV to explain more real vari-
ation in the dataset without being normalised. The non-normalised tsRCFV returned 
an R2 value of 0.6726 and 0.5263 when compared against variation in taxa and 0.1520 
and 0.1108 when compared against positions (Figs.  2E, F and 3E, F). For the number 
of positions, this is far below the other RCFV values, where over 97% of the variation 
could be explained by their variation (Fig. 2A, C, E). The number of taxa explains more 
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of the variation in tsRCFV (Figs. 2E, F and 3E, F), but tsRCFV values do not show the 
distribution around two optima as the other RCFV values do (Figs. 2B, D, F and 3B, D, 
F). Unnormalised taxon-specific RCFV shows an adjusted R2 value of 0.5743 on amino 
acid data and 0.354 on nucleotide data when comparing against a simple model of Posi-
tions + Taxa, suggesting that variation in these values already explains less of the varia-
tion in RCFV (see Supplemental Information on Datadryad for raw simulation data and 
linear model results). In addition, additional parameters could not be added to the nor-
malization model without decreasing the adjusted R2 relative to the unadjusted R2, sug-
gesting overfitting.

The ncsRCFV value is not biased by the number of taxa n, although total RCFV and 
tsRCFV are. This agrees with the extremely low R2 values (< 0.001, Figs.  2D and 3D) 
and that the ANOVA results were non-significant for taxa. Our model for single amino 
acid character states returned an adjusted R2 of 0.9758, and for single nucleotides, the 
adjusted R2 of ncsRCFV is 0.9774. Additionally, as with ntsRCFV, the proportional 
increase of the ncsRCFV in comparison to the csRCFV is far more prominent than in 
nRCFV values. This allows for comparison versus whole dataset nRCFV directly, rather 
than as a proportion of this total value.

Is RCFV affected by the number of positions, taxa and possible character states?

As mentioned in the Introduction, in theory the RCFV should be independent of the 
number of positions and taxa as the frequency is used and a normalization on the num-
ber occurs for individual values for each character state and taxon. However, the results 
herein showed that this is not the case. This raises the question of whether the principal 
assumption was wrong. To answer this, we can perform a simple thought experiment.

Let dataset I be a dataset with only two character-states—purines (R) and pyrimidines 
(Y)—n taxa and p positions. Then, the RCFVI can be calculated using the number of 
occurrences (O) of each character state per taxon:

with

The same applies to Y. Hence,
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Consider dataset II, which is generated by copying each position in dataset I exactly 
once, so that we have n taxa and 2*p positions with each character state R and Y occur-
ring exactly twice as often in each taxon. Then, RCFVII can be calculated using the num-
ber of occurrences (2*O) of each character state per taxon using eq. #7. As before we 
calculate:

This resolves to the exact same as Eq. 8. The same applies to Y again. Accordingly, we 
also get the same as in Eq. 9 for RCFVII.

Finally, consider dataset III, which is generated by copying each taxon in dataset I 
exactly once, so that we have 2*n taxa and p positions with each character state R and 
Y occurring exactly twice as often at each position. The number of occurrences (O) per 
taxon remains unchanged for each character state. Then, the RCFV can be calculated the 
following way using:

As before we calculate:

The same applies to Y and we can use Eq. 8 in Eq. 10:

This equation is the same as Eq. 9.
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In both cases of exact duplications of either position or taxa, the same RCFV will be 
calculated. Hence, the theoretical assumption that the RCFV values should be taxon- 
and position-independent is, in principle, correct. However, the simulation data showed 
a clear dependence on both the number of positions and taxa. A possible explanation for 
this could be that the size of the dataset has an effect on the calculation of the data. As 
the dataset upon which RCFV is calculated becomes larger in both breadth and length, 
a single compositional change affects the RCFV value across the entire dataset less. This 
is because each change then represents a smaller proportion of the entire RCFV value, 
which is totalled across all positions and taxa. These observations were corroborated 
by our analysis of both character and taxon-specific RCFV values, as the former only 
needed adjustment for the number of positions, not the number of taxa, which is likely 
due to the reduction in variance caused by measuring only single data points.

