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Abstract 

Backgrounds: It has been observed that high levels of enhancer of zeste homolog 2 
(EZH2) expression are associated with unsatisfactory prognoses and can be found in a 
wide range of malignancies. However, the effects of EZH2 on Lung Adenocarcinoma 
(LUAD) remain elusive. Through the integration of bioinformatic analyses, the present 
paper sought to ascertain the effects of EZH2 in LUAD.

Methods: The TIMER and UALCAN databases were applied to analyze mRNA and 
protein expression data for EZH2 in LUAD. The result of immunohistochemistry was 
obtained from the HPA database, and the survival curve was drawn according to the 
library provided by the HPA database. The LinkedOmics database was utilized to inves‑
tigate the co‑expressed genes and signal transduction pathways with EZH2. Up‑ and 
down‑regulated genes from The Linked Omics database were introduced to the CMap 
database to predict potential drug targets for LUAD using the CMap database. The 
association between EZH2 and cancer‑infiltrating immunocytes was studied through 
TIMER and TISIDB. In addition, this paper explores the relationship between EZH2 
mRNA expression and NSCLC OS using the Kaplan–Meier plotter database to further 
validate and complement the research. Furthermore, the correlation between EZH2 
expression and EGFR genes, KRAS genes, BRAF genes, and smoking from the Cancer 
Genome Atlas (TCGA) database is analyzed.

Results: In contrast to paracancer specimens, the mRNA and protein levels of EZH2 
were higher in LUAD tissues. Significantly, high levels of EZH2 were associated with 
unsatisfactory prognoses in LUAD patients. Additionally, the coexpressed genes of 
EZH2 were predominantly associated with numerous cell growth‑associated pathways, 
including the cell cycle, DNA replication, RNA transport, and the p53 signaling path‑
way, according to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes 
pathways. The results of TCGA database revealed that the expression of EZH2 was 
lower in normal tissues than in lung cancer tissues (p < 0.05). Smoking was associated 
with elevated EZH2 expression (p < 0.001). EZH2 was highly expressed in lung cancers 
with positive KRAS expression, and the correlation was significant in lung adenocar‑
cinoma (r = 0.3129, p < 0.001). CMap was applied to determine the top 15 positively 
correlated drugs/molecules and the top 15 negatively correlated drugs/molecules. 
MK‑1775, MK‑5108, fenbendazole, albendazole, BAY‑K8644, evodiamine, purvalanol‑a, 
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mycophenolic‑acid, PHA‑793887, and cyclopamine are potential drugs for patients 
with lung adenocarcinoma and high EZH2 expression.

Conclusions: Highly expressed EZH2 is a predictor of a suboptimal prognosis in LUAD 
and may serve as a prognostic marker and target gene for LUAD. The underlying cause 
may be associated with the synergistic effect of KRAS, immune cell infiltration, and 
metabolic processes.

Keywords: EZH2, LUAD, Prognosis, Tumor microenvironment

Introduction
Globally, pulmonary carcinoma exhibits the highest incidence and mortality rate [1, 2]. 
Non-small cell lung cancer (NSCLC) accounts for between 80 and 85% of all pulmonary 
carcinoma [1]. Recent advances in the diagnosis and treatment of NSCLC have been 
remarkable, however, the 5-year overall survival (OS) rate remains below 21% [2]. The 
subtypes of NSCLC include squamous cell carcinoma, adenocarcinoma, and large cell 
carcinoma [3]. Lung adenocarcinoma is the most prevalent type, accounting for approxi-
mately 40% of lung cancers [4]. Surgery with radiotherapy significantly improves the 
5-year survival rate for patients with early-stage lung adenocarcinoma [5]. For patients 
with early-stage lung adenocarcinoma, surgery with radiotherapy significantly improves 
the 5-year survival rate (83%, 68%, 60%, and 53% for stage IA, IB, IIA, and IIB patients, 
respectively, based on clinical stage staging). Patients with advanced lung adenocarci-
noma are, however, rarely treated using the same methods. Their 5-year survival rate is 
approximately 10%, therefore, immunotherapy and targeted therapy for lung cancer have 
become a hot topic of research in recent years [6, 7]. In the first-line metastatic setting 
for patients with metastatic LUAD, immunotherapy-based combinations are considered 
significant breakthroughs and demonstrate efficacy and OS benefits [8]. Even with its 
success, only a subset of patients exhibited responses, hence necessitating the develop-
ment of prediction markers. Numerous studies further elucidate subsequent tumor pro-
gression and therapeutic response in relation to oncocyte and tumor microenvironment 
(TME) interactions [9].

