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Abstract 

Background:  Identification of the cancer subtype plays a crucial role to provide an 
accurate diagnosis and proper treatment to improve the clinical outcomes of patients. 
Recent studies have shown that DNA methylation is one of the key factors for tumori-
genesis and tumor growth, where the DNA methylation signatures have the potential 
to be utilized as cancer subtype-specific markers. However, due to the high dimension-
ality and the low number of DNA methylome cancer samples with the subtype infor-
mation, still, to date, a cancer subtype classification method utilizing DNA methylome 
datasets has not been proposed.

Results:  In this paper, we present meth-SemiCancer, a semi-supervised cancer sub-
type classification framework based on DNA methylation profiles. The proposed model 
was first pre-trained based on the methylation datasets with the cancer subtype labels. 
After that, meth-SemiCancer generated the pseudo-subtypes for the cancer datasets 
without subtype information based on the model’s prediction. Finally, fine-tuning was 
performed utilizing both the labeled and unlabeled datasets.

Conclusions:  From the performance comparison with the standard machine learning-
based classifiers, meth-SemiCancer achieved the highest average F1-score and Mat-
thews correlation coefficient, outperforming other methods. Fine-tuning the model 
with the unlabeled patient samples by providing the proper pseudo-subtypes, encour-
aged meth-SemiCancer to generalize better than the supervised neural network-based 
subtype classification method. meth-SemiCancer is publicly available at https://​github.​
com/​cbi-​bioin​fo/​meth-​SemiC​ancer.

Keywords:  DNA methylation, Semi-supervised learning, Cancer subtype classification, 
Neural network

Background
Human cancer is one of the highly heterogeneous diseases driven by multiple genetic 
alterations and mutations [1]. Due to its divergent biological factors and relations 
between the genetic components, it has been a challenge to predict the prognosis and 
clinical outcomes of patients [2, 3]. To provide personalized treatment and precisely tar-
geted medicine, cancers of specific tissues have been divided into subtypes based on the 
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molecular characteristics of primary tumors. Sorlie et al. and Parker et al. [6] presented 
the molecular properties of breast cancer and proposed a subtyping system named 
PAM50 classifying breast cancer into five intrinsic subtypes [4, 5]. Abeshouse et  al. 
revealed novel molecular features related to primary prostate cancer and established a 
molecular taxonomy of it. The premise is that cancer patients within the same subtype 
would share similar responses to therapy and prognostic outcome, where subtype identi-
fication could lead to a better diagnosis of patients and help to reveal and understand the 
tumor biology system [7].

Based on the defined cancer subtyping system, a cancer diagnosis has been improved. 
In the early stages, traditional diagnosis heavily relies on manual inspections from 
human clinical expertise causing expensive costs and relatively low accuracy [8, 9]. To 
address these issues, computational methods utilizing gene expression profiles have 
been presented, where machine learning-based approaches including neural networks 
have been widely applied for cancer subtype classification [10–12]. Recently, studies have 
shown that epigenetic alterations play key roles in cancer development, where epigenetic 
changes are involved in the earliest phases of tumorigenesis and tumor promotion [13, 
14]. DNA methylation is the most extensively studied epigenetic mechanism. Several 
studies suggested that hypermethylation of CpG islands regions leads to transcriptional 
silencing, which is a key factor in tumor growth [15, 16]. Epigenetic analyses have identi-
fied aberrant DNA methylation signature patterns are related to the molecular subtypes 
of cancers [14], suggesting a potential to be utilized for subtype-specific markers [17]. 
For example, Holm et al. [18] revealed that the molecular subtypes of breast cancer dis-
play specific methylation profiles, suggesting that methylation may play a key role in the 
development of breast cancers. Bediaga et al. [14] also provided evidence that distinct 
DNA methylation profiles enable the prediction of breast cancer subtype, prognostica-
tion, and the therapeutic stratification of the patients. Zhang et al. [19] identified meth-
ylation patterns of 8 CpGs related to the molecular subtypes of the prostate cancer, and 
Ylitalo et al. [20] also investigated a promoter methylation signature which predicts the 
activity of tumor and the patient prognosis. Chen et al. [21] validated that DNA meth-
ylation-based classification can be used for identifying the distinct subtypes of renal cell 
carcinoma.