The effect of size on RCFV

This effect of size can be shown in a simple thought experiment. Consider dataset IV 
with four character states (e.g., A,C,T,G), n taxa and p positions from which we will gen-
erate a new dataset V by changing one character state (A) to another (G) in just one 
taxon (N). For dataset IV, the RCFVIV can be calculated by separating one taxon from 
the others, bearing in mind that the RCFV values for C and T (together RCFVY) are not 
affected by this change:

Consider now dataset V with one character state (A) changing to another (G) in just 
one taxon (N), but retaining n taxa and p positions. Denoting the changed frequencies 
for A and G with a star we can apply Eq. 11 here:
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Equation 12 can be transformed to:

Comparing Eq. 13 with 11 shows that the values of the affected taxon and character 
states are changed by a factor (n-1)/(np). Hence, RCFV values clearly depend on the 
number of positions and taxa. Moreover, the lower both values are, the stronger the 
effect. When n approaches ∞, (n-1)≈n and (n-1)/n approaches 1 asymptotically from 
lower values. Accordingly, the factor becomes 1/p. Hence, at high n only p has an effect 
on the RCFV value. The effect on the affected taxon increases with increasing number of 
taxa, capped by the number of positions (i.e., 1/p). On the other hand, as p approaches 
∞, the factor asymptotically approaches 0 independent of n. Hence, the effect of the 
number of positions is negligible at high numbers of positions. Figure  4 provides an 
example of both behaviours.

However, the unaffected taxa also change due to the change in average frequencies 
across all taxa. The factor 1/(np) is smaller than for the affected taxon, but both number 
of taxa and positions have an effect. However, in this case, when either n or p approaches 
∞, the factor asymptotically approaches 0. Hence, in this case, both become negligible 
at higher numbers of positions, taxa, or both (Figs. 2, 3 and 4). Additionally, even though 
the factor is much smaller for each individual taxon than for the affected taxon, the effect 
is summed up over n-1 taxa and hence can be substantial. The simulated data in general 
were also sensitive to number of taxa and asymptotically approached lower values with 
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increasing number of taxa, indicating a decreasing influence on the RCFV calculation. 
Hence, the decreasing influence of the unaffected taxa cumulatively seems to outweigh 
the increasing, but capped, influence on the affected taxon. Moreover, the contradictory 
influence of the number of taxa on the affected and unaffected taxa with an increasing 
number of taxa can also be seen in the simulated data. The RCFV and csRCFV converge 
on two optimal values, a high one and a low one (Figs. 2, 3 and 4). Finally, as the factor 
is part of a summation of absolute values in both the affected taxon and the other taxon, 
the effects will not cancel each other out.

The effect of the number of possible character states on RCFV

Finally, the number of possible character states is also relevant to how strongly both fac-
tors (n-1)/(np) and 1/(np) can influence the calculation of the total RCFV value. In the 
example above with four possible character states, only two out of four are affected by 
the change, while the other two are not affected. Hence, only 50% of the RCFV calcula-
tion is affected by the change. In contrast, if we take the other example from above with 
only two character states and assuming, for example, a single change from Y to R, Eq. 13 
would be changed to:

(14)

RCFV =









n−1
�

i=1

�

�

�
µRi − µR −

1

np

�

�

�

n



+

�

�

�
µRN − µR +

n−1

np

�

�

�

n





+









n−1
�

i=1

�

�

�µYi − µY +
1

np

�

�

�

n



+

�

�

�µYN − µY −
n−1

np

�

�

�

n





Fig. 4  Plotting of the effect of the number of positions or taxa on the two factors (i.e., (n − 1)/(np) and 1/(np)) 
obtained in Eq. 11 given different constant values for the number of positions (p) or taxa (t). The upper limit at 
1/p for the number of taxa for the factor (n − 1)/(np) is indicated with a dashed line
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Hence, both character states are affected by these factors and 100% of the RCFV cal-
culation. In contrast, if one considers 20 possible character states like amino acids and 
assuming, for example, a change from glycine (G) to alanine (A), the Eq. 13 would be 
changed to:

Accordingly, only two of the 20 character-state calculations are affected by the factor 
and hence only 10% of the RCFV calculation. The overall effect on the value will still 
be present, but at a much smaller level. Hence, not only the number of positions and 
taxa are relevant, but also the number of character-states, as already concluded above. 
Accordingly, the normalization has to be adjusted for each possible number of character 
states individually. The same normalization cannot be applied, for example, for values 
considering all nucleotides or all amino acids. It must be independently determined. A 
consequence of this is that without normalization one can compare only RCFV values 
which are determined using the same number of character states. However, it is impor-
tant to note that just the number of character states is important here, not their nature. 
For example, binary states can be compared directly independently of whether they are, 
for example, absence/presence coding or RY coding. This has also been shown above by 
using the same model for all one character-state calculations.