There is a growing body of evidence suggesting that epigenetic variations facilitate 
cancer developmental processes and treatment reactions. Through DNA methylation 
and demethylation, histone modification, and chromatin remodeling, epigenetic modifi-
cations can modulate chromatin status and genetic expression [10–12] without affecting 
DNA sequences. Enhancer of zeste homolog 2 (EZH2) is a gene associated with conserv-
ative cellular bio functions (e.g., cellular cycle, cellular proliferative ability, and cellular 
differentiative activity). EZH2 is essential for the proliferation and metastasis of cancer 
[13–15]. In vitro and in vivo knockdown of CBX2 significantly inhibited the growth and 
metastasis of LUAD cells with high EZH2 expression. While the combination of high 
CBX2 and EZH2 expression was indicative of an unfavorable prognosis for LUAD [16]. 
Highly expressed EZH2 is indicative of unsatisfactory prognoses for NSCLC, which 
may be associated with cancer phases or carcinoma types. EZH2 may be an independ-
ent NSCLC prognostic index. The prognosis of NSCLC [12] is influenced by highly 
expressed EZH2 or its synergy with KRAS or BRAF variants. EZH2 is a promising bio-
marker candidate with excellent immunotherapy response potential. Highly expressed 
EZH2 was associated with an unsatisfactory response to anti-PD-1 therapy, an early 
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relapse, and death. In addition, the abnormal expressing level of EZH2 correlates with 
the sensitivity of cisplatin-based therapy [17].

Using multiple network databases, this paper conducted exhaustive and systematic 
analyses of the EZH2 expression level in LUAD. The authors found EZH2 to be signifi-
cantly overexpressed in LUAD. EZH2 coexpression genes are predominantly abundant 
during cell development, T cell stimulation, and acquired immune responses. Both 
EZH2 expressions were related to cancer-infiltration immunocytes and immune modu-
lators in LUAD. This study reveals that EZH2 is an underlying prognostic and predic-
tive marker for response to treatment with immune-checkpoint inhibitors in NSCLC 
patients.

Materials and methods
Tumor immune estimation resource (TIMER) analyses

The TIMER (https:// cistr ome. shiny apps. io/ timer/) online server is a comprehensive 
network for studying the interactions of immune infiltrates with multiple tumor types 
[20]. The team analyzed the RNA sequences of various cancer types in TCGA with the 
TIMER database to determine the differential expression of EZH2 in tumor and para-
cancerous tissues. The TIMER algorithm estimated the immune cell abundance. Associ-
ation modules were applied to determine the relationship between the RNA sequencing 
expression profile data of EZH2 in LUAD and immunocytes, such as B Cell, CD8+ T 
cell, CD4+ T cell, Macrophage, Neutrophil, and Dendritic Cell. Based on genetic mod-
ules, the genetic biomarkers of immunocytes were also related to the expression level of 
EZH2. These genetic biomarkers have been mentioned in previously published articles 
[18–20].

UALCAN analyses

UALCAN (http:// ualcan. path. uab. edu/) is a comprehensive, facilitative, interaction-
based online resource for the analyses of cancer omics data and tumor clinic informa-
tion from TCGA [21]. In the UALCAN database, this study obtained EZH2 mRNA and 
protein that were differentially expressed in LUAD and adjacent healthy tissue samples.

Human protein atlas (HPA) database analysis

To map tissue samples, cells, and organs, the HPA (https:// www. prote inatl as. org/) is 
based on proteomics, transcriptomes, and system biology information. It contains the 
protein expression of tumor tissue and healthy tissue, as well as the survival curve for 
patients with tumors. The HPA database was queried for immunohistochemical data 
regarding EZH2 expression in LUAD. In addition, the survival data was applied to draw 
the survival curve.

Linked omics data base analyses

The Linked Omics database (http:// www. linke domics. org/ login. php) is an online plat-
form for analyzing multiple omics data sets from the TCGA [22]. Using the Link Finder 
module, the database was screened for LUAD for DEGs related to EZH2. The Pearson 
correlative coefficient was utilized to analyze the correlational outcomes, which were 
represented by volcanic plots and heat maps. The DEGs associated with EZH2 were 

https://cistrome.shinyapps.io/timer/
http://ualcan.path.uab.edu/
https://www.proteinatlas.org/
http://www.linkedomics.org/login.php
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annotated with GO analyses, KEGG analyses [23–25], and GSEA through the Link 
Interpreter module in order to acquire descriptive data.

Connectivity map (CMap) analyses

CMap (https:// clue. io/) [26–28] can be utilized to discover the mechanism of action 
of small molecules, functionally annotate genetic variants of disease genes, and inform 
clinical trials. The CMap database was updated with the top 50 EZH2-related up- and 
down-regulated genes from The Linked Omics database in order to predict potential 
drug targets for LUAD. And these potential therapeutic targets are ranked according to 
a point system.

TISIDB data base analyses

The TISIDB database (http:// cis. hku. hk/ TISIDB) is an online platform for analyzing the 
interaction between cancer and the immune system, which facilitates the prediction of 
immune therapy reactions [29]. Through using TISIDB database, this study examined 
the relationship between the expression level of EZH2 and lymph cells, immune modu-
lators, and chemotactic factors. At p < 0.05, a ‘rho’ value > 0.2 and <  − 0.2 was deemed to 
indicate a significant association at p < 0.05 [30].

