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Abstract 

Background: Different machine learning techniques have been proposed to classify 
a wide range of biological/clinical data. Given the practicability of these approaches 
accordingly, various software packages have been also designed and developed. 
However, the existing methods suffer from several limitations such as overfitting on a 
specific dataset, ignoring the feature selection concept in the preprocessing step, and 
losing their performance on large‑size datasets. To tackle the mentioned restrictions, 
in this study, we introduced a machine learning framework consisting of two main 
steps. First, our previously suggested optimization algorithm (Trader) was extended to 
select a near‑optimal subset of features/genes. Second, a voting‑based framework was 
proposed to classify the biological/clinical data with high accuracy. To evaluate the 
efficiency of the proposed method, it was applied to 13 biological/clinical datasets, and 
the outcomes were comprehensively compared with the prior methods.

Results: The results demonstrated that the Trader algorithm could select a near‑opti‑
mal subset of features with a significant level of p‑value < 0.01 relative to the compared 
algorithms. Additionally, on the large‑sie datasets, the proposed machine learning 
framework improved prior studies by ~ 10% in terms of the mean values associated 
with fivefold cross‑validation of accuracy, precision, recall, specificity, and F‑measure.

Conclusion: Based on the obtained results, it can be concluded that a proper con‑
figuration of efficient algorithms and methods can increase the prediction power of 
machine learning approaches and help researchers in designing practical diagnosis 
health care systems and offering effective treatment plans.

Keywords: Clinical datasets, Feature selection, Gene selection, Machine learning, 
Optimization algorithm, Voting‑based approach

Background
Classification is the process of dividing data samples into different groups using the 
machine learning (ML) approaches [1]. This technique has been extended to a wide 
range of computational and biological applications such as identifying potential gene/
miRNA/protein biomarkers [2], repurposing drugs against different diseases [3], sug-
gesting novel therapeutic modalities for curing illnesses [4], diagnosing heart and dia-
betes sicknesses [5], and better perceiving biological phenomena [6]. In this line, several 
ML strategies have been developed, resulting in the generation of computer-aided health 
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decision support systems [7]. These strategies aimed to improve the ML and feature 
selection (FS) algorithms mainly because of their effects on the performance of a classifi-
cation model [8]. For instance, to diagnose diabetes disease in its early stages, Patil et al. 
utilized C4.5 and k-means clustering ML algorithms and achieved ~ 92.38% value of 
tenfold cross-validation accuracy on the Pima Indian Diabetes (PID) dataset [9]. To this 
end, the researchers removed serum insulin and triceps skinfold features and reduced 
the total number of samples from 768 to 625. The researchers then determined the data 
patterns using the k-means algorithm and eliminated 192 other instances. Based on the 
obtained patterns, a decision tree was formed, and the produced model was evaluated. 
Although these researchers generated a proper prediction model with a high value of 
accuracy on the PID dataset, their methods suffered from overfitting because of remov-
ing a remarkable number of the data instances. To tackle such a limitation, Aslam et al. 
examined a three-step ML method [10]. In the first phase, based on different statisti-
cal methods (e.g., Kolmogorov–Smirnov test and t-test), the existing diabetes features 
were ranked, and some subsets of diabetes features were produced using a progressive 
FS manner. In the second phase, for every generated subset of features, a genetic pro-
gramming technique was employed. In the third phase, the usefulness of the produced 
features was measured using the k-nearest neighbor (KNN) and support vector machine 
(SVM) classifiers. The results demonstrated that the Gaussian process-SVM (GP-SVM) 
technique resulted in about 87% of accuracy. In addition to the PID dataset, several stud-
ies targeted other biological/clinical datasets and suggested some real-world consistent 
prediction models [11–13]. For this purpose, the prior studies combined various com-
putational techniques such as the teaching learning-based optimization algorithm (OA) 
with the fuzzy wavelet neural network [14], the rough set theory with the backpropaga-
tion neural network [15], and the fuzzy concept with the min–max neural networks [16]. 
The mentioned computational strategies have been applied to the Cleveland heart dis-
ease (CHD) [17], Statlog heart disease (SHD) [18], Wisconsin diagnostic breast cancer 
(WDBC) disease and mammogram datasets [19, 20], respectively. Some researchers also 
designed other types of hybrid ML techniques and applied them to different biological/
clinical datasets [21–24]. The mentioned studies encounter several limitations, including 
low prediction power, inability in grouping multiclass data (more than two classes), over-
fitting, and filtering the samples with missing values. Therefore, Arabi et al. suggested a 
ML approach that creates a specific model for every class of existing data [25, 26]. For 
this purpose, the researchers acquired several regression and classification datasets from 
the ML repository of the University of California, Irvine (UCI). Then, after normalizing 
the obtained data, a distinct model was generated for every class of data. For example, if 
the data of interest included three classes, three individual machines were designed for 
each of them. In the next phase, a cascade-like artificial neural network was designed 
and trained using the world competitive contests (WCC) optimization algorithm [27]. 
The performance of the methods was investigated on the different partitioned train and 
test datasets (e.g., 70%-30% or 60%-40%), indicating that their methods outperformed 
other ML approaches in terms of classification criteria. Although the described tech-
nique by Arabi and coworkers yielded a model with a higher prediction ability, their ML 
method was not suitable for large-size datasets.
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To address the above-mentioned constraints, in the present study, we extended the 
Trader optimization algorithm for selecting a near-optimal subset of features and gen-
erating an efficient prediction model in terms of classification criteria [28]. Additionally, 
to get better prediction results, a voting-based ML framework was proposed, labeling 
data samples based on the consensus of predictions obtained from different artificial 
machines. To evaluate the proposed machine learning approaches, in all the computa-
tional experiments, the fivefold cross-validation technique was used.