Character- and taxon-specific RCFV are affected by the number of taxa and positions 
in a similar way. This can be seen by considering the corresponding parts of the RCFVV 
calculation by transforming Eq. 13 using Eqs. 2 and 3, respectively:
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Fig. 5  The effect of nRCFV and RCFV on gene selection resulting in different topologies. Panel A shows the 
increasing RCFV and nRCFV values (in Orange and Blue, respectively). Panel B shows the RF distance of the 
increasing sextile datasets selected by RCFV (Orange) and nRCFV (Blue) compared to a “complete” dataset 
containg all genes used in the original Kocot et al. [14] study



Page 17 of 25Fleming and Struck ﻿BMC Bioinformatics          (2023) 24:145 	

Comparison of RCFV and nRCFV values in empirical data

The analyses of the different sextiles by Kocot et  al. [14] based on compositional het-
erogeneity revealed substantial differences in the assignment of the genes to different 
sextiles depending on the normalization of RCFV (Table 1). We found that, in the case 
of the 1st sextile, 44% of the genes selected by nRCFV were not selected by RCFV for 
the same sextile. Of these 47 genes, 30 belonged to the 2nd sextile, 15 to the 3rd and 1 
each to the 4th and 5th. In addition, the alignment length of the dataset under RCFV 
was 28,490, compared to 20,672 in nRCFV (Table 1, Fig. 5A). Similarly, the sextile con-
taining only the highest nRCFV values did not share 62% of its sequences with the same 
RCFV sextile. The alignment length increased from 11,813 based on this RCFV sextile to 
18,887 based on nRCFV. The percentage of unshared genes is even more notable in the 
middle sextiles ranging from 72% in the 4th to 81% in the 5th (Table 1). Here sequences 
placed in a particular sextile by nRCFV are similarly likely to be found in the neighbour-
ing RCFV sextiles.

When the RF distances from the tree based on the complete dataset are assessed, the 
best sextile selected by RCFV produces a tree that is two steps closer to the complete 
tree than the best sextile selected by nRCFV (Fig. 5B). As additional sextiles are added to 
the dataset and more genes shared between the two comparative datasets, the distance 
to the complete tree decreases, as might be expected. However, this decrease occurs far 
faster and far more completely in the RCFV selected sextiles, with the second and third 
sextiles possessing a RF distance of 2 from the complete tree, and the fourth and fifth 
possessing a RF distance of 6. Whilst a similar pattern is observable in the genes selected 
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Table 1  Differences in gene selection based on RCFV and nRCFV values given the Kocot et al. [14] 
dataset

Sextile Percentage non-shared genes 
(%)

Alignment length based on 
RCFV

Alignment 
length based on 
nRCFV

1st 44 28,490 20,672

2nd 78 24,037 20,194

3rd 74 21,771 22,596

4th 72 19,211 18,921

5th 81 16,658 20,712

6th 62 11,813 18,887
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by nRCFV, the decline is not nearly as steep nor as noticeable, with the third sextile data-
set being the closest to the complete tree at 6, and the fourth and fifth sextiles being 
recovered at a RF distance of 8 from the complete tree.

With the addition of more heterogeneous sextiles, the nRCFV values increased line-
arly independently of whether the genes were selected based on RCFV or nRCFV values. 
However, the nRCFV value was always smaller for genes selected by nRFCV values than 

Fig. 6  Two violin plots displaying the effect of missing data on RCFV and nRCFV. Panel A shows RCFV and 
Panel B nRCFV. Boxes in orange represent the simulation datasets generated by AliSim with missing data and 
boxes in blue represent the simulation datasets generated by AliSim without missing data. Each category 
is defined by the percentage missing data of the source dataset, which is present in the orange simulation 
datasets

Fig. 7  A violin plot showing the effect of missing data on nRCFV and RCFV, expressed as the percentage 
difference in the metric between the gapped and ungapped datasets. RCFV is expressed in blue and nRCFV 
in orange
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for those based on RCFV values, even when only the 6th sextile was excluded from the 
complete dataset (Fig. 5A).

RCFV and missing data

In theory, as the number of positions affects the RCFV, then we might expect the 
variation in the number of positions internally within the dataset to also affect RCFV, 
as a change at one site in a sequence with more missing sites will be worth propor-
tionally more than a change in a sequence with fewer missing sites. To accomplish 
this, we took the real Kocot et al. [14] dataset and examined the Missing Data sextiles 
as per their original analysis. These six datasets range from 18 to 38% missing data, 
and we then used AliSim [37, 38] to create 100 simulation datasets that mimicked 
each of these using the alignment mimic command. We then created artificially gap-
less simulations of these alignments, again using AliSim’s alignment mimic, using the 
“no gaps” option. In theory, as “no gaps” replaces the missing data with data that is 
consistent with the overall amino acid proportions of the source alignment, the RCFV 
value should remain consistent between datasets with missing data and those without 
if RCFV is not affected by missing data.