Bioinformatics analysis based on TCGA database

To further validate and supplement our research, the relationship between EZH2 mRNA 
expression and NSCLC OS is analyzed with the Kaplan–Meier plotter database (https:// 
kmplot. com) [31–33]. Lung adenocarcinoma and lung squamous cell carcinoma TCGA 
data on EZH2 transcriptome expression were retrieved from the TCGA data portal. In 
addition, we evaluated the correlation between EZH2 expression and the EGFR gene, 
the KRAS gene, the BRAF gene, and smoking in lung cancer patients from the TCGA 
database. When the p-value was less than 0.05, the results were deemed statistically 
significant.

Statistics

The statistical analysis was performed using GraphPad Prism 8.0 (America) and SPSS 
17.0. (America). The measuring data are displayed as average ± SD. The expression lev-
els of EZH2 mRNAs were compared between LUAD and neighboring healthy speci-
mens from the TCGA database utilizing a t-test on independent samples. The TIMER 
database algorithm was implemented to estimate the immunocyte density. Utilizing 
the association module, the relationship between RNA-seq expression profile data and 
immune cells of EZH2 in LUAD was assessed. The Pearson correlation coefficient was 
applied to observe the EZH2 genes with differential expression in LUAD. Kaplan–Meier 
(K–M) curves were applied to conduct OS analyses. A two-tailed p = 0.05 was statisti-
cally significant.

Results
EZH2 is expressed in LUAD and is associated with prognosis

Compared with normal tissues, EZH2 was upregulated in Bladder Urothelial cancer 
(BLCA), mammary cancer (BRCA), Cervical squamous cell cancer and endocervical 

https://clue.io/
http://cis.hku.hk/TISIDB
https://kmplot.com
https://kmplot.com
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glandular cancer (CESC), biliary tract cancer (CHOL), Colonic glandular cancer 
(COAD), Esophagus cancer (ESCA), Glioblastoma multiforme (GBM), Head and 
Neck squamous cell cancer (HNSC), HNSC−HPV+, Kidney renal clear cell cancer 
(KIRC), Kidney renal papillary cell cancer (KIRP), Liver cell cancer (LIHC), Lung 
glandular cancer (LUAD), Lung squamous cell cancer (LUSC), Prostate glandular 
cancer (PRAD), Rectum glandular cancer (READ), Stomach glandular cancer (STAD), 
Thyroid cancer (THCA), and Uterine Corpus Endometrial cancer (UCEC) (Fig.  1A, 
B). Consistent with the data regarding the level of mRNA expression, our team dis-
covered that the level of EZH2 protein expression was greater in LUAD specimens 
than in neighboring specimens (Fig. 1C). The positive dyeing of EZH2 was predomi-
nantly in the plasma and membranes (Fig. 1D). As illustrated by Fig. 1B, EZH2 was 
expressed more in cancer tissue than in paracancer tissue (Fig.  1B). K–M analyses 
revealed that high EZH2 expression was significantly associated with inferior OS 
[hazard ratio (HR) = 1.372, p = 0.035] in LUAD patients. The median value of EZH2 
expressing level was 3.95. Patients with a higher expressing level had a 5-year OS of 
38%, while those with a lower expressing level had a 5-year OS of 47% (Fig. 1E).

EZH2 co‑expression network in LUAD

The findings of the coexpression feature of EZH2 revealed that 6559 genes were posi-
tively associated with EZH2, while 6209 genes were negatively associated (Fig. 2A). Posi-
tive and negative heatmaps displayed the top 50 genes related to EZH2 in a positive and 
negative manner, respectively (Fig. 2B, C).

GO analyses unveiled that coexpressed genes of EZH2 join predominantly in DNA 
replication, protein localization to the cell surface, adrenergic receptor signaling path-
way, basal part of the cell, MHC protein complex, transcriptional factor (TF) activity, 
direct ligand modulated sequence-specific DNA binding, transmembrane receptor pro-
tein kinase activity, immunoglobulin binding, etc. (Tables 1, 2, 3).

KEGG analyses revealed the enriched pathways in the Cellular cycle, DNA replication, 
Homologous recombination, Fanconi anemia pathway, Spliceosome, Mismatch repair, 
RNA transportation, Nucleotide excision repair, p53 signaling pathway, Oocyte meio-
sis, Metabolism of xenobiotics by cytopigment P450, PPAR signal path, Cellular adhesive 
molecules (CAMs), Chemical tumorigenesis, Staphylococcus aureus infection, Salivary 
secretion, Retinol metabolic process, Lysosome, Complement and coagulation cascades, 