Methods
The UCI repository has collected various datasets from different scopes and provided a 
suitable resource for machine learning applications. From this repository, a total of 13 
clinical/biological datasets, utilized in various research work as gold-standard input files, 
were obtained (Table 1). These datasets included different numbers of samples and fea-
tures/genes, so they seemed to be qualified for evaluating the proposed method in differ-
ent conditions. The proposed framework, shown in Fig. 1, was applied to these data, and 
the results were compared from a wide range of classification measurements.

The acquired data were preprocessed in two phases that completed missing values 
and normalized the data, sequentially. To complete the missing values of a given sample, 
firstly, ten other samples (not including the missing values and sharing a high value of 
Pearson correlation coefficient (> 0.5) with the sample of interest) were chosen if plausi-
ble. Secondly, the missing value of the sample of interest was determined based on cal-
culating the interpolation of the related values. Finally, for normalizing the data, Eq. 1 
was used, which converts the data of a feature to range [0, 1].

where xi,j, minj, and maxj represent the value of the  ith row and  jth column of a given data, 
and the minimum and maximum values of the  jth column, respectively.

Our previously suggested Trader optimization algorithm (OA) was modified and 
developed to select an optimal/near-optimal subset of features/genes [29, 30]. In this 

(1)xi.jnew =
xi.jcurrent−minj

maxj −minj

Table 1 The properties of the datasets obtained from the UCI repository

Dataset name  #instances #features #classes Data type Missing values

LIV 345 6 2 Numerical and binary NO

PID 768 8 2 numerical NO

SHD 270 13 2 Numerical and binary NO

CHD2 303 13 2 Numerical and binary NO

CHD5 303 13 5 Numerical and binary NO

HEP 150 19 2 Numerical and binary YES

PAR 197 22 2 Real YES

WDBC 569 31 2 Real NO

LUNG 32 56 3 Numerical and binary YES

ARRYTM 452 279 16 Double YES

PARKINSON 756 754 2 Numerical and binary NO

ARCENE 900 10,000 2 Numerical NO

GENEEXPR 801 20,531 5 Double NO
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line, as shown in Fig. 2, the algorithm generated some potential candidate solutions 
(CS) randomly, each of which included a set of selected features/genes and was dis-
played using an array (Eq. 2).

where CS and Vi stand for a candidate solution and its  ith variable, respectively.
The CSs were then divided into several groups in a random manner. Every group and 

the sum of its CSs’ scores represented a trader and its finances/benefits, respectively.
In the next step, the produced CSs were evaluated using the SVM classification 

technique (i.e., the accuracy obtained from SVM, was considered as the worthiness/
fitness/score of a given subset of features). Since some of the datasets consisted of 
more than two classes, to calculate the value of accuracy, a mean-based method 
(Eq. 3) was used.

where TPi, C, and N show the total number of true positives of the  ith class, the total 
number of data classes, and the total number of data samples, respectively.

(2)CS = [V1, V2, V3, . . . , Vn]

(3)Accuracy =
C
i=1 TPi

N

Fig. 1 The framework of the proposed voting‑based machine learning method for classifying biological/
clinical datasets. The final prediction is determined by aggregating the outputs of different models. Fpi shows 
the total number of models that predicted a given sample belongs to the  ith group
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Based on the calculated fitness values, the CSs of every group were separated into 
master and slave CSs (MCS and SCS, respectively), consequentially showing the best CS 
and the remaining CSs of a group. Next, the CSs went through a series of changes using 
the three operators of the Trader algorithm, and new CSs were produced. The first oper-
ator of Trader (the retailing operator (Eq. 4)) created minor modifications in the SCS. 
This operator usually plays an essential role in improving the CSs in the last steps of the 
algorithm.

where SCSi,j and k indicate the  jth variable of the  ith slave CS and a random value (i.e., 
either -1 or 1), respectively. Additionally, S displays a set of randomly selected variables 
of the  ith slave CS.

The second operator of Trader (the distributing operator (Eq. 5)) aimed to improve the 
SCSs by transferring data from their related MCSs. For this purpose, for a given SCS, 
some variables were randomly chosen from an MCS, and then, their values were trans-
ferred to that SCS.

where SCSi,j, MCSi,j, and S are the  jth variable of the  ith SCS, the  jth variable of the  ith 
group’s MCS, and a set of randomly chosen variables of the  ith CS, respectively.

The third operator of Trader, the importing-exporting (IE) operator (Eq. 6), aimed to 
correct the MCSs and change CSs globally. For this purpose, an MCS was considered 
the importer while the others as exporters. Like two previous operators, the IE operator 
acted randomly and changed a given MCS in a similar method described for the second 
operator.

(4)∀j∈S

(

SCSi,j = SCSi,j + k × random
(

0, SCSi,j
))

(5)∀j∈S

(

SCSi,j = MCSi,j
)

Fig. 2 The flowchart of the suggested Trader optimization algorithm for selecting a near‑optimal subset of 
features/genes. The algorithm generates some random candidate solutions (CS) and evaluates them using 
the value of accuracy obtained from the support vector machine (SVM) classifier. Next, the algorithm divides 
the CSs into several groups and modifies them with three operators. At the final step, the best acquired CS is 
introduced as a near‑optimal subset of features/genes, which can enhance the prediction ability of the SVM 
classifier
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where MCSi,j, MCSM,j, S, and M display the  jth variable of the  ith importer MCS, the  jth 
variable of the  Mth exporter MCS, a set of randomly chosen variables of the  ith importer 
MCS, and a set of randomly chosen variables of the  Mth exporter MCS, respectively.

The proposed OA was compared with other popular OAs in the same conditions. For 
instance, all the algorithms had a time order of O(n3) and called an identical number of 
the objective function (SVM) during a distinct run.

Results
The proposed method was implemented in the MATLAB programming language, and 
the outputs were examined in terms of various criteria associated with evaluating the 
modified optimization algorithm (Trader) and proposed voting-based classification sys-
tem. To evaluate the usefulness of Trader in selecting informative features/genes, it was 
applied to the downloaded datasets  (Table  1), and the outcomes were compared with 
four other public/effective optimization algorithms. These algorithms (i.e., WCC [27], 
LCA [31], PSO [32], and ICA [33]) were chosen because of their diversities and proper 
functionalities reported in the prior studies. Because the values of OAs’ parameters 
strongly affected their efficiencies, a trial–error method was employed to regulate them 
[34]. The initial population size of the algorithms was set to 100, and, their steps itera-
tion parameter was regulated to 50. Besides, in every iteration, each of the algorithms 
changed 30% of candidate solutions. The results of this section were organized into three 
sections described as follows.

The first part of the results compared the performance of the mentioned OAs in terms 
of improving the prediction power of a learner. To this end, the data of features/genes, 
chosen by the algorithms, were passed to SVM [35], and the learner then created a 
model for classifying them. As mentioned in the materials and methods section, OAs 
generated some random potential answers and modified/improved them using their 
operators. Hence, it was usually expected to get better results in the  jth iteration than 
in the  ith iteration (j > i) (the convergence behavior of OAs) [36]. For the datasets con-
sisting of > 10 features/genes, the convergence behavior of the algorithm was followed, 
and the mean outcomes of 50 individual executions, were depicted (Fig.  3). Since the 
performance of the algorithms on the SHD and CHD datasets were similar, only the con-
vergence diagram of the algorithms on the SHD was displayed. Based on the acquired 
results, Trader was able to select more distinctive features and get higher values of accu-
racy than the other algorithms. Therefore, it can be articulated that the proposed OA 
had a better convergence behavior than other compared OAs.

In every individual run, due to generating and changing CSs based on stochastic 
operators, the OAs selected a diverse subset of features and produced different values 
of accuracy. However, the final accuracy values must be similar to each other (the stabil-
ity behavior of OAs) [37–40]. To examine this property of the OAs in detail, they were 
executed 50 times, and the distribution of their outputs was illustrated using boxplots 
(Fig.  4). The obtained outcomes indicated that Trader generally boosted the perfor-
mance of SVM (via selecting the most informative features) and showed a more stable 
behavior than the other OAs.

(6)∀j∈S,k∈M

(

MCSi,j = MCSk ,j
)
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Further, to investigate whether the performance of Trader and the other OAs was the 
same or not, the Wilcoxon rank-sum test was utilized. For this purpose, the results of 
Trader were considered as a test base and compared with the others’ outcomes (Table 2). 
It was observed that, for most cases, the p-value was less than 0.01 and about close to 
zero, resulting in rejecting the null hypothesis and validating that Trader outperformed 
the others in terms of enhancing the prediction power of SVM.

In the second part of the computational experiments, the proposed algorithm was 
embedded into a voting-based prediction system. To evaluate this system, different cri-
teria were considered, such as accuracy (ACC), precision (PRE), sensitivity (SEN), speci-
ficity (SPC), and F-score (F). The outputs were then organized into several tables as well 
as receiver operating characteristic (ROC) and precision-recall (PR) curves. The com-
pared machine learning approaches indicated different efficiencies on diverse datasets. 

Fig. 3 The convergence behavior of the OAs on the a SHD, b HEP, c PAR, d WDBC, e LUNG, f ARRYTM, g 
PARKINSON, h ARCENE, and i GENEEXPR datasets

Fig. 4 The stability behavior of the OAs on the a SHD, b HEP, c PAR, d WDBC, e LUNG, f ARRYTM, g 
PARKINSON, h ARCENE, and i GENEEXPR datasets on 50 individual executions
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Based on the outcomes, the proposed voting-based system generally outperformed the 
others in terms of the mentioned parameters (Table 3).

The classification power of the generated models, separating positive or negative data 
samples into their related classes, was examined using the ROC and PR curves shown 
in Figs.  5 and 6, respectively. Although most of previously performed studies utilized 
the ROC and PR diagrams for evaluating the performance of binary classifiers, the pre-
sented study extended this concept to multi-class classifiers. To this end, Eq. 3 was used 
for calculating the values of SEN, SPC, and PRE. The acquired diagrams expressed that 
the proposed voting-based approach was closer to a perfect classifier than the others 
were. To display the area under curve (AUC) of the classifiers, for every dataset, two bar 
diagrams were provided, showing the AUC of the ROC (Fig. 7) and PR (Fig. 8) curves, 
respectively.

In the last part of the computational experiments, a comprehensive comparison 
between the proposed ML method and those suggested in the previous studies was per-
formed. Up to the time of designing the present study, much attention has already been 
paid to introducing novel ML techniques and generating powerful biological data classi-
fiers. Among these studies, the artificial neural network-based ML approach, introduced 
by Arabi et  al., outperformed the other previously introduced ML methods in terms 
of the classification benchmarks. Here, the outputs of these studies were collected and 
then extended with the results obtained from the current study (Table 4). The outcomes 
indicated that the accuracy of the proposed voting-based ML approach was higher than 
the accuracy of the previously introduced ML methods. All in all, the suggested voting-
based system improved all the criteria by ~ 10%.

Discussion
To classify various types of clinical/biological datasets, the present study introduced a 
novel wrapper ML method that combined the Trader algorithm for selecting a near-
optimal subset of features/genes and the SVM classifier for scoring them. Although 
the previous studies had suggested several ML methods and algorithms to stratify 

Table 2 The Wilcoxon rank‑sum test of the OAs with Trader’s results as the test base

Dataset WCC LCA PSO ICA

LIV 1 1.68e−14 9.42e−04 1.68e−14

PID 1 2.70e−14 0.001 4.15e−14

SHD 1.52e−04 8.38e−13 0.103 4.52e−12

CHD2 2.35e−08 8.64e−14 1.98 e−04 1.19e−12

CHD5 4.35e−05 1.29e−12 2.41 e−04 4.28e−12

HEP 0.031 0.029 8.37e−11 8.65e−12

PAR 1.68e−14 1.68e−14 6.92e−07 1.68e−14

WDBC 2.76e−13 2.002e−13 9.16e−07 1.17e−12

LUNG 1.92e−04 1.81e−07 1.25e−09 5.69e−09

ARRYTM 0.061 2.14e−11 2.08e−11 5.37e−11

PARKINSON 0.078 1.18e−10 2.93e−11 2.59e−11

ARCENE 3.94e−04 1.81e−05 1.11e−07 1.29e−11

GENEEXPR 1 1 0.24 0.24
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Table 3 Comparing the utilized methods based on the fivefold cross‑validation technique

Dataset (size) Algorithm # selected 
features

Accuracy Specificity Precision Sensitivity F-SCORE

LIV 345 × 6 TRADER 4 67.14 64.80 69.19 67.14 68.15
WCC 4 67.14 64.80 69.19 67.14 68.15
LCA 2 60 55.15 77.23 60 67.53

PSO 4 67.14 64.80 69.19 67.14 68.15
ICA 4 62.86 58.68 73.10 62.86 67.59

VOTING 4 67.14 64.80 69.19 67.14 68.15
PID 768 × 8 TRADER 4 76.77 67.08 76.15 76.77 76.46

WCC 4 77.42 64.70 77.07 77.42 77.25

LCA 4 77.4 67.42 76.84 73.55 77.13

PSO 4 76.77 67.08 76.15 76.77 76.46

ICA 3 74.19 63.02 73.32 74.19 73.75

VOTING 4 78.06 65.94 77.74 78.06 77.56
CHD2 303 × 13 TRADER 5 86.89 85.31 86.92 86.89 86.90

WCC 4 85.24 80.77 85.22 85.24 84.90

LCA 5 86.88 80.04 87.87 86.88 87.39

PSO 5 82.32 83.22 83.49 82.32 83.30

ICA 5 85.24 85.92 85.95 85.24 85.34

VOTING 5 86.89 85.31 86.92 86.89 86.90
CHD5 303 × 13 TRADER 5 63.93 61.43 61.62 63.93 62.76

WCC 5 62.29 67.75 58.69 62.29 64.70

LCA 5 63.93 66.23 62.83 63.93 65.12

PSO 4 60.66 52.09 58.11 60.66 59.35

ICA 4 62.29 64.59 58.05 62.29 63.32

VOTING 5 67.21 63.30 63.95 67.21 65.54
SHD 270 × 13 TRADER 5 92.73 89.43 92.82 92.73 92.77

WCC 5 90.90 88.38 90.84 90.90 90.89

LCA 5 92.73 89.43 92.82 92.73 92.77
PSO 5 89.09 87.34 89.09 89.09 89.09

ICA 5 87.27 82.01 87.35 87.27 87.31

VOTING 5 92.73 89.43 92.82 92.73 92.77
HEP 150 × 19 TRADER 6 78.13 75.21 84.51 78.13 81.19

WCC 5 75 71.67 83 75 78.80

LCA 6 68.75 66.15 71.11 68.75 69.91

PSO 6 65.63 62.61 68.36 65.63 66.96

ICA 6 71.88 70.48 72.34 71.88 72.11

VOTING 6 78.13 75.21 84.51 78.13 81.19
PAR 197 × 22 TRADER 6 90 70 91.18 90 90.58

WCC 6 90 70 91.18 90 90.58
LCA 6 90 70 91.18 90 90.58
PSO 6 80 40 84.21 80 82.5

ICA 5 87.50 69.17 87.34 87.50 87.42

VOTING 6 90 70 91.18 90 90.58
WBDC 569 × 31 TRADER 6 100 100 100 100 100

WCC 6 100 100 100 100 100

LCA 5 98.26 96.86 98.31 98.26 98.28

PSO 6 95.65 95.11 95.65 95.65 95.65

ICA 6 94.78 93.89 94.80 94.78 94.83

VOTING 6 100 100 100 100 100
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Table 3 (continued)

Dataset (size) Algorithm # selected 
features

Accuracy Specificity Precision Sensitivity F-SCORE

LUNG 32 × 56 TRADER 8 87.50 87.50 90 87.50 88.75

WCC 8 87.50 98.21 93.75 87.50 87.50

LCA 8 87.50 98.21 93.75 87.50 87.50

PSO 10 62.5 72.50 73.75 62.5 62.5

ICA 8 75.00 96.42 91.66 75.00 75.00

VOTING 8 100 100 100 100 100
ARRYTM 452 × 279 TRADER 9 73.91 70.84 78.95 73.91 76.35

WCC 7 77.17 72.75 76.90 77.17 77.17

LCA 9 82.60 77.61 82.84 79.34 82.09
PSO 9 64.13 63.68 64.09 64.13 64.11

ICA 9 78.26 73.41 77.99 78.26 78.26

VOTING 9 77.17 74.84 80.01 77.17 88.57

PARKINSON 
756 × 754

TRADER 10 83.66 52.95 82.92 83.66 83.29

WCC 9 82.35 46.53 81.78 82.35 82.7

LCA 10 79.08 43.55 76.40 79.08 77.72

PSO 10 77.12 22.88 70.92 77.12 73.89

ICA 10 83.66 52.95 82.92 83.66 83.29

VOTING 10 84.31 47.11 86.96 84.31 85.62
ARCENE 
200 × 10,000

TRADER 10 90.24 89.42 90.57 90.24 90.41
WCC 9 82.93 80.95 84.77 82.93 83.84

LCA 8 90.24 89.42 90.57 90.24 90.41
PSO 10 80.49 82.43 83.67 80.49 82.05

ICA 10 87.80 86.82 87.82 87.80 87.81

VOTING 10 90.24 89.94 90.24 90.24 90.23

GENEEXPR 
801 × 20,531

TRADER 15 100 100 100 100 100
WCC 15 100 100 100 100 100
LCA 15 100 100 100 100 100
PSO 14 95.23 100 100 90.90 95.23

ICA 14 95.23 100 100 90.90 95.23

VOTING 15 100 100 100 100 100

Fig. 5 The ROC curve of the algorithms on the a SHD, b HEP, c PAR, d WDBC, e LUNG, f ARRYTM, g 
PARKINSON, h ARCENE, and i GENEEXPR datasets
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clinical/biological datasets [53–55], they encountered two critical limitations described 
as follows.

First, some literary works ignored the FS concepts in the data preprocessing step 
or utilized some heuristic  filter-based FS techniques. For instance, several stud-
ies ranked and reduced the total number of the existing features/genes in a specific 
application such as introducing a limited number of genes as potential biomarkers 
for certain cancer [56]. To this end, some statistical-based FS algorithms have been 
utilized, such as the data Entropy-based FS method. As demonstrated in many recent 
bioinformatics-related pieces of research, wrapper-based FS approaches outper-
formed the filter and embedded-based FS techniques [57, 58], and two-step FS meth-
ods usually showed better functionality than single-step procedures [59–61]. Besides, 
in some cases, previous studies presented that filter-based FS techniques may reduce 
the prediction power of a learner [8, 62]. Hence, given the capabilities of the Trader 

Fig. 6 The PR curve of the algorithms on the a SHD, b HEP, c PAR, d WDBC, e LUNG, f ARRYTM, g PARKINSON, 
h ARCENE, and i GENEEXPR datasets

Fig. 7 The AUC bar diagram for ROC curves on the a SHD, b HEP, c PAR, d WDBC, e LUNG, f ARRYTM, g 
PARKINSON, h ARCENE, and i GENEEXPR datasets
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algorithm in Np-hard problems, this study developed the algorithm for selecting the 
features and applied it not only to large-size datasets but also to small-size ones. The 
related outcomes (obtained from both the small and large-size datasets) indicated 
that the FS concept was a critical preprocessing step for biological applications, and 
the performance of the algorithms differed from each other  on various datasets. In 
addition to gaining a suitable prediction model, the outputs of the FS phase may be 
essential for designing diagnosis/treatment plans, such as introducing the selected 
features/genes/proteins/miRNA as potential biomarkers for a wide range of diseases. 
The discovered biomarkers might be further investigated to determine their drugga-
bility properties and find candidate medicines to inhibit them.

Second, some previously  carried out studies tested the usefulness of their meth-
ods on small-size datasets [63, 64]. Therefore, their proposed approaches could not be 
embedded into software packages due to their lower performances on large-size data. 
To address the mentioned restriction, a voting-based ML framework was introduced 
and applied to the different datasets having various properties. It was shown that the 
suggested framework could boost the prediction power of classification systems on 
both the small and large-size datasets whereas the previously introduced ML tech-
niques lost their performances on large-size datasets. For example, Arabi et al. intro-
duced and developed a perceptron-based artificial neural network for classifying 13 
clinical/biological datasets and showed that their designed artificial neural network 
had a higher prediction ability than the other performed methods [25]. Arabi’s pro-
posed method generated a distinct model for every class of a given data and catego-
rized a data sample into a group whose related model represented the highest value of 
score. However, the outcomes of the present study exhibited that the mentioned ML 
method (introduce by Arabi et  al.) suffered from overfitting on the small-size data-
sets. In other words, the proposed voting-based ML system yielded a more powerful 
prediction model on large-size datasets than the previously performed approaches. 
On the small-size datasets, the efficiency of the proposed ML framework was slightly 

Fig. 8 The AUC bar diagram for PR curves on the a SHD, b HEP, c PAR, d WDBC, e LUNG, f ARRYTM, g 
PARKINSON, h ARCENE, and i GENEEXPR datasets
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Table 4 A comprehensive comparison between the proposed voting‑based method and the other 
previously introduced approaches

Method name Description Accuracy References

WDBC CHD5 CHD2 SHD

Cooperative coevolution and RF Filtering samples and features 
using the genetic algorithm 
and offering a clinical decision 
support system using random 
forest

97.1 – 93.4 96.8 [41]

ECSA Extending crow search algo‑
rithm for feature selection and 
categorizing biological samples 
using the KNN algorithm

95.76 – – 82.96 [42]

DISON and ERT Providing a clinical decision sup‑
port system using an extremely 
randomized tree‑based feature 
selection algorithm and creat‑
ing a prediction model using 
Diverse Intensified Strawberry 
Optimized Neural network

– – 93.67 94.5 [43]

Adaboost SVM Choosing informative features 
using three bioinspired optimi‑
zation algorithm and Adaboost 
SVM

98.73 – – – [44]

AGFS Merging the genetic algorithm 
and fuzzy logic concept for clas‑
sifying clinical datasets

– 76.67 – – [45]

SRLPSO‑ELM Proposing a self‑adaptive 
machine learning technique 
based on the particle swarm 
optimization algorithm and 
extreme learning classifier

– – 91.33 89.96 [46]

SVM‑GA Generating a clinical data clas‑
sification model based on com‑
bining the genetic algorithm 
and the SVM classifier

– 72.55 90.57 – [47]

ABCO with SVM Employing the ant colony 
optimization algorithm for pick‑
ing out features and evaluating 
them using the SVM classifier

– – 83.17 84.81 [48]

CFCSA Designing a hybrid system com‑
bining crow search optimization 
algorithm, chaos theory, and 
fuzzy c‑means algorithm

98.6 – – 88.0 [49]

CSA Applying the crow search 
optimization algorithm for 
selecting features and creating a 
prediction model using the KNN 
algorithm

90.28 – – 78.84 [50]

RS‑BPNN Building a prediction model for 
classifying clinical datasets using 
the rough set theory and back‑
propagation neural network

98.60 – – 90.40 [51]

FELM Extending the concept of fuzzy 
logic and extreme learning 
for training an artificial neural 
network

– 73.77 93.55 94.44 [52]

ANNWCC Training an artificial neural 
network using the world com‑
petitive contests algorithm

– 71.5 94.5 96.5 [25]

CSO, KH, BFO, and super learner Combining three optimiza‑
tion algorithms with the SVM 
classifier

96.83 – 84.00 86.36 [48]
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lower than that of Arabi’s method in terms of the classification criteria. This issue was 
probably because of overfitting Arabi’s approach on the small-size datasets.

Like all the other previously carried out studies, the present work also might suffer 
from some limitations. Especially, the current study was organized based on the five OAs 
producing non-deterministic but acceptable outcomes. Hence, in designing a healthcare 
system, the deterministic rate may decrease. To deal with such a limitation, a possible 
solution can be identifying a proper configuration of algorithms that can correctly dis-
play a synergic effect. However, obtaining such a configuration seems to be a challenging 
task. Collectively, a combination of algorithms, such as various types of operators for 
changing CSs, might be an advantageous approach.

Conclusion
This study extended our previously introduced optimization algorithm, Trader, to select 
a near-optimal subset of features/genes and proposed a voting-based machine learning 
technique to classify large-size biological/clinical datasets. According to the acquired 
results, it was indicated that the suggested voting-based classification framework yielded 
better predictions than the other previously performed studies. As a result, this tech-
nique can be considered an effective diagnosis/treatment approach such as discovering 
potential biomarkers and drugs to combat different diseases. In addition, the outcomes 
indicated that the feature selection concept is an essential preprocessing phase not only 
for large-size biological/clinical datasets but also for small-size ones, whereas most of 
the prior studies neglected the effect of the feature selection concept in their computa-
tional methods.
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KNN  K‑nearest neighbor
ML  Machine learning
OA  Optimization algorithm
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ROC  Receiver operating characteristic
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SHD  Statlog heart disease
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SVM  Support vector machine
UCI  University of California, Irvine

Table 4 (continued)

Method name Description Accuracy References

WDBC CHD5 CHD2 SHD

TRADER ‑SVM Selecting features using the 
Trader algorithm and evaluating 
them using the SVM classifier

100 64.96 88.85 89.45 –

Proposed voting‑based model Labeling a given data sample 
based on aggregating the pre‑
diction results of several models

100 67.21 88.85 92.73 –
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