We found that RCFV does appear to increase slightly with an increasing degree of 
missing data (Fig. 6). However, this effect seems negligible—across all 6 missing data 
categories, both RCFV and nRCFV the completed alignments show a consistent aver-
age increase of 7–8.1% with respect to their missing data pair across the 100 data 
points. This value is seemingly unaffected by the proportion of missing data in the 
dataset: the two largest average increases (8.1% and 8%) were observed in both the 
18.17% missing data dataset and the 38.43% missing data dataset respectively, whilst 
the smallest percentage increase was found in the 31.61% missing data dataset. The 
absolute maximum difference observed was a change of 18.006% found in the 28.59% 
missing data dataset. This was one of 9 simulations across the dataset that showed 
more than 15% change: 0.015% of the 600 simulation datasets. Notably, these outlier 
results were more frequently found in datasets with less missing data: 3 were pre-
sent in the 24.9% missing data simulations and 3 in the 28.59% missing data simula-
tions, with the remaining 3 being distributed 1 each in 18.17%, 34.37% and 38.43% 
respectively (Fig. 7). In addition, though AliSim’s alignment mimic option does intend 
to produce an exact replica of the target dataset, though gapless, we observed small 
shifts in the amino acid proportions between the original missing data datasets and 
the gapless simulation datasets, between 0.06% (Simulation Average Freq (L) vs Origi-
nal Data Freq (L) 0.0958 vs 0.0957) and 7.98% (Simulation Average Freq (H) vs Origi-
nal Data Freq (H) 0.0220 vs 0.0238), with an average absolute frequency change of 
2.68% in the 18.17% dataset. This suggests that the increase in nRCFV and RCFV 
values may be real and responsive to small changes in compositional homogeneity 
between the two datasets (See Supplemental Information on Datadryad).

Discussion
Bias within RCFV

Our results show that the calculation of the RCFV value is clearly affected by the num-
ber of positions and taxa considering both the actual RCFV and the character- and 
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taxon-specific ones. However, we also showed that these effects can be normalized using 
different models for the RCFV, character- and taxon-specific RCFV values. The inclu-
sion of a correction for the number of character states for the normalization of RCFV 
and tsRCFV also shows that not only do the number of taxa and position influence the 
RCFV calculation, but also the number of possible character states. On the other hand, 
the model for csRCFV is the same; independent of whether single amino acids, single 
nucleotides or nucleotide combinations (such as pyramidines or purines) are calculated. 
The reason for this is that in the case of csRCFV only a single character state is consid-
ered, even for combinations of amino acids and nucleotides, as they are added together 
in one frequency value. Hence, the normalization of all forms of RCFV values (i.e., 
RCFV, csRCFV and tsRCFV) depends on the number of possible character states, not on 
the nature of the character. For example, a dataset consisting of only four morphological 
character states or Dayhoff recodings could be normalized using the models for nucle-
otides. Another consequence of the normalisation procedure is that the new nRCFV 
value is no longer a summation of the character-specific or taxon-specific RCFV values 
for each character state or taxon, respectively. Rather, the total nRCFV of the dataset 
now represents an average value, around which standard deviations can be calculated to 
determine whether a taxa or character is significantly more compositionally heterogene-
ous, improving usability.

The normalisation constants applied to form nRCFV address the key biases of the 
original RCFV—as the number of positions and taxa become larger, the contribution 
of the constant becomes smaller, thus resulting in a levelled curve that should resolve 
the core problem of RCFV—that it is less accurate and reliable at lower values of these 
factors than at higher values. Moreover, the plot of the RCFV values in relation to the 
number of taxa indicates that RCFV may be unreliable and inconsistent with fewer taxa, 
potentially both finding compositional heterogeneity where none exists and missing 
existing real heterogeneity as the final value is heavily influenced by taxon number, but 
not necessarily directionally.

Why are RCFV and nRCFV not affected by missing data?