(See figure on next page.)
Fig. 1 High expression of EZH2 in LUAD. A Human expression levels of EZH2 in various malignant tumor 
types from The Cancer Genome Atlas (TCGA) database were analyzed by the Tumor Immune Estimation 
Resource (TIMER). EZH2 was upregulated in Bladder Urothelial cancer (BLCA), mammary cancer (BRCA), 
Cervical squamous cell cancer and endocervical glandular cancer (CESC), biliary tract cancer (CHOL), Colonic 
glandular cancer (COAD), Esophagus cancer (ESCA), Glioblastoma multiforme (GBM), Head and Neck 
squamous cell cancer (HNSC), HNSC−HPV+, Kidney renal clear cell cancer (KIRC), Kidney renal papillary cell 
cancer (KIRP), Liver cell cancer (LIHC), Lung glandular cancer (LUAD), Lung squamous cell cancer (LUSC), 
Prostate glandular cancer (PRAD), Rectum glandular cancer (READ), Stomach glandular cancer (STAD), Thyroid 
cancer (THCA), Uterine Corpus Endometrial cancer (UCEC). *p < 0.05. **p < 0.01. ***p < 0.001. B The expressing 
levels of EZH2 mRNA in tumor specimens and healthy specimens were based on the UALCAN database. C 
The protein contents of EZH2 in paracancerous specimens and LUAD cancerous specimens were detected 
via CPTAC specimens in the UALCAN data base. D The representative EZH2 immunohistochemical images 
were found in LUAD cancer and corresponding normal tissues. E Kaplan–Meier survival analysis revealed that 
LUAD patients with high EZH2 expression exhibited a shorter overall survival than that in patients with low 
EZH2 expression
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Drug metabolic process, etc. (Table  4). These findings indicate that the net of EZH2 
expressing significantly affects the immune microenvironment in LUAD, and that the 
net of EZH2 expressing is essential for the onset and progression of cancers.

Fig. 1 (See legend on previous page.)
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EZH2 Is related to immunocyte infiltration in LUAD

EZH2 was positively correlated with neutrophil infiltration (pr = 0.129, p = 4.51e−03) 
and a negative correlation with macrophage (pr =  − 0.092, p = 4.25e−02) (Fig.  3A). 
EZH2 was remarkably related to immunostimulators, such as HHLA2 (rho =  − 0.313, 
p = 4.1e−13), IL6R (rho = −0.381, p < 2.2e−16), TMEM173 (rho = −0.499, p < 2.2e−16), 
and TNFSF13 (rho = -0.488, p < 2.2e−16) (Fig.  3B). The expressing level of EZH2 
was associated with immune inhibitors such as IDO1(rho = 0.179, p = 4.34e−05), 
LAG3(rho = 0.246, p = 1.57e−08), LGALS9(rho = −0.186, p = 2.08e−05), and 
TGFB1(rho = −0.244, p = 2.23e−08) (Fig.  3C). The level of EZH2 expression was sig-
nificantly correlated with CCL14 (rho = −  0.483, p = 2.2e−16), CCL17 (rho = −  0.364, 
p = 4.41e−18), CCL23 (rho = −  0.303, p = 2.47e−12), and CXCL16 (rho = −  0.43, 
p = 2.2e−16) (Fig.  3D). Moreover, the level of EZH2 expression was significantly cor-
related with chemotactic factor acceptors CCR6 (rho = −  0.352, p = 1.81e−16), 
CX3CR1 (rho = −  0.486, p < 2.2e−16), CXCR1 (rho = −  0.205, p = 2.78e−06), CXCR2 
(rho = − 0.244, p = 2.1e−08) (Fig. 3E). These results validate the hypothesis that EZH2 is 
an immune regulatory factor in LUAD.

EZH2 expression analysis through TCGA database

A total of 165 non-smokers and 361 smokers were extracted from the TCGA database 
of lung adenocarcinoma patients; 550 lung adenocarcinoma patients and 550 lung squa-
mous carcinoma patients with EGFR expression; 526 lung adenocarcinoma patients 
and 550 lung squamous carcinoma patients with EGFR expression. KRAS expression 
was detected in 585 lung adenocarcinoma patients and 550 lung squamous cell carci-
noma patients. With BRAF expression, there were 527 lung adenocarcinoma patients 
and 502 lung squamous cell carcinoma patients. In lung squamous cell carcinoma and 
lung adenocarcinoma, EZH2 expression is positively correlated with BRAF (r = 0.2397, 
p < 0.0001) and KRAS (r = 0.3167, p < 0.001) gene expression (Fig.  4A, G). The EZH2 
gene expression of lung adenocarcinoma was positively correlated with the gene expres-
sion of BRAF (r = 0.2633, p < 0.0001) and KRAS (r = 0.31229, p < 0.0011) (Fig.  4B, H). 
The EZH2 gene expression of lung squamous cell carcinoma was positively corre-
lated with the gene expression of BRAF (r = 0.3662, p < 0.0001) and KRAS (r = 0.3567, 
p < 0.0001) (Fig. 4C, I). A positive correlation exists between EZH2 expression and EGFR 
expression in lung squamous cell carcinoma and lung adenocarcinoma, but it is weak 
(r = 0.1122, p = 0.0002) (Fig.  4D). However, there was no statistical significance in the 
statistics of lung adenocarcinoma(r = 0.008, p = 0.8594) (Fig.  4E) and lung squamous 
cell carcinoma(r = 0.0660, p = 0.1221) (Fig.  4F). TCGA data demonstrate a correlation 
between high EZH2 expression and smoking (p < 0.0001) (Fig.  4J), particularly in lung 
adenocarcinoma (p = 0.0011) (Fig. 4K). The result in lung squamous cell carcinoma was 
not statistically significant (p = 0.8453) (Fig. 4L).

Survival analysis of lung cancer through Kaplan–Meier plotter database

To verify the results of this research, the Kaplan–Meier database was adopted for sur-
vival analysis. The medical records of patients diagnosed with NSCLC that were included 
in the study showed that high levels of EZH2 mRNA expression occurred in 962 of the 
cases, with a median survival time of 54.17 months; I n 964 cases with low expression, 
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Table 1 EZH2 co‑expression genes were annotated by Biological Process (BP) analysis

ES enrichment score, NES Normalized Enrichment Score

Description Size Leading 
edge 
number

ES NES P value FDR

DNA strand elongation 23 20 0.930 1.984 0 0

Interstrand cross‑link repair 39 19 0.882 2.064 0 0

Chromosome segregation 262 99 0.874 2.525 0 0

DNA replication 233 101 0.853 2.461 0 0

Postreplication repair 46 16 0.849 2.062 0 0

Protein activation cascade 87 29 − 0.659 − 2.049 0 0

Protein localization to cell surface 56 26 − 0.698 − 2.033 0 0

Fluid transport 30 16 − 0.712 − 1.847 0 0

Response to fluid shear stress 33 14 − 0.716 − 1.881 0 0

Adrenergic receptor signaling pathway 28 13 − 0.739 − 1.903 0 0

Table 2 EZH2 co‑expression genes were annotated by Cellular Component (CC) analysis

ES enrichment score, NES Normalized Enrichment Score

Description Size Leading edge 
number

ES NES P value FDR

Condensed chromosome 192 82 0.881 2.538 0 0

Replication fork 62 36 0.877 2.178 0 0

Chromosomal region 288 117 0.859 2.544 0 0

Sex chromosome 29 9 0.848 1.860 0 0

Heterochromatin 72 26 0.808 2.085 0 0

Sarcolemma 130 51 − 0.608 − 2.050 0 0

Endosome lumen 35 6 − 0.617 − 1.684 0 0

Basal part of cell 49 19 − 0.691 − 1.966 0 0

Platelet dense granule 20 10 − 0.734 − 1.712 0 0

MHC protein complex 19 16 − 0.782 − 1.878 0 0

Table 3 EZH2 co‑expression genes were annotated by Molecular Function (MF) analysis

ES enrichment score, NES Normalized Enrichment Score

Description Size Leading edge 
number

ES NES P value FDR

Structural constituent of 
nuclear pore

22 11 0.819 1.765 0.000 0.002

Catalytic activity, acting on 
DNA

170 77 0.807 2.269 0.000 0.000

Single‑stranded DNA binding 93 42 0.781 2.063 0.000 0.000

Helicase activity 142 53 0.779 2.168 0.000 0.000

Transcription factor activ‑
ity, direct ligand regulated 
sequence‑specific DNA 
binding

47 17 − 0.607 − 1.771 0.006 0.013

Oxidoreductase activity, acting 
on peroxide as acceptor

54 19 − 0.618 − 1.819 0.000 0.012

Transmembrane receptor 
protein kinase activity

80 30 − 0.631 − 1.972 0.000 0.000

Immunoglobulin binding 22 12 − 0.687 − 1.696 0.005 0.019

Catecholamine binding 19 8 − 0.745 − 1.770 0.009 0.012
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Table 4 EZH2 co‑expression genes were annotated by Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis

ES enrichment score, NES Normalized Enrichment Score

Description Size Leading 
edge 
number

ES NES P value FDR

Cell cycle 118 54 0.867 2.351 0 0

DNA replication 36 26 0.930 2.199 0 0

Homologous recombination 34 23 0.904 2.065 0 0

Fanconi anemia pathway 44 25 0.887 2.063 0 0

Spliceosome 115 71 0.740 2.009 0 0

Mismatch repair 23 14 0.922 1.977 0 0

RNA transport 158 64 0.689 1.933 0 0

Nucleotide excision repair 45 13 0.787 1.926 0 0

p53 signaling pathway 69 14 0.723 1.888 0 0

Oocyte meiosis 118 30 0.691 1.871 0 0

Metabolism of xenobiotics by cytochrome P450 70 23 − 0.638 − 1.942 0 0

PPAR signaling pathway 74 22 − 0.635 − 1.955 0 0

Cell adhesion molecules (CAMs) 137 56 − 0.595 − 1.990 0 0

Chemical carcinogenesis 75 21 − 0.667 − 2.009 0 0

Staphylococcus aureus infection 52 28 − 0.697 − 2.020 0 0

Salivary secretion 85 25 − 0.639 − 2.022 0 0

Retinol metabolism 63 22 − 0.669 − 2.025 0 0

Lysosome 121 52 − 0.620 − 2.039 0 0

Complement and coagulation cascades 78 25 − 0.656 − 2.049 0 0

Drug metabolism 66 23 − 0.713 − 2.160 0 0

the median survival time was 79.50  months (HR = 1.31, 95% CI 1.15–1.48, p < 0.05). 
(Fig. 5A). Further analysis revealed that 360 lung adenocarcinoma cases with low expres-
sion of EZH2 had a median survival time of 119.87 months, compared to 357 cases with 
high expression of EZH2 (HR = 1.27, 95% CI 1.01−1.6, p < 0.05) (Fig. 5B). High expres-
sion of EZH2 mRNA was associated with a median survival time of 52.97  months in 
261 cases of lung squamous cellcarcinoma, whereas low expression was associated 
with a median survival time of 62.00 months in 263 cases (HR = 1.03, 95% CI 0.81−1.3, 
p = 0:82) (Fig. 5C).

CAMP database analysis

The CMap database was up-regulated with the top 50 EZH2-related up- and down-regu-
lated genes from The Linked Omics database to predict potential drug targets for LUAD. 
These potential therapeutic targets are ranked according to a point system. CMap was 
applied to determine the top 15 positively correlated drugs/molecules and the top 15 
negatively correlated drugs/molecules. Docetaxel, palbociclib, and angiogenesis-inhib-
itor were among the extensively used compounds for the treatment of tumor, as deter-
mined by their scores. Other drugs/molecules, such as MK-1775 [34, 35], MK-5108 [36], 
fenbendazole [37, 38], albendazole [39], BAY-K8644 [40], evodiamine [41], purvalanol-a 
[42], mycophenolic-acid [43], PHA-793887 [44], cyclopamine [45], is a possible treat-
ment for lung adenocarcinoma (Tables 5, 6). To determine the therapeutic potential of 
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these drugs/molecules in patients with lung adenocarcinoma with high EZH2 expres-
sion, additional research is necessary.

Discussion
Advanced lung adenocarcinoma is now commonly treated with immunotherapy-
based combination therapy, which has demonstrated efficacy and OS advantages in 
the first-line metastasis. Notwithstanding the advancements in targeted therapy and 
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immunotherapy, immune therapy patients will eventually develop drug tolerance due to 
immune evasion mechanisms. Patients with advanced pulmonary adenocarcinoma and 
metastatic lung adenocarcinoma have a dismal prognosis. In addition to PD-1/PDL1, 
numerous molecules, such as siglec-15 and FGL1 [46, 47], are implicated in the immune 
microenvironment. Consequently, investigating the latent immune-related factors of 
cancer immunoescape can improve the prognosis for lung adenocarcinoma patients. 
While the role of EZH2 in LUAD is unidentified, we sought to probe its clinical signifi-
cance and biological functions by utilizing open-access databases for a comprehensive 
analysis.

The epigenetic modification of histones is a crucial mechanism for regulating cellular 
processes, such as tumorigenesis and immunity. Typically, epigenetic abnormalities are 
associated with tumor progression and cancer development [48]. EZH2 is the catalytic 
component of multicomb inhibition complex 2, which trimethylates lysine 27 of his-
tone H3 to promote transcriptional inhibition [11]. It is frequently overexpressed in a 
variety of tumors, including pulmonary carcinoma [12], colonic and rectal carcinoma 
[49], mammary carcinoma [50], pancreatic carcinoma [47], and prostate carcinoma [47]. 
Multiple cancer types, including BLCA, BRCA, CESC,CHOL, COAD, ESCA, GBM, 
HNSC, HNSC-HPV+. KIRC,KIRP,LIHC, LUAD, LUSC, PRAD, READ, STAD, THCA, 
and UCEC, had elevated levels of EZH2 relative to normal tissue, according to the find-
ings of this study (Fig. 1A, B). Our study found higher levels of EZH2 mRNA and pro-
tein in lung adenocarcinoma than in adjacent tissues. Moreover, a higher level of EZH2 
expression is associated with an inferior prognosis for lung adenocarcinoma patients.

To delve deeper into the biological information of EZH2, GO and KEGG analysis is 
performed.These results demonstrate that the net of EZH2 expressing significantly 
affects the immune microenvironment in LUAD, and that the net of EZH2 expressing is 
essential for the onset and progression of cancers. Hoxha et al. believed that the Hippo–
YAP pathway was closely related to EZH2. It may participate in this signaling pathway 
to inhibit the transcription of a large gene network and mediate a variety of cellular 
functions. This includes the inhibition of the cell cycle kinase inhibitor p27, which pro-
motes contact inhibition and regulates the occurrence and progression of tumor cells. 
Moreover, EZH2 is involved in cell proliferation and organ size regulation [51]. EZH2 
and JMJD6 gene profiles overlap in breast cancers, with EZH2 co-regulating a unique 
gene box in both ER+ and ER− cells. In MDA MB 231 cells, 496 genes, including aurora 
kinase, are co-regulated, and aurora kinase is currently being evaluated as a potential 
new treatment target for mammary carcinoma.