DNA methylome holds much promise as biomarker in cancer, however, several chal-
lenges remain in developing a method to improve the diagnosis of cancer utilizing the 
methylation dataset. Due to the much higher dimensionality and complexity with a large 
number of CpGs compared to other biological datasets, the traditional machine learn-
ing models suffer difficulty in the training phase. Moreover, to train those models for 
subtype prediction of each cancer patient, a large amount of dataset having subtype label 
information is needed to prevent the overfitting issue. However, the number of public 
cancer methylome datasets is limited to be utilized for research, and for most of the 
datasets, the subtype information for each patient is not provided, which makes it dif-
ficult for the current classification models to utilize those for training.

In recent, to alleviate the need for labeled data, semi-supervised learning (SSL) has 
been presented, which allows a model to leverage unlabeled data [22]. Since unla-
beled data can be obtained with the low cost of human labor, a plethora of SSL meth-
ods have been presented for deep neural networks [23–26]. One of the popular SSL 
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approaches is to produce pseudo labels for unlabeled samples based on the model’s 
prediction and feed them as input to train against [26]. SSL utilizes those unseen data 
to better generalize the model and avoid the overfitting of the training dataset, which 
has shown improvement in image classification performance. SSL has also been 
applied to gene expression datasets. scSemiCluster presented a framework to improve 
cell type classification combining SSL with domain adaptation for single-cell RNA-
sequencing (scRNA-seq) datasets [27], and SemiRNet implemented cell identification 
tool utilizing the unlabeled scRNA-seq cells based on the semi-supervised recurrent 
convolutional neural network model [28]. These studies have shown the application of 
SSL has the potential to address the lack of labeled data issue in the biological domain.

In this paper, we proposed a cancer subtype classification framework based on 
semi-supervised learning, meth-SemiCancer, which utilizes the unlabeled DNA 
methylome cancer dataset for training. Our model was first pre-trained with the 
DNA methylation dataset having the subtype information, and a pseudo-label was 
assigned to the unlabeled sample. Utilizing those, meth-SemiCancer was re-trained 
by optimizing the weighted cross-entropy loss using both labeled and pseudo-labeled 
datasets, where the pseudo-label was updated in each iteration. The performance of 
meth-SemiCancer was compared to that of several supervised machine learning (ML) 
classifiers. meth-SemiCancer improved the cancer subtype prediction performance, 
by providing proper pseudo-labels on the unlabeled cancer methylome datasets via 
SSL.

Methods
Our meth-SemiCancer framework consists of two phases: (1) preprocessing and (2) 
semi-supervised cancer subtype classification. The workflow of our model is shown in 
Fig. 1.

Fig. 1  Illustration of the proposed cancer subtype classification framework via Semi-supervised learning 
utilizing DNA methylation profiles
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Data collection

To pretrain meth-SemiCancer, DNA methylome cancer datasets were collected from 
TCGA [29], where primary solid tumor tissue samples measured by Illumina Human 
Infinium 450K and 27K assay were downloaded. Six cancers with subtypes defined, 
Breast invasive carcinoma (BRCA), Colon Adenocarcinoma (COAD), Glioblastoma 
Multiforme (GBM), Prostate adenocarcinoma (PRAD), Renal cell carcinoma (RCC), 
and Thyroid carcinoma (THCA) were used. Subtype information for each cancer was 
retrieved from [5, 30–34] respectively. We also obtained DNA methylation datasets 
for the above six cancers from Gene Expression Omnibus (GEO) [35], where these 
datasets did not provide subtype information, utilizing them as unlabeled data-
sets. The number of samples and subtype information for each cancer are shown in 
Tables 1 and 2.

Preprocessing

As Illumina Human Infinium 27K assay technique only allows to measure the meth-
ylation status of 27K CpG sites due to the limitation of the technique, the datasets 
processed based on 27K assay results in having the subset of the features in 450K 
dataset. To utilize both DNA methylome datasets measured by Illumina Human 
Infinium 450K and 27K assay for better training and generalized optimization of the 
classification model, common features were used for further steps. To reduce the bias 
caused by a high frequency of missing values during model training, CpG sites having 

Table 1  Datasets used for training meth-SemiCancer

Cancer Labeled datasets (with 
the subtype information)

Total Unlabeled datasets (without the subtype 
information)