To observe the effect of missing data on RCFV, we took six real datasets with increasing 
amounts of missing data, and simulated 100 mimics of these datasets under two condi-
tions, one retaining the proportion of missing data, and another filling in all gaps with 
characters. Notably, both RCFV and nRCFV values do slightly increase on average in 
the presence of missing data compared to no missing data. However, when amino acid 
frequencies were observed between the gapless and gapped simulations, an average 
frequency change of 0.0013 was observed, suggesting that, for example, the increase of 
0.00009 in nRCFV is likely due to the real terms increase in compositional heterogeneity 
caused by “filling in” missing data in the simulated alignments. Comparing across dif-
ferent degrees of missing data, this difference between the datasets with and without 
missing data remains more or less the same and no correlation to the increasing level of 
missing data can be observed: Hence, missing data itself does not introduce a bias in the 
RCFV calculation, which needs to be accounted for.

The reason for this lack of bias is due to the original RCFV calculation, expressed in 
Eq. 1. By comparing mean frequency of a given taxon against the mean frequency across 
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the entire dataset, RCFV indirectly accounts for gap characters by excluding them from 
the calculation. This allows the real compositional homogeneity to govern the calcula-
tion of the metric, rather than the distribution of missing data. Our results also show 
that the normalization model does not introduce an impact of missing data either. This 
is not surprising, as the normalization does not include any factors which would be 
directly influenced by the degree of missing data. Number of positions, taxa and charac-
ter states are constant even if the amount of missing data changes within a dataset.

Comparisons versus RCFV: a changing philosophy

This change within the calculation of nRCFV, however, removes an advantage of the 
non-normalized RCFV value: that the RCFV value for a group of taxa can be calculated 
from the sum of the tsRCFV of the taxa belonging to this group [23]. The same applies 
to groups of characters, which could be calculated by summing up the corresponding 
csRCFV values. For example, csRCFV values that are combinations of amino acids (e.g., 
hydrophobic amino acids) or nucleotides (e.g., AT), could be summed up over the cor-
responding amino acids (e.g., A, W, M, I, L, F and P) or nucleotides (e.g., A and T).

With the normalized values, this is no longer possible. For csRCFV, the normalised 
value can be calculated by summing the relative frequencies of the included states, cal-
culating the RCFV of the sum, and then applying Eq.  6 to the csRCFV value for nor-
malization. For groups of taxa no such solution is possible: to calculate the nRCFV for a 
group in this way, datasets should be reduced to the corresponding taxa and individually 
submitted to RCFV_Reader. As the new normalized value is independent of the num-
ber of taxa, the nRCFV for each of these sub-datasets can be directly compared to the 
nRCFV value of the entire dataset and to those of other monophyletic clades in the same 
manner.

The effect of nRCFV on data selection and topology

Our analyses of empirical data show that the effect of the number of positions and taxa 
per gene has a strong impact on the selection of genes supposedly affected by compo-
sitional heterogeneity based on the RCFV value only. The percentage of shared genes 
is relatively low between RCFV and nRCFV with a maximum of 56% shared genes, but 
usually values < 40%. This suggests that, whilst RCFV could detect genes with similar 
levels of compositional heterogeneity to some degree, the other factors influencing the 
RCFV calculation also have an impact on data selection. The total alignment length of 
sextiles selected based on nRCFV values and lower compositional heterogeneity were 
substantially shorter (up to about 27.5%) than in the corresponding sextile based on 
RCFV values. This shows that shorter sequences were notably less favored by the RCFV 
metric, as our simulation analyses would suggest. On the other hand, the nRCFV values 
of the compiled datasets in Fig. 5 also showed that selection of genes based on RCFV 
did result in reduced compositional heterogeneity: albeit to a lesser extent than nRCFV. 
Hence, previous studies using RCFV remain valid to some degree.

However, it does appear that these slight differences in selection have a notable effect 
on topology. The RF distances from the complete tree were substantially higher in 
the selection of genes based on nRCFV than on RCFV, while it was the opposite with 
respect to degree of heterogeneity in the corresponding compiled datasets. This suggests 
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that more compositionally heterogeneous genes are incorporated into the dataset in 
the lower sextiles using RCFV and accordingly the topology is more similar to the com-
plete one exhibiting the maximal heterogeneity in the dataset. Hence, topologies based 
on nRCFV-selected genes seem to favour notably different optima within the likelihood 
landscape in contrast to those selected by RCFV, potentially suggesting that the real data 
is heavily affected by compositional heterogeneity. The RCFV and nRCFV selected sex-
tiles do not converge on the same RF distance from the complete tree until they share 
78.7% of their datasets—at 423 genes. Prior to this, they produce phylogenies from very 
different optima in the likelihood landscape. This does suggest a significant difference 
between the results of the two metrics.