The CMap database was to predict potential drug targets for LUAD. And these poten-
tial therapeutic targets are ranked according to a point system. Docetaxel, palbociclib, 
and angiogenesis-inhibitor were among the extensively used compounds for the treat-
ment of tumor, as determined by their scores. We have identified some potential drugs 
or molecules for the treatment of lung adenocarcinoma by reading the literature, such as 
MK-1775 [34, 35], MK-5108 [36], fenbendazole [37, 38], albendazole [39], BAY-K8644 
[40], evodiamine [41], purvalanol-a [42], mycophenolic-acid [43], PHA-793887 [44], and 
cyclopamine [45] (Tables 5, 6). Of interest is the WEE1 inhibitor MK-1775, which has 
shown potential chemotherapy or radiotherapy sensitivity in preclinical models, par-
ticularly, although not exclusively, in p53 mutated or deficient cancer cells [52]. Several 
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clinical trials have shown that WEE1 inhibitors can be safely used in combination with 
different chemotherapeutic agents as well as concurrent chemotherapy with radiation 
therapy. Ongoing clinical trials testing novel agents of WEE1 inhibitors, such as ATR 
and PAPR inhibitors and anti-PDL1 immunotherapies, are underway and could better 
define the role of WEE1 inhibitors in the future, in terms of efficacy in terms of good 
safety profile compared to monotherapy and/or standard of care, if any of the novel 
therapeutic combinations would show superior antitumor efficacy [53, 54]. In our study, 
EZH2 was highly expressed in lung cancers with positive KRAS expression, and the 
correlation was significant in lung adenocarcinoma (r = 0.3129 and p < 0.001) (Fig. 4H). 
The direct dependence of Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) and 
EZH2 expression on mutation-activated KRAS and their prognostic relevance in KRAS-
mutated LUAD were identified in a study by Li et al. [55]. Aberrant KRAS activity ren-
ders LUAD cancer cell lines vulnerable to MTHFD2 and EZH2 inhibitors. Importantly, 
co-inhibition of these two factors has a synergistic effect [55]. Therefore the relationship 
between EZH2 and KRAS may be one of our breakthroughs for LUAD-targeted therapy, 
but the related research literature is limited and deserves further exploration.
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Table 5 The top 15 compounds with positive correlations were obtained from CMap

cp compound

Rank Score Type Name Description Target

6 99.89 cp MLN‑8054 Aurora kinase inhibitor AURKA

10 99.68 cp HO‑013 PPAR receptor agonist PPARG 

18 99.47 cp MK‑1775 WEE1 kinase inhibitor WEE1

20 99.4 cp Brivanib FGFR inhibitor FGFR1, KDR, FLT1, CYP3A4, FGFR2, FGFR3, 
FLT4, KCNH2

22 99.26 cp MK‑5108 Aurora kinase inhibitor AURKA, AURKB, AURKC

29 98.94 cp Fenbendazole Tubulin inhibitor CYP2C19, CYP2D6, CYP2J2, CYP3A4, TUBB

30 98.9 cp Cholic‑acid Bile acid CES1, FECH, PLA2G1B, ADH1C, COX4I1, 
COX5A, COX5B, COX6A2, COX6B1, COX6C, 
COX7A1, COX7B, COX7C, COX8A, ESRRG, 
FABP6, GPBAR1, MT‑CO1, MT‑CO2, MT‑CO3

33 98.8 cp Torin‑2 MTOR inhibitor MTOR

34 98.77 cp Docetaxel Tubulin inhibitor TUBB, BCL2, MAP2, MAP4, MAPT, NR1I2, 
TUBB1

40 98.34 cp Albendazole Anthelmintic CYP1A2, CYP2J2, TUBA1A, TUBB, TUBB4B

45 97.99 cp GANT‑58 GLI antagonist DHH, GLI1, IHH

46 97.99 cp Buphenine Adrenergic receptor agonist ADRB2

52 97.85 cp BAY‑K8644 Calcium channel activator CACNA1C

56 97.7 cp Evodiamine ATPase inhibitor TRPV1

57 97.65 cp Chaetocin Histone lysine methyltrans‑
ferase inhibitor

EHMT2, SUV39H1

Table 6 The top 15 compounds with negative correlations were obtained from CMap

cp compound

Rank Score Type Name Description Target

8552 − 99.79 cp Purvalanol‑a CDK inhibitor CDK1, CDK2, CDK4, CDK5, 
CCND1, CCNE1, CSNK1G3, 
RPS6KA1, SRC

8535 − 99.5 cp Palbociclib CDK inhibitor CDK4, CDK6, CCND3

8531 − 99.4 cp JAK3‑inhibitor‑VI JAK inhibitor JAK3

8527 − 99.3 cp BX‑912 Pyruvate dehydrogenase 
kinase inhibitor

PDPK1, AKT2, CDK2, CHEK1, 
GSK3B, KDR, PDK1

8516 − 99.15 cp Amonafide Topoisomerase inhibitor TOP2A, TOP2B

8513 − 99.1 cp Mycophenolic‑acid Dehydrogenase inhibitor IMPDH1, IMPDH2

8508 − 99.01 cp BX‑795 IKK inhibitor PDPK1, CDK2, CHEK1, GSK3B, 
IKBKE, KDR, PDK1, TBK1

8503 − 98.84 cp Aminopurvalanol‑a Tyrosine kinase inhibitor CDK1, CDK2, CDK5, CDK6

8501 − 98.75 cp Ellipticine Topoisomerase inhibitor TOP2A, TOP2B

8500 − 98.74 cp Angiogenesis‑inhibitor Angiogenesis inhibitor EGFR

8496 − 98.63 cp AG‑14361 PARP inhibitor PARP1

8491 − 98.45 cp PHA‑793887 CDK inhibitor CDK1, CDK2, CDK4, CDK5, 
CCND1, CCNE1, CDK7, CDK9

8488 − 98.34 cp AS‑601245 JNK inhibitor GSK3B, MAPK10, MAPK8, 
MAPK9, PIM1

8489 − 98.34 cp Cyclopamine Smoothened receptor 
antagonist

SMO, DHH, IHH, PTCH1

8485 − 98.31 cp BMS‑345541 IKK inhibitor IKBKB, CHUK
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EZH2 is associated with the modulation of pivotal regulatory targets and therapeutic tar-
gets in the cellular cycle [56]. These findings are in line with this study. Moreover, this study 
revealed that EZH2 is closely associated with drug metabolism, MHC protein complex 
and helicase activities, TF activities, transmembrane acceptor protein kinase activities, and 
immunoglobulin binding.

Selective deletion of EZH2 or inhibition of its hematopoietic activity with small mole-
cules increases the production of the il-15 acceptor, CD122 + NK progenitors, and mature 
NK precursors in murine and human stem and precursor cells. These findings suggest that 
EZH2 modulates the development of NK cells and autoimmunity [57]. Phosphorylation of 
EZH2 interferes with the function of PRC2 and increases the expression of type I interferon 
and antigen presentation genes. The increased efficacy of anti-CTLA-4 immunotherapy 
and enhanced overall survival in tumor models of syngeneic mice [58, 59]. Inhibition of 
EZH2 can direct myeloid differentiation of primitive hematopoietic progenitors. Conse-
quently, EZH2 plays a crucial yet diverse role in the modulation of TME, which is required 
for determination at specific phases. Our extracted data revealed that EZH2 is closely asso-
ciated with immunity-related factors, such as immune stimulators, immune inhibitors, 
immune chemokines, and chemokine receptors. It is noteworthy that Macrophage and 
Neutrophil are closely associated with the expression level of EZH2. Higher inflammatory 
markers are associated with unsatisfactory prognoses in NSCLC patients, according to a 
paper we just published [60]; these results imply that the effects of EZH2 on lung adeno-
carcinoma may be tightly linked to inflammatory factors. Hence, the prognosis of NSCLC 
could be enhanced by regulating inflammatory markers.

This study based on various database mining techniques revealed that EZH2 is a bio-
marker associated with LUAD prognosis. The level of EZH2 expression is connected to the 
infiltration of immunocytes, immunomodulators, and chemokines and is involved in the 
cell cycle process. Our research is limited by the following factors: first, it is possible that 
the gene expression analysis based on the open-source database we examined is flawed. 
Accordingly, to explore the latent biological causal link between EZH2 and the interplay 
between tumor and immunity in LUAD, it is necessary to carry out additional in vivo or 
in vitro experiments. Second, the effects of EZH2 on the clinical outcomes of immune ther-
apy remain undetermined and need to be clarified by additional clinical studies. Nonethe-
less, this study focuses on the immunofunction of EZH2 in the tumor microenvironment 
and its effect on the cell cycle.

In conclusion, these findings support the probability that EZH2 appears to assume an 
immunomodulatory function in lung adenocarcinoma. TME is crucial in determining the 
outcome and progression of tumor rejection. Increasing evidence suggests that it is essen-
tial to understand the effect of TIME on tumor genesis and development to accurately eval-
uate the efficacy of anticancer therapies and develop more effective treatments. Since EZH2 
plays a role in numerous immune cells that may contribute to tumor immunity, it is essen-
tial to investigate how inhibition of EZH2 may affect immune cell function during tumor 
development, a question that remains unanswered at present.
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Conclusion
As a prognosis index and target gene in LUAD, highly expressed EZH2 can serve as a 
predictor of unsatisfactory prognoses. It is possible that the underlying cause is associ-
ated with the synergistic effect that KRAS, immune cell infiltration, and metabolic pro-
cesses; correspondingly, these aspects necessitate further exploration.
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