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Abstract 

Background: Drug-target interaction (DTI) prediction plays an important role in drug 
discovery and repositioning. However, most of the computational methods used for 
identifying relevant DTIs do not consider the invariance of the nearest neighbour 
relationships between drugs or targets. In other words, they do not take into account 
the invariance of the topological relationships between nodes during representation 
learning. It may limit the performance of the DTI prediction methods.

Results: Here, we propose a novel graph convolutional autoencoder-based model, 
named SDGAE, to predict DTIs. As the graph convolutional network cannot handle 
isolated nodes in a network, a pre-processing step was applied to reduce the number 
of isolated nodes in the heterogeneous network and facilitate effective exploitation of 
the graph convolutional network. By maintaining the graph structure during represen-
tation learning, the nearest neighbour relationships between nodes in the embedding 
space remained as close as possible to the original space.

Conclusions: Overall, we demonstrated that SDGAE can automatically learn more 
informative and robust feature vectors of drugs and targets, thus exhibiting signifi-
cantly improved predictive accuracy for DTIs.

Keywords: Drug-target interaction, Spatial consistency constraint, Graph 
convolutional autoencoder, Deep learning

Background
Drug-target interaction (DTI) prediction plays a significant role in drug discovery and 
repositioning [1, 2]. Many investigations on drug side effects, poly-pharmacology and 
drug resistance rely on DTI predictions [3]. However, biochemical experiments to 
identify DTIs can be expensive and time consuming [4]. Alternatively, computational 
approaches can effectively identify potential clinically valuable DTIs with significantly 
reduced costs.

Early traditional computational methods can be divided into two categories, one based 
on molecular docking [5] and the other based on ligands [6]. However, when the 3D 
structure of the target protein is unknown, the performance of the methods based on 
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molecular docking are limited. In addition, when the target has only a small number of 
known binding ligands, the methods based on ligands perform poorly. In the past dec-
ade, much effort has been devoted to develop machine learning-based methods to pre-
dict potential DTIs. Xuan et al. [7] proposed a prediction method based on non-negative 
matrix factorisation and a gradient boosting tree model, which can make fully utilise 
negative samples to learn low-dimensional representations of drugs and targets. Ezzat 
et  al. [8] proposed another matrix factorisation-based method named GRMF, which 
introduces graph regularisation into low-rank approximation to improve the prediction 
performance of the algorithm. DTINet was proposed by Luo et al. [9] to integrate infor-
mation from heterogeneous data sources, and thus capture topological information of 
drugs and targets from various networks to obtain low-dimensional feature vectors.

However, these shallow machine learning methods have limited learning capabilities, 
which can hamper their ability to capture the relationship between features and DTIs. 
Deep learning is a type of machine learning that plays a significant role in speech rec-
ognition [10] and image processing [11], and is able to deal with complex biomedical 
and chemical problems [12, 13] owing to its multi-layered and non-linear structures. 
Therefore, in recent years, DTI prediction based on deep learning has become a research 
hotspot.

Based on different input features, deep learning-based DTI prediction methods can be 
broadly divided into three branches: ligand-, structure-, and relationship-based meth-
ods [14]. In particular, ligand-based methods leverage the ligand information of the 
tested target and use deep learning approaches to simplify the virtual screening steps. In 
turn, structure-based methods use information from both the target proteins and their 
ligands. For example, the first application of deep learning for DTI prediction was dem-
onstrated by Wen et al. [15], who developed the DeepDTIs. It extracts potential features 
of drugs and targets based on unsupervised pre-training using raw descriptors. Subse-
quently, Öztürk et  al. [16] proposed DeepDTA, a convolutional neural network-based 
model that uses Simplified Molecular Input Line Entry System (SMILES) information of 
drugs and the amino acid sequence of proteins to predict DTIs, which outperformed the 
previously reported KronRLS [17] and SimBoosts [18] models. More recently, Huang 
et al. [19] proposed an augmented Transformer [20] encoder-based method for extract-
ing and capturing semantic relations among substructures of drugs and targets from a 
large amount of unlabelled biological data.