Alternative approaches to statistical measurement to deal with compositional 

heterogeneity

Besides the RCFV approach employing a statistical measurement, alternative meth-
ods have been suggested and used to deal with compositional heterogeneity. Like the 
RCFV approach, one group of tools allows exploration of compositional heterogene-
ity prior to any phylogenetic reconstruction. A variant of the χ2-test, which compares 
the homogeneity of the bases across sequences, is one such method (for review see 
[7]). It is implemented in programs such as PAUP, Tree-Puzzle and IQ-Tree [37, 39, 
40]. While this test points out problematic sequences, comparison of heterogene-
ity across genes and partitions, and outside of the dataset being tested at the current 
time, is not straightforward.

Another way to address compositional heterogeneity is through a matched-pair test 
type metrics, currently encountered primarily in the form of the Maximum Symmetry 
test [8, 17, 19]. Maximum Symmetry Tests use the application of three matched-pairs 
tests of symmetry to assess both stationarity (i.e., compositional homogeneity) and 
homogeneity of substitution rates [8, 19]. This manages to evade the primary concern 
of matched-pair tests between all possible pairs in a dataset—a large amount of com-
putational work that increases exponentially as the dataset expands. Instead, the Maxi-
mum Symmetry test compares only the two most divergent sequences to one another 
to assess whether they pass or fail the test. This method is implemented in IQtree [19, 
37]. Due to the comparison of only the two most divergent sequences, it risks generat-
ing both false positives and negatives. One test might fail only due to the presence of a 
single outlying sequence in the entire partition. However, that single outlier might not in 
itself necessarily cause such a strong violation of the model assumptions that the phylo-
genetic reconstruction will be misled. Hence, a dataset is rejected as not being homog-
enous even though it is when taken as a whole. In addition, compositional heterogeneity 
is not necessarily linked to evolutionary rate [12, 14]. Hence, even though the pair of the 
two most divergent sequences do not show signs of compositional heterogeneity, it is 
not given that this is true for all of the sequences in these partitions. While the χ2-test 
does not allow comparison across genes, partitions and datasets, the matched-pair test 
is inefficient across large datasets and the Maximum Symmetry test has a high chance 
of produce false positives, nRCFV and ntsRCFV values allow for direct comparisons 
across different partitions, genes, datasets and taxa with low computational effort. On 
the other hand, other compositional heterogeneity measures provide direct significance 
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test values as the results, whereas significance tests must be conducted for nRCFV and 
ntsRCFV values in addition and are not provided as standard.

A second group of methods applies sophisticated modelling approaches such as 
those employed by the CAT family of models [18, 41–43], or data recoding to reduce 
compositional heterogeneity originating from synonymous or quasi-synonymous 
substitutions [44, 45]. Although these site-specific models treat columns as state-
ments of homogeneity, average frequency perspective of nRCFV or RCFV values can 
nonetheless be relevant due the application of Q matrices—and by extension equilib-
rium frequencies—to different categories, albeit to a much lesser degree than with 
other models. Furthermore, in these cases, nRCFV values can be used in combination 
with other tests to provide a double layer of protection. For example, the subsampling 
of large phylogenomic datasets to make them applicable for analyses using compu-
tationally intensive CAT models can be guided by nRCFV values. This has also the 
advantage that the selected genes or partitions will be more compositionally homog-
enous. In the case of recoding, ncsRCFV values can provide insights into individual 
character state heterogeneity to provide guidance for recoding strategies.

Conclusions
RCFV is unique and highly useful in that it remains a highly convenient, low-cost 
method to detect compositional heterogeneity within a dataset, is one of the few 
methods of compositional heterogeneity detection that can be employed prior to phy-
logenetic analysis and allows assessment of genes, partitions and taxa with the same sta-
tistical measurement. As RCFV was itself derived from RCV and attempted to overcome 
some of its limitations through the addition of relative frequencies rather than occur-
rence counts of amino acids and nucleotides, so nRCFV represents the next evolution 
of this metric. This normalised relative frequency measure has statistical power across 
a wide variety of datasets both large and small, and in the future, with its current imple-
mentation in RCFV_Reader, is more convenient and computationally efficient than ever 
before, running on even large datasets in less than a minute on a local computer. In this 
manner, nRCFV can act as a useful screening method for these kind of phylogenetic 
artefacts for years to come.
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