Total

BRCA​ TCGA-BRCA​ 1056 GSE72251
GSE20712
GSE72245

GSE75067
GSE69914
GSE156968

GSE66695
GSE58999
GSE141441

1225

COAD TCGA-COAD 475 GSE118970
GSE27130

GSE131013
GSE57342

GSE68060
GSE77954

436

GBM TCGA-GBM 375 GSE200647
GSE195684

GSE195640
GSE188547

GSE121722 643

PRAD TCGA-PRAD 333 GSE115413
GSE83917

GSE112047
GSE26126

GSE76938 400

RCC​ TCGA-KICH, KIRC, KIRP 900 GSE61441 GSE105260 GSE126441 GSE113501 258

THCA TCGA-THCA 496 GSE97466 GSE86961 GSE72729 156

Table 2  List of cancers with subtypes used in this study

Cancer Subtypes

BRCA​ LumA, LumB, Her2, Basal, Normal-like

COAD CMS1, CMS2, CMS3, CMS4

GBM Mesenchymal, Classic, LGm6, G-CIMP high, G-CIMP low

PRAD ERG, ETV1, ETV4, SPOP, other

RCC​ KICH, KIRC, KIRP

THCA Follicular, Classical 1, Classical 2, CpG island methylated
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more than 20% missing values were removed, and the imputation was performed for 
the remaining missing values.

For the selection of the imputation strategy, we investigated the impact of the impu-
tation method on the cancer subtype prediction, we performed an experiment based 
on the breast cancer datasets. For the datasets collected from TCGA and GEO reposi-
tory, the most widely used imputation strategies, mean, median and KNN imputation 
were applied. By comparing the subtype classification performance based on Tenfold 
cross validation, the meth-SemiCancer showed the best performance when the median 
imputation was applied, leading to the conclusion to adopt the median imputation 
(Additional file 1: S1). Preprocessing was performed for each dataset, and the number 
of 11,827 (BRCA), 23,378 (COAD), 17,660 (GBM), 10,329 (PRAD), 13,493 (RCC), and 
22,198 (THCA) CpGs were remained after preprocessing.

Semi‑supervised cancer subtype classification

The meth-SemiCancer model is constructed based on a neural network with semi-
supervised learning, where the proposed model is trained using both labeled and unla-
beled methylome datasets in a supervised fashion for cancer subtype prediction. The 
overall architecture of our model is shown in Additional file 1: S2. Given a set of origi-
nal input data x ∈ R

k , where k is the dimension of the input data, the meth-SemiCancer 
consists of two fully connected layers, each with 1000 and 500 hidden nodes, followed by 
a softmax layer, which estimates the posterior probability of ith cancer subtype through 
the softmax function Si:

where W1 , W2 are the weights, b1 , b2 are the bias, f is a ELU [36] activation function, and 
C is the number of subtypes. First, meth-SemiCancer is pre-trained using the labeled 
datasets to initialize the weights and learn the hidden representations. After pre-train-
ing, pseudo-labels for the unlabeled datasets were obtained by assigning the cancer 
subtype showing the highest posterior probability, which were used as if they were true 
labels. Fine-tuning was performed utilizing both the labeled and unlabeled datasets, 
where the pseudo-labels were newly calculated for every weight update.

For optimization, both pre-training (PT) and fine-tuning (FT) phases use the cross-
entropy as a loss function to minimize, but slightly in a different manner. During the 
pre-training phase, meth-SemiCancer is trained based on the standard cross-entropy 
loss ( LPT ) utilizing only a labeled dataset. For fine-tuning, the loss function needs to be 
balanced between the labeled and unlabeled datasets, since the number of each dataset 
is different and there could be batch effects and variations caused by the unlabeled DNA 
methylation cancer datasets collected from different experimental settings and sequenc-
ing protocols. Following the suggestion from [26] to use a weighted cross-entropy loss 
for the labeled and unlabeled datasets, a coefficient α(t) was introduced in the loss func-
tion of fine-tuning for training balance as follows:

(1)h = f (W1x + b1), a = f (W2h+ b2)

(2)Si =
exp(ai)
C
j=1 exp(aj)
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where n is the number of samples in the labeled dataset, m for the unlabeled dataset, y 
( ̂y ) is the true (model predicted, respectively) subtype probability distribution for the 
labeled dataset, and y′ ( ̂y′ ) is the pseudo-subtype (model predicted) probability distribu-
tion for the unlabeled dataset. For a coefficient α(t) to balance the training loss between 
the labeled and unlabeled datasets, it was slowly increased to help the optimization pro-
cess to avoid poor local minima [37], since a high value of α(t) could interfere training by 
labeled dataset [26]:

where t is current epoch with T1 = 100,T2 = 200 . During the training phases, the adap-
tive moment estimation (Adam) optimization algorithm [38] was used, the dropout rate 
was set to 0.7, and L2 regularization was applied to prevent overfitting. The hyperpa-
rameters in meth-SemiCancer including the learning rate, training epochs, and the alpha 
value were optimized based on the TCGA-BRCA dataset, where the training and testing 
datasets were split randomly with the ratio of 9:1. For each parameter, the experiment 
was repeated five times, and the combination of the hyperparameters showing the high-
est average accuracy was selected. The learning rate and training epoch was set to 1e−5 
and 1500 for pre-training, and 1e−3 and 3000 for fine-tuning. The αf  was set to 0.05. 
Accuracy results from the experiments with different parameter settings are shown in 
the Additional file 1: S3. Our proposed model was built by Tensorflow library (Version 
1.8.0).

Results
Performance evaluation of meth‑SemiCancer

To evaluate the performance of meth-SemiCancer for cancer subtype classification, we 
compared the proposed model with the baseline methods. To the best of our knowledge, 
this is the first study presenting the neural network-based cancer subtype classification 
framework utilizing the DNA methylation datasets, the widely-used ML-based classi-
fiers were compared with our meth-SemiCancer: Support vector machine (SVM) [39], 
Random Forest (RF) [40], K-nearest neighbors (KNN) [41], Naive Bayes (NB) [42], and 
Decision Tree (DT) [43]. SVM is a supervised learning algorithm that identifies a hyper-
plane to create a decision boundary classifying the data points to each class by maximiz-
ing the margin between the classes. DT constructs a tree-structured classification model 
based on the set of discrete rules from the training dataset. Starting at the root node, it 
follows the appropriate branches by comparing with the decision rule and based on the 
terminal node the data point will be assigned to one of the classes. RF is the extension 
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of DT, which is an ensemble learning method aggregating the output from multiple 
DTs to derive a final result. The KNN is a non-parametric classifier predicting a class 
of each data point based on the neighbors within the close distance, and the NB classi-
fies the data based on Bayes’ theorem with the assumption of conditional independence 
between the features.

Following the same optimization procedure used for meth-SemiCancer, the baseline 
methods were optimized based on the TCGA-BRCA dataset, where the training and 
testing datasets were randomly split to the ratio of 9:1. Grid search was adopted for the 
model tuning. For each combination of hyperparameters, the experiment was repeated 
five times, and the parameters showing the highest average accuracy for the testing data-
set were selected (Additional file 1: S3). The optimized hyperparameter settings for each 
classifier are as follows: SVM (kernel = rbf, C = 25 , gamma = 2−11 ), RF (criterion = 
gini, estimators = 100, min_samples_leaf = 1), KNN (weights = distance, n_neighbors 
= 10), DT (criterion = entropy, min_samples_leaf = 3). For each cancer subtype, Ten-
fold cross validation was performed using TCGA datasets and the unlabeled datasets 
obtained from GEO repository were used for meth-SemiCancer during the fine-tuning 
phase. For the evaluation metrics, the accuracy, precision, recall, F1-score, Matthews 
correlation coefficient (MCC), and Cohen’s Kappa were adopted. The accuracy is a ratio 
of the closeness between the prediction and the true labels. The recall and the precision 
refer to the proportion of actual positive classes that are correctly predicted positive and 
the proportion of predicted positive classes that are correctly assigned as real positive, 
respectively [44], here, the ’macro’ option was used. The F1-score is the harmonic aver-
age of the precision and recall between 0 and 1, where we used the ’weighted’ option for 
an average parameter to deal with the multi-class tasks. The MCC considers the true and 
false positives and negatives to overcome the class imbalance [45], and Kappa measures 
the reliability between the predicted class and true class.

For GBM and THCA cancer datasets from TCGA, some subtypes had less than 40 
samples each, which could lead to the underfitting during the training phases in the clas-
sifiers (LGm6, G-CIMP low/high for GBM and Classical 1, CpG island methylated for 
THCA). To address this issue, we generated a simulated DNA methylation dataset with 
a size of 100 samples only for those subtypes using methCancer-gen [46] tool, which is a 
DNA methylome dataset generator for user-specified cancer type based on conditional 
variational autoencoder. The generated samples were only added to the training phases 
in our meth-SemiCancer and other comparison methods.

For each cancer, the boxplots were plotted to compare the distribution of MCCs for 
each classier in Tenfold cross validation (Fig. 2, Additional file 1: S4). meth-SemiCancer 
outperformed the other ML-based classifiers with the highest average MCC of 0.755 
(BRCA), 0.689 (COAD), 0.987 (GBM), 0.888 (PRAD), 0.939 (RCC), and 0.986 (THCA) 
for each cancer, respectively. The SVM showed the second-best performance showing 
an average MCC of 0.712 (BRCA), 0.561 (COAD), 0.964 (GBM), 0.783 (PRAD), 0.917 
(RCC), and 0.940 (THCA). From the comparison of the boxplots, our proposed method 
achieved the best median MCC for all cancer subtypes, presenting the superiority in 
cancer subtype classification tasks. In case of BRCA, COAD, GBM, and THCA, meth-
SemiCancer plotted shortest boxes compared to the other methods, exhibiting the less 
variability in subtype classification performance which can be also shown as the stability 
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of our method. SVM also had the stable performance for most of the cancer types, how-
ever, in case of COAD, it showed the severe performance change, obtaining the low-
est MCC of 0.407 and 0.681 for the highest MCC. Our model also achieved the highest 
average accuracy and F1-score for all six cancers, compared to the other methods (Addi-
tional file  1: S5). Moreover, we investigated whether SSL utilizing the unlabeled data-
set with pseudo-labels helps to improve the cancer subtype prediction performance. We 
implemented the variant of meth-SemiCancer removing the fine-tuning phase, denoted 
as ’meth-Cancer’, and compared the performance. The result showed that when the 
model was trained based on the SSL approach, the average classification performance 
increased for all three cancers across all the evaluation metrics, which achieved the 
5.8% of performance improvement in MCC for PRAD and 2.4% in F1-score for BRCA 
cancer subtype prediction. This could be also seen from the comparison of boxplots in 
Fig. 2, where the median MCC improved significantly in RCC and slight improvement in 
BRCA and PRAD.

Validation of the cancer subtype prediction for unlabeled dataset

We tested whether the pseudo-labeling approach in SSL accurately identifies the cancer 
subtype of the unlabeled dataset. In this experiment, we divided the labeled cancer data-
sets obtained from TCGA into the ratio of 8:1:1 and utilized each part as a pre-training 
(labeled), fine-tuning (unlabeled), and testing dataset, respectively. For the dataset used 
during the fine-tuning phase, we assumed them as unlabeled for model training, how-
ever, since we already had the actual subtype information of those, we could validate 
whether the meth-SemiCancer can assign a proper pseudo-subtype label for each can-
cer patient. Fivefold cross validation was performed and the average accuracy was meas-
ured for the unlabeled and testing datasets. From the result (Table 3), meth-SemiCancer 
could predict the subtype for most of the cancer patients in unlabeled datasets during 
fine-tuning with the average accuracy of 0.823 (BRCA), 0.921 (GBM), 0.916 (PRAD), 
0.964 (RCC), and 0.904 (THCA). We could also see that the classification accuracy for 
the testing dataset improved after fine-tuning was performed, compared to the accuracy 
when only pre-training was done. In the case of COAD cancer, the average accuracy of 
the unlabeled dataset was a bit low showing an accuracy of 0.679, but still utilizing those 
datasets for better optimization of the model, the prediction performance for the testing 
dataset after fine-tuning improved.

Fig. 2  Performance comparison of meth-SemiCancer with the baseline methods based on Tenfold cross 
validation (CV). The Boxplot for each cancer shows the distribution of MCCs for the classifiers in Tenfold CV of 
each cancer subtype prediction
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Investigating the effect of the amount of unlabeled dataset for fine‑tuning

The success of SSL approaches in neural networks is attributable to allowing a model to 
leverage the unlabeled dataset and encouraging a model to generalize better to unseen 
data [23]. It has brought a significant performance improvement with low cost in several 
domains including computer vision applications, where the larger amount of unlabeled 
dataset could be utilized, the more generalized performance is provided from the model 
training. However, compared to the image datasets, the biological datasets, in particu-
lar, the cancer patient samples are having much difficulty in generalization due to their 
tumor heterogeneity. In this experiment, we investigated whether the larger amount 
of unlabeled cancer dataset used for fine-tuning could lead to the subtype prediction 
performance. First, we generated a simulated DNA methylation dataset for each cancer 
using methCancer-gen [46] tool by increasing a sample size from 400 to 1000 samples, 
which is a DNA methylome dataset generator for user-specified cancer type based on 
conditional variational autoencoder. Tenfold cross validation was performed using the 
datasets from TCGA, where the training dataset was used for pre-training the meth-
SemiCancer, and methCancer-gen training, and the simulation samples were used for 
the fine-tuning phase of meth-SemiCancer. Here, we performed the experiment using 
BRCA, PRAD, and RCC cancer datasets. The results (Table 4, Additional file 1: S6) have 
shown that the average classification performance slightly increased when the model was 
fine-tuned with the larger amount of unlabeled datasets. For example, BRCA showed the 
average f1-score increase from 0.805 to 0.825, and PRAD also achieved an improvement 
from 0.877 to 0.899, when the model was trained utilizing 1000 simulated samples.

In addition, we tested the same experiment using the real studies dataset. Ten-
fold cross validation was performed using TCGA datasets, where the subset of the 

Table 3  Average classification performance results performing Fivefold cross validation based on 
the TCGA datasets

Cancer Unlabeled dataset Testing dataset
(pre-training)

Testing dataset
(fine-tuning)

Accuracy F1-score Accuracy F1-score Accuracy F1-score

BRCA​ 0.823 0.801 0.800 0.805 0.827 0.817

COAD 0.679 0.678 0.749 0.747 0.757 0.756

GBM 0.921 0.922 0.881 0.884 0.908 0.904

PRAD 0.916 0.901 0.827 0.877 0.891 0.884

RCC​ 0.964 0.960 0.947 0.949 0.956 0.958

THCA 0.904 0.911 0.842 0.854 0.899 0.894

Table 4  Average F1-score results under different sample sizes for pseudo-labeling during fine-
tuning based on Tenfold cross-validation

Sample size Simulation dataset Real-studies dataset

0 400 600 800 1000 0% 40% 60% 80% 100%

BRCA​ 0.814 0.820 0.822 0.821 0.825 0.814 0.824 0.822 0.818 0.833

PRAD 0.872 0.882 0.890 0.885 0.899 0.872 0.913 0.901 0.907 0.915

RCC​ 0.948 0.981 0.979 0.977 0.976 0.948 0.967 0.969 0.974 0.967
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datasets from GEO repository was used for fine-tuning (Table  1). The testing per-
formance of meth-SemiCancer was measured with the increase of the subset sample 
sizes by randomly selecting 40%, 60%, 80% and using all the datasets. The experiment 
obtained a similar result from the above, where the model showed the highest classifi-
cation performance, when utilizing all the GEO datasets for fine-tuning, compared to 
using the subset of the datasets (Table 4, Additional file 1: S6).

The effect of the confidence threshold for pseudo‑labeling

Recent studies have introduced a confidence threshold, which is a trade-off between the 
quality and the quantity of pseudo-labels [25, 47]. By only utilizing the pseudo-labeled 
samples which obtained the higher prediction probability for the cancer subtype, we 
could prevent the model from being impeded by noisy pseudo-labeled examples. The 
high threshold values allow high-quality unlabeled samples to contribute to the unla-
beled loss, but it has a chance to reduce the quantity of pseudo-labels. We performed an 
experiment using BRCA datasets to see the impact of this confidence threshold when 
introduced in our meth-SemiCancer. For every iteration during the fine-tuning phase, 
the pseudo-labeled samples higher than the confidence threshold were selected and only 
those were used for training the model. Tenfold cross validation was performed based 
on the TCGA datasets, and the GEO datasets were used for fine-tuning phase.

When introducing the higher confidence threshold, a larger number of unlabeled 
samples were filtered out during the early fine-tuning phase (Additional file 1: S7). But, 
as the training epoch increases, our model learns to produce high-confidence predic-
tions, utilizing all the unlabeled samples for optimization at the end of the training. This 
led to similar average performance results of meth-SemiCancer between the different 
confidence thresholds (Table  5). Our model also did not show a significant difference 
compared to the previous result not using the threshold, consistent with the study [25], 
where the authors proposed to introduce the confidence threshold in the SSL approach, 
however, the approach did not show performance improvement. In addition, we tested 
our model with the threshold to other cancers, however, depending on the cancer type, 
the threshold criteria vary and the amount of dataset that can be utilized decreased sig-
nificantly. From these issues, meth-SemiCancer did not include the confidence threshold 
mechanism for the experiments, but still, we provided an option to enable the user-spec-
ified confidence threshold in our meth-SemiCancer.

Table 5  Average BRCA subtype classification performance results under different confidence 
thresholds for pseudo-labeling based on Tenfold cross-validation

Confidence threshold 0.5 0.6 0.7 0.8 0.9

Accuracy 0.836 0.839 0.842 0.844 0.842

F1-score 0.821 0.826 0.828 0.834 0.831

MCC 0.747 0.743 0.753 0.751 0.745

Recall 0.729 0.719 0.719 0.729 0.694

Precision 0.793 0.782 0.794 0.798 0.768

Kappa 0.742 0.737 0.746 0.742 0.735
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Discussion and conclusions
Although the high-throughput sequencing technologies to measure the DNA methyla-
tion profiles have been advanced, still, the public cancer datasets with the cancer sub-
type information are still limited to be utilized for the research due to the cost-efficiency. 
It has been difficult to develop a cancer subtype classification model utilizing the DNA 
methylome datasets which have a potential for biomarkers of subtype identification due 
to the lack of cancer samples with the subtype labels. Recently, several studies have pre-
sented a semi-supervised learning approach to leverage the unlabeled dataset and have 
proved performance improvement with the low cost of data collection in computer 
vision applications. We proposed meth-SemiCancer, a cancer subtype prediction frame-
work based on semi-supervised learning utilizing DNA methylation profiles.

We first evaluated the performance of meth-SemiCancer with the standard ML-based 
classification methods. The performance comparison with the baseline classifiers shows 
that meth-SemiCancer provides more accurate subtype prediction results across all 
three cancers. meth-SemiCancer was also compared with the supervised version of the 
model removing the fine-tuning phase, and it is proved that retraining the model with 
the unlabeled datasets assigning the pseudo-subtype labels has the potential to general-
ize the model and prevent the overfitting to improve the subtype classification.

Moreover, we validated whether the meth-SemiCancer generates the proper pseudo-
subtype label for the unlabeled dataset during the fine-tuning phase. From our experi-
ment, meth-SemiCancer could learn to identify the cancer subtypes during pretraining 
and accurately predict most of the cancer patients without the subtype information to 
utilize those for retraining.

In addition, we investigated the effect of the amount of unlabeled dataset and the con-
fidence threshold for fine-tuning phase. First, we increased the sample size of unlabeled 
datasets used for pseudo-labeling and measured the performance changes. The perfor-
mance of meth-SemiCancer slightly improved by increasing the number of unlabeled 
samples for both simulation and real-studies datasets, indicating that the larger number 
of unlabeled datasets used for pseudo-labeling, the higher performance improvement 
could be achieved. However, since we could not obtain a large number of real methyla-
tion cancer samples for pseudo-labeling, a significant performance improvement could 
not be shown from the result. In the case of the simulation datasets, those datasets were 
also generated based on the same training dataset used for pre-training, there has been 
a limitation for a model to be better generalized for new datasets. The experiment for 
testing the impact of the confidence threshold was also performed, but it did not lead to 
a significant difference in the performance compared to that of not using the threshold, 
where we provided it as an option for the user.

Overall, these findings indicate that meth-SemiCancer can enable the DNA methyla-
tion cancer datasets without subtype information to be utilized for improving the can-
cer subtype classification by providing the proper annotation of the subtypes. We also 
expect that our proposed model will facilitate the in-depth biological findings by sup-
porting the study of methylation signatures to differentiate the subtypes of complex 
cancer.

One limitation of meth-SemiCancer is that it makes an implicit assumption that the 
unlabeled datasets used for the pseudo-labeling approach in SSL have been prepared 
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with the correction of the batch effect. In future work, we plan to extend our meth-
SemiCancer framework to automatically detect and minimize the batch effects in 
DNA methylation data during the model training phases.
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