Heterogeneous data sources provide diverse information and multiple perspectives for 
the prediction of novel DTIs [9]. Relationship-based methods use heterogeneous net-
works to integrate information from multi-source biological data among drugs, proteins, 
diseases, side effects and so on. Zhao et  al. [21] proposed DLDTI, which is based on 
network representation learning and convolutional neural networks. It can incorporate 
interaction information, attribute characteristics, and network topology of each node 
in a complex network. The model then uses the learned low-dimensional and informa-
tive vectors to perform DTI prediction. In turn, Peng et al. [22] used the Jaccard simi-
larity coefficients [23] and random walk with restart (RWR) [24] to extract the drug 
and target features, along with a denoising autoencoder to select the network-based 
features and reduce the dimensionality of the feature representation. Notably, many 
relationship-based prediction models use graph convolutional networks (GCNs). For 
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example, Manoochehri et al. [25] proposed an end-to-end model in which a heterogene-
ous network with seven types of edges, comprising drugs, proteins, and diseases, was 
constructed and graph convolution was performed for each edge type. Liu et al [26] also 
proposed a model, named GADTI, based on a graph convolutional autoencoder. The 
encoder in this model consists of the combination of a GCN and an RWR, which pro-
vides more information to the nodes, and DisMult [27] was used as the decoder. The 
GANDTI model proposed by Sun et al. [28] also uses a GCN to encode the drug and 
target features, but it then uses a generative adversarial network (GAN) to enhance the 
robustness and reduce the noise of feature vectors. However, most of these methods do 
not maintain invariant neighbour relationships during representation learning. It is pos-
sible that the nearest neighbour relationships between nodes are shifted in the embed-
ding space. These changes may negatively affect the prediction results. At the same time, 
most of these current methods cannot handle nodes that are not present in the network. 
In fact, there are a large number of unknown drugs and targets represented as isolated 
nodes in the interaction network. Therefore, how to process the isolated nodes is a chal-
lenge that has to be overcome to achieve more accurate DTI predictions.

Herein, we propose SDGAE, a graph convolutional autoencoder-based DTI prediction 
method that was designed to address the limitations of the current approaches. SDGAE 
first uses the Weighted K Nearest Known Neighbours (WKNKN) algorithm to densify 
the DTI matrix and reduce the number of isolated nodes in a heterogeneous network. 
During the encoding process, we added spatial consistency constraint (SCC) to the 
model, which ensures that the topological relationships between nodes in the embed-
ding space remains as close as possible to the original space. Finally, based on ensemble 
learning, a LightGBM [29] model was constructed for DTI prediction.

The innovations and contribution of this paper can be concluded as follows: 

(1) By introducing SCC during representation learning, the original topology of the 
node is preserved in the embedding space. Therefore, the nearest neighbour rela-
tionships between nodes in the embedding space remain as close as possible to the 
original space.

(2) A pre-processing step for densifying DTI matrix is introduced before graph con-
volution. Isolated nodes in heterogeneous network are fully considered and dealt 
with, thus further exploiting the effectiveness of GCN.

(3) Our work provides a new research idea for the optimisation of DTI prediction 
methods based on graph neural network encoding.

Materials
The dataset used in this study was obtained from public databases, as described previ-
ously [9], comprising 1923 known DTIs (i.e. positive samples) and 1,068,573 negative 
samples. The quantity and source of the nodes in the dataset are shown in Table  1. 
Among the 708 drugs and 1512 targets included in the dataset, 159 drugs and 1088 
targets did not have known interactions, called ′unknown drugs ′  and ′unknown tar-
gets ′  , respectively. The drugs/targets that had known interactions with at least one 
target/drug were called ′known drugs ′  and ′known targets ′  , respectively. Hence, a set 
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of drugs D =
{
di | i = 1, . . . ,m

}
 and targets T = tj | j = 1, . . . , n  were contained in 

the dataset, where m and n represent the number of drugs and targets, respectively. 
The DTIs are represented by a binary matrix Y ∈ Rm×n . If there was a known interac-
tion between drug di and target tj , then Y (i, j) = 1.

Methods
Overview of SDGAE

The overall workflow of SDGAE is shown in Fig. 1. SDGAE consisted of two stages: a 
representation learning stage, and a classifier training & prediction stage. During the 
representation learning stage, the networks related to drugs or targets were processed 
through a multiple similarities fusion step to obtain the similarity matrices SD and ST , 
respectively. These two matrices were then used for densifying DTI matrix and construc-
tion of drug-target heterogeneous network. Then, SDGAE was designed to generate an 
adjacency matrix Ã and node feature matrix X̃ , which were used for the subsequent 
graph convolutional autoencoder. In addition, a SCC was introduced in the process of 
autoencoding. Finally, the graph convolutional autoencoder generated the feature vector 
matrix Z for drugs and targets. During the classifier training & prediction stage, a Light-
GBM-based classifier was constructed and trained using the feature vector matrix Z.

Table 1 Details of the dataset

Type Quantity Source

Drug 708 DrugBank (Version 3.0) [30]

Protein 1512 HPRD (Release 9) [31]

Disease 5603 CTD [32]

Side effect 4192 SIDER (Version 2) [33]

Fig. 1 Flowchart of SDGAE
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Multiple similarities fusion

A similarity matrix between drugs (calculated from chemical structures) and tar-
gets (calculated from amino acid sequences) already existed in the dataset, denoted as 
SDchemical ∈ Rm×m and STsequence ∈ Rn×n respectively. Given that the nearest neighbour 
relationships between nodes in the embedding space needed to be as consistent as pos-
sible with those of the original space, the similarity in the original space was considered 
highly significant. We considered it unilateral to use only one source of data to measure 
the similarity between nodes. Thus, we measured and fused multiple types of similarity 
calculated from various sources.

For drug-drug interactions (DDIs), drug-disease associations and drug-side effect 
associations, we calculated the similarity between two drugs based on the Jaccard simi-
larity coefficient. Considering the drug-side effect association network as an example, 
the similarity between di and dj was calculated using the following equation:

where SEi represents the set of side effects associated with the drug di . Therefore, the 
similarity of all drugs concerning side effects was obtained and denoted by the matrix 
SDsideeffect ∈ Rm×m , in which each element of the matrix represents the similarity between 
two drugs, with values close to 1 indicating that the two drugs are similar. The same pro-
cess was performed for the DDI network and the drug-disease association network to 
obtain the corresponding similarity matrices, denoted as SDinteraction and SDdisease ∈ Rm×m , 
respectively.

To measure the similarity between targets from multiple perspectives, the same pro-
cess was performed for the target-target interaction (TTI) network and target-disease 
association network to obtain two similarity matrices for targets, which were denoted as 
STinteraction and STdisease ∈ Rn×n , respectively.

The fusion similarity matrices for the drugs ( SD ∈ Rm×m ) and targets ( ST ∈ Rn×n ) 
were then obtained using Eqs. (2) and (3), respectively.

Densify DTI matrix (DDM)

In the study dataset, only 1923 (0.1796%) drug-target pairs were known to have an interac-
tion. Unknown drugs and targets (See "Materials" Section) behaved as isolated nodes in the 
DTI network. Because GCN cannot handle isolated nodes based on local neighbourhood 
information, the existence of these isolated nodes limits the DTI prediction methods based 
on GCN. If the interactions of these unknown drugs and targets can be inferred according 
to other drugs or targets before GCN, the number of isolated nodes in the heterogeneous 
network can be reduced. Thus, the performance of DTI prediction method based on GCN 

(1)SDsideeffect(i, j) =

∣∣SEi ∩ SEj
∣∣

∣∣SEi ∪ SEj
∣∣

(2)SD(i, j) =max
(
SDchemical(i, j), S

D
interaction(i, j), S

D
disease(i, j), S

D
sideeffect(i, j)

)

(3)ST (i, j) =max
(
STsequence(i, j), S

T
interaction(i, j), S

T
disease(i, j)

)
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may be greatly improved. Based on the assumption that molecules with similar chemical 
structures may interact with the same molecules, SDGAE designed the following strategy 
for densifying DTI matrix.

In the DTI matrix Y (See "Materials" Section), the i-th row represents the interaction pro-
file of the drug di and all targets, denoted as Y (di) = {Y (i, 1),Y (i, 2) · · ·Y (i, n)} . In turn, 
the j-th column in Y represents the interaction profile of the target tj and all drugs, which 
is denoted as Y (tj) = {Y (1, j),Y (2, j) · · ·Y (m, j)} . Some drug-target pairs are not found to 
interact (zeros in Y) but they potentially interact (i.e. false negative samples). Therefore, the 
WKNKN algorithm was designed to use known DTIs to estimate the likelihood of unex-
plored DTIs. After the algorithm, some of the zeros in Y were replaced by values between 
0 and 1. The larger the value, the more likely was to exist an interaction between the drug 
and the target. Hence, using WKNKN, we obtained a densified matrix Ydense ∈ Rm×n . Algo-
rithm 1 shows the main steps.

KNearestKnownNeighbours() returns the K-nearest neighbours of a drug or target in 
descending order based on the similarity matrix SD or ST . Notably, when returning the 
K-nearest neighbours of a drug, only known drugs were considered, whereas unknown 
drugs were excluded, because the interaction profiles of unknown drugs were all zeros, and 
they could not provide useful interaction information (the same was true for targets).

After the above-described steps, some zeros in the Y matrix were replaced with values 
between 0 and 1, which are denoted as E = {e1, e2 · · · } . These values were sorted in ascend-
ing order and the median value emedian was selected as the threshold value. Thus a discre-
tized DTI matrix YDTI ∈ Rm×n was obtained according to the following equation:

(4)YDTI =

{
0 Ydense < emedian

1 Ydense ≥ emedian
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Construction of drug‑target heterogeneous network

D =
{
di | i = 1, . . . ,m

}
 was used to represent m drug nodes and T =

{
tj | j = 1, . . . , n

}
 

was used to represent n target nodes. A DDI network was constructed based on the 
drug-drug interactions: if two drugs interacted, an edge was connected between the 
two drug nodes. The DDI network was denoted by an adjacency matrix AD ∈ Rm×m . If 
there was an interaction between the drug di and drug dj , then AD(i, j) = 1 , otherwise 
AD(i, j) = 0 . Similarly, a TTI network was constructed and represented by AT ∈ Rn×n . 
To jointly exploit the drug and target interaction information, if the drug di and target 
tj were identified in YDTI as interacting (i.e. YDTI (i, j) = 1 ), an edge was added between 
drug node di and target node tj . Thus, a drug-target heterogeneous network was con-
structed by connecting the DDI and TTI network through the YDTI matrix.

As AD , AT , and YDTI contained the topological information of the heterogeneous net-
work, the topological adjacency matrix Ã ∈ R(m+n)×(m+n) of the heterogeneous network 
was obtained by concatenating these three matrices (Fig. 2, where tYDTI represents the 
transpose of YDTI ). Ã and X̃ were used as the adjacency matrix and node feature matrix 
for the subsequent graph convolutional encoder, respectively.

Graph convolutional encoder

In order to learn the low-dimensional feature vectors of drugs and targets. An autoen-
coder based on GCN was used to encode hidden representations of nodes. The encoding 
and decoding processes are illustrated in Fig. 3.

Fig. 2 Multiple similarities fusion and construction of heterogeneous network
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Briefly, in order to contain the node ′  s own feature in the process of aggregating 
information, it was necessary to add a self-loop to the adjacency matrix, which was 
represented as A′ = Ã+ I  , where I represents an m+ n dimensional identity matrix. 
Then, A′ was normalised to obtain the Laplace matrix according to the following 
equation:

where D̃(i, i) =
∑

j A
′(i, j) . SDGAE was designed with two graph convolutional layers. 

To obtain a k-dimensional feature vector, the encoding process could be described as 
follows:

where W1 ∈ R(m+n)×l and W2 ∈ Rl×k represents the weight matrices of the first and sec-
ond GCN layers that can be trained. l denotes the dimension of the feature vector for 
each node in the hidden layer. φ1 and φ2 are the non-linear activation functions. In par-
ticular, in our model, φ1(t) = sigmoid(t) = 1

1+e−t  , φ2(t) = tanh(t) = et−e−t

et+e−t  . After two 
convolutional layers, the Z ∈ R(m+n)×k matrix was obtained. The first m and last n rows 
of this matrix represent the feature vectors of the drugs and the targets, respectively.

Decoder and reconstitution loss

The main purpose of the decoder was to reconstruct the topological adjacency matrix Ã 
of the heterogeneous network based on matrix Z. The reconstructed matrix Â was calcu-
lated using the following equation:

(5)Ā = D̃− 1
2A′D̃− 1

2

(6)Z = φ2

(
Āφ1

(
ĀX̃W1

)
W2

)

Fig. 3 Encoder and decoder in SDGAE. a The fusion similarity in "Multiple similarities fusion" Section; b 
Gaussian distribution; c MLP-based discriminator
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where Â(i, j) represents the propensity of node i and node j to interact. Larger values 
indicated that the decoder predicted that the two nodes were more likely to interact 
with each other. zi and zj represent the low-dimensional feature vectors of the node i and 
node j, taken from the i-th and j-th rows of Z, respectively. t zj denotes the transposition 
of zj . To make the reconstructed matrix Â as consistent with Ã as possible, we used the 
Mean Squared Error loss function as follows:

Spatial consistency constraint (SCC)

There may be many potential interactions between drugs or targets, however, not all of 
them have been discovered so far. As a result, Ã may suffer from serious label missing. If 
only the matrix Ã was used as the guidance signal to learn the low-dimensional feature 
vectors of drugs and targets, the nearest neighbour relationships between nodes may 
shift in the embedding space. Changes in these relationships may have a negative impact 
on DTI prediction. The main purpose of "Spatial consistency constraint (SCC)" Section 
was to reduce the affect of noise in Ã and keep the topology of the nodes unchanged. 
Based on the assumption that nodes close to each other in the original space should also 
be close to each other in the embedding space, SDGAE designed the following strategy.

Sparsification of the similarity matrices

The SCC in the model mainly constrained the p-nearest neighbours of the nodes. Spe-
cifically, for nodes that were p-nearest neighbours in the original space, their distances 
in the embedding space should be as small as possible. A p-nearest neighbour graph was 
generated based on SD and ST for the drugs and targets, respectively. Taking drug as an 
example, a p-nearest neighbour graph N could be obtained from the following equation:

where Np(i) was the set of p-nearest neighbours of the drug di . Drug di itself was 
included in the p-nearest neighbours set, which could be either known drugs or 
unknown drugs. The N matrix could then be used to sparse SD in an operation that is 
represented as follows:

Therefore, for all the drugs, we obtained a sparse similarity matrix ŜD ∈ Rm×m . The same 
procedure was performed for the target similarity matrix ST , for which we obtained 
ŜT ∈ Rn×n.

(7)Â(i, j) = φ1
(
zi ·

t zj
)

(8)Lreconstitution = �Ã− Â�2 =
∑

i

∑

j

(Ã(i, j)− Â(i, j))2

(9)N (i, j) =





1, j ∈ Np(i) i ∈ Np(j)
0, j /∈ Np(i) i /∈ Np(j)
0.5, otherwise

(10)ŜD(i, j) = N (i, j) · SD(i, j)
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Constraint

The Z output from the graph convolutional autoencoder hold the feature vectors 
of the drugs and targets. The matrix consisting of the first m rows of Z is denoted by 
ZD ∈ Rm×k , where each row of ZD represents the feature vector of a drug. Similarly, the 
matrix consisting of the last n rows of Z is denoted by ZT ∈ Rn×k , where each row of ZT 
represents the feature vector of a target. Spatial consistency loss was defined as follows:

where �l , �d and �t were non-negative hyperparameters that controlled the weights of the 
three parts of the loss. ZD

i  and ZT
j  were the i-th and j-th rows of ZD and ZT respectively. 

The first term in Eq. (11) was the Tikhonov regularisation. Moreover, the second term 
measured the distance of the embeddings among drugs that were the nearest neighbours 
in the original space. The purpose of minimizing the second term was to ensure that 
drugs that were close to each other in the original space were also close to each other in 
the embedding space. With this term, it was guaranteed that the topology of the drug 
nodes remained essentially unchanged during representation learning. Similarly, the 
third term ensured that the topology of the target nodes also remained unchanged. Eq. 
(11) could be rewritten as:

where Tr(·) denotes the trace of a matrix. LD = DD − ŜD and LT = DT − ŜT , respec-
tively. Additionally, DD(i, i) =

∑
r Ŝ

D(i, r) and DT (j, j) =
∑

q Ŝ
T (j, q) were diagonal 

matrices. tZD and tZT were the transpose of ZD and ZT respectively.
By integrating ′′Decoder and reconstitution loss′′ and "Spatial consistency constraint 

(SCC)" Section together with Eqs. (8) and (12), the loss of the encoder was obtained as 
follows:

Adversarial model

To improve the robustness of the model and reduce noise interference in Ã , a GAN 
model was designed. The purpose of GAN was to make the feature vectors more consist-
ent with Gaussian distribution. A multilayer perceptron (MLP) was constructed to act as 
the discriminator D. In SDGAE, graph convolutional encoder also acted as the generator 

(11)

Lspatial_consistency = �l

(∥∥∥ZD
∥∥∥
2

F
+

∥∥∥ZT
∥∥∥
2

F

)

+ �d

m∑

i,r=1

ŜD(i, r)
∥∥∥ZD

i − ZD
r

∥∥∥
2

+ �t

n∑

j,q=1

ŜT (j, q)
∥∥∥ZT

j − ZT
q

∥∥∥
2

(12)

Lspatial_consistency =�l

(∥∥∥ZD
∥∥∥
2

F
+

∥∥∥ZT
∥∥∥
2

F

)

+ �dTr
(
tZDLDZD

)

+ �tTr
(
tZTLTZT

)

(13)Lencoding = Lreconstitution + Lspatial_consistency
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G. The loss functions of both the generator and discriminator were binary cross-entropy 
loss functions, which were defined as follows:

where p represents the predicted output of the model and y denotes the sample label. 
As described in the "Graph convolutional encoder" Section, the feature vector matrix 
Z ∈ R(m+n)×k of drugs and targets was obtained, with zi as the i-th row in Z. The matrix 
sampled from the true Gaussian distribution was Z′ ∈ R(m+n)×k , with z′i as the i-th row 
in Z′ . The loss functions of the discriminator and the generator were as follows:

To sum up, as Lencoding , LD , and LG were optimised using the Adam algorithm [34], 
informative and robust feature vector matrix Z ∈ R(m+n)×k of drugs and targets could be 
obtained. Z was subsequently used to predict the likelihood of DTIs.

Classifier based on LightGBM

Due to the serious problem of class imbalance, ensemble learning has been used to 
alleviate its negative effects. Herein, LightGBM, which can efficiently address the class 
imbalance problem, was used as DTI prediction classifier in SDGAE. LightGBM can 
fully utilise the information of all negative samples.

In the representation learning stage, we obtained the feature vector matrix Z for the 
drugs and targets. The first m and last n rows of Z represent the feature vectors of the 
drugs and targets, respectively. If we used Z(di) and Z(tj) to represent the feature vectors 
of the drug di and target tj , then the feature vector of the drug-target pair (di, tj) would be 
defined as a concatenation of Z(di) and Z(tj) ; that is, x(di, tj) = Z(di)⊕ Z(tj) . The label 
of the sample (di, tj) was obtained from the matrix Y; that is y(di, tj) = Y (i, j) . Therefore, 
we had a total of 1923 positive samples and 1,068,573 negative samples. The loss func-
tion of the classifier was binary cross-entropy loss function as follows:

where Ŷ (i, j) was the classifier output of the sample (di, tj) . By optimising the above-
described loss, we obtained the interaction propensities among all drugs and targets 
( ̂Y ∈ Rm×n ). The higher the score of the LightGBM model output, the more likely it was 
that the drug-target pair could interact.

Results
Evaluation metrics

We used a 10-fold cross-validation approach [35] to evaluate the performance of the 
SDGAE model. Moreover, the receiver operating characteristic (ROC) curve [36] was 

(14)BCELoss(p, y) = −[y log p+ (1− y) log(1− p)]

(15)LD =
1

m+ n

∑

i

BCELoss(D(zi), 0)+
1

m+ n

∑

i

BCELoss
(
D
(
z′i
)
, 1
)

(16)LG =
1

m+ n

∑

i

BCELoss(D(zi), 1)

(17)Llightgbm =
1

m× n

∑

i

∑

j

BCELoss(Ŷ (i, j),Y (i, j))
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constructed. The area under the ROC curve (AUC) [37] was used to assess the predictive 
performance of the model. However, as the number of negative samples in the dataset 
was significantly higher than that of the positive samples, in this case, the area under 
the precision-recall curve (AUPR) [38] could provide more information for assessing the 
overall performance of the model. Of note, AUC considers both positive and negative 
sample classification performance, whereas AUPR mainly focuses on positive samples 
and is suitable for highly unbalanced datasets [39]. Therefore, the AUC and AUPR are 
usually adequate metrics for evaluating the performance of a model for DTI prediction 
[40]. Many similar studies have used these two metrics to evaluate the performance of 
methods for predicting DTIs [26, 28, 41–43]. As biologists often select drug-target pairs 
with high prediction scores for subsequent wet experiment validation, the recall rates of 
the top ω (5%, 10%, 15%, 20%, and 30%) proportion of candidate targets predicted by the 
model were selected. The average recall rate for all drugs represented the ability of the 
model to recognise positive samples.

Comparison with other methods

Compared methods and parameters setting

To further evaluate the performance of SDGAE, we compared it with several other state-
of-the-art methods, including GRMF [8], DTINet [9], GANDTI [28], NGDTP [7], Mol-
Trans [19], and GADTI [26]. The hyperparameters of these methods were selected based 
on ranges recommended in the literature. We set �l = 0.2 , �d = 0.1 , �t = 0.1 in GRMF. 
The restart probability of the random walk in DTINet was set to r = 0.8 , as well as 
k1 = 100 , k2 = 400 . For GANDTI, we set l = 500 , k = 200 and a = 2220 . For NGDTP, 
in the matrix factorisation stage, we set a1 = a2 = a3 = 0.1 , fr = 280 and fp = 210 , 
whereas on the GBDT model, we set numleaves = 80 and learning rate = 0.02 . For Mol-
Trans, we set learning rate = 0.0001 , epoch = 30 , batch size = 16 , and dropout = 0.1 . 
For GADTI, we set learning rate = 0.001 and d = 1000.

The programming language we used was Python (3.7). SDGAE was built using 
the GPU version of Pytorch (1.10.0). The main libraries used were lightgbm (3.3.3), 
torch_geometric (2.1.0), and sklearn (1.0.2). SDGAE was trained and optimised on 
NVIDIA GeForce RTX 3060. Lastly, the hyperparameters of the SDGAE were set as 
follows: η = 0.8 , K = 10 , p = 5 , �l = 1e-5 , �d = 0.001 , �t = 0.001 , epoch = 5000 , the 
learning rate of the representation learning stage was 0.0001, and the learning rate of 
the LightGBM model was 0.02.

Experimental comparison

The ROC and PR curves of each method are presented in Fig. 4. The AUC and AUPR 
are listed in Table 2. SDGAE achieved the best performance among the seven meth-
ods, with the AUC 3.89% higher than the second best model (GADTI) and the AUPR 
6.80% higher than the second best model (GADTI). The AUC and AUPR of GRMF 
were 4.92% and 29.99% lower than those of SDGAE. In addition, the AUC and AUPR 
of DTINet were 5.09% and 52.35% lower than those of SDGAE. Furthermore, the 
AUC and AUPR of NGDTP were 4.65% and 53.57% lower than those of SDGAE 
respectively. Finally, the AUC and AUPR of MolTrans were 6.36% and 55.94% lower 
than those of SDGAE. GANDTI performed the worst among all seven methods, 
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which may be due to the large number of unknown drugs and unknown targets in 
the dataset (159 unknown drugs and 1088 unknown targets). GANDTI was unable to 
effectively encode the features of isolated nodes, which limited its performance.

To demonstrate that the AUC and AUPR of SDGAE were higher than the other six 
methods from a statistical point of view, a t-test was implemented. For the predicted 
scores of each drug, we separately calculated the AUC and AUPR. AUC list and AUPR 
list of each method were obtained. The P-values between SDGAE and each com-
pared method were calculated by t-test. The results are shown in Table 3. The results 
showed that SDGAE was significantly better than the other six methods at the signifi-
cance level of 0.05 in terms of AUC and AUPR.

Drug-target pairs with higher prediction scores will be further validated by biolo-
gists through wet-lab experiments. Thus for each drug, the recall rates of the top ω 
(5%, 10%, 15%, 20%, and 30%) candidate targets were collected as an indication of 
the ability of the model to identify DTIs. The higher the average recall, the more real 
DTIs are identified. Figure  5 illustrates that SDGAE had the highest average recall 
rate among the seven methods regardless of the ω selected, achieving average recall 
rates between 78.92% and 91.10%. When ω was 5%, 10%, 15%, 20%, and 30%, the aver-
age recall rates of SDGAE were higher than those of the second best method by 5.21% 
(GADTI), 5.87% (GADTI), 7.39% (GADTI), 6.87% (DTINet), and 0.90% (MolTrans), 

Fig. 4 ROC and PR curves of SDGAE and other methods

Table 2 AUC and AUPR of SDGAE and other methods

The best results are highlighted with bold font

DTINet GRMF GADTI MolTrans NGDTP GANDTI SDGAE

AUC 0.8919 0.8936 0.9039 0.8792 0.8963 0.7605 0.9428
AUPR 0.0951 0.3187 0.5506 0.0592 0.0829 0.0463 0.6186

Table 3 Statistical results of SDGAE and other methods

The P-values were calculated based on the AUCs and AUPRs of each drug

DTINet GRMF GADTI MolTrans NGDTP GANDTI

P-value (AUC) 0.0229 0.0285 2.74e−4 0.0367 4.09e−3 1.13e−53

P-value (AUPR) 2.18e−23 9.90e−3 3.42e−13 6.83e-25 7.67e−93 9.86e−130
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respectively. If ω was set to 5%, 10%, or 15%, then GRMF performed better than 
NGDTP. In turn, NGDTP performance was better than that of GRMF when ω was set 
to 30%. When ω was set to 20%, the performance of GRMF and NGDTP were similar.

Figure 6 illustrates the AUC and AUPR of each fold in the whole prediction process of 
SDGAE. From this figure, we can find that the AUC and AUPR of SDGAE were consist-
ently high in each fold. In addition, the AUC and AUPR of each fold did not fluctuate 
much. Therefore, SDGAE has good robustness to DTI dataset.

Ablation experiments

Next, the SDGAE model was further tested but without DDM (See "Densify DTI matrix 
(DDM)" Section), as well as without SCC (See "Spatial consistency constraint (SCC)" 
Section).

From Table 4 and Fig. 7, we can see that without DDM, the AUC and AUPR of the 
SDGAE model were 89.55% and 45.83%, respectively, which represented a significant 
reduction of 4.73% and 16.03%, compared with the original model. When SCC was not 
used, a slight AUC increase was observed (up by 0.15%), which was very small, whereas 
the AUPR of the model decreased significantly (down by 5.28%). Because there is a 

Fig. 5 Average recall rates at different top ω cutoffs

Fig. 6 AUC and AUPR of each fold
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serious problem of class imbalance, AUPR is more important than AUC. Hence, if SCC 
was excluded, the performance of SDGAE also deteriorated significantly. Based on the 
results of the ablation experiments, we confirmed that both the DDM and SCC resulted 
in a significant improvement in the performance of the method.

If only Ã was used as the guidance signal to learn the low-dimensional feature vectors 
of drugs and targets (See "Graph convolutional encoder" Section), the nearest neigh-
bour relationships between nodes in the embedding space could shift. Take drug as an 
example.

Twenty drugs were randomly selected to observe the differences in feature vectors 
learned with and without the SCC. As shown in Fig.  8, the subplot (a) illustrates the 
similarity between 20 drugs sampled from SD matrix. This similarity was determined 
manually and we defined this space as original space. The subplot (b) is the similarity 
matrix between the feature vectors of 20 drugs learned without SCC. Correspondingly, 
the subplot (c) is the similarity matrix between the feature vectors of 20 drugs learned 

Fig. 7 ROC and PR curves of each method

Table 4 Comparison of AUC and AUPR values for ablation experiments

The best results are highlighted with bold font

SDGAE SDGAE_without_DDM SDGAE_
without_
SCC

AUC 0.9428 0.8955 0.9443
AUPR 0.6186 0.4583 0.5658

Fig. 8 Relationships between 20 drugs in a original space, b embedding space without SCC and c 
embedding space with SCC, respectively. The deeper the colour, the more similar the two drugs are
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with SCC. It was observed that, if SCC was not used, the similarity between the feature 
vectors was much greater than that in the original space. The high similarity between 
feature vectors was not beneficial for subsequent DTI prediction. In contrast, if SCC 
was used, the similarity between the feature vectors were closer to the original space. 
Therefore, SCC really played a role in maintaining the graph structure. The nearest 
relationships between nodes in the embedding space remained as close as possible to 
the original space. This made the feature vectors more beneficial for subsequent DTI 
prediction.

Predicting novel DTIs

To demonstrate the ability of SDGAE to discover potential DTIs, we used all known 
DTIs in the dataset and performed 10-fold cross-validation on negative samples to 
obtain the interaction propensity of all drug-target pairs in the dataset. In Table 5, we 
presented the 20 drug-target pairs with the highest scores predicted by the SDGAE. To 
verify the results of the model, we searched several public databases, including Drug-
Bank [44], PubChem [45], DrugCentral [46], STITCH [47], and KEGG [48], for evidence 
of these 20 drug-target pair interactions.

Among the 20 drug-target pairs most likely to interact predicted by SDGAE, 7 were 
supported by KEGG database, 6 by DrugBank database, 3 by STITCH database, 2 by 
DrugCentral database and 1 by PubChem database. For the one remaining drug-target 
pair, we also found literature that indicates the interaction can occur, as noted by ′′Lit-
erature′′ in Table 5. For all 20 drug-target pairs predicted by SDGAE, we can find evi-
dence of existing interactions outside the dataset, demonstrating the powerful ability of 

Table 5 Top 20 of candidate drug-target pairs

Rank Drug ID Drug name Protein ID Protein name Supported evidence

1 DB01215 Estazolam P48169 GABRA4 PubChem

2 DB00829 Diazepam P48169 GABRA4 KEGG

3 DB06800 Methylnaltrexone P41143 OPRD1 STITCH

4 DB00335 Atenolol P07550 ADRB2 DrugBank

5 DB00363 Clozapine P21918 DRD5 KEGG

6 DB01019 Bethanechol P11229 CHRM1 DrugBank

7 DB06216 Asenapine P28221 HTR1D KEGG

8 DB00734 Risperidone P21918 DRD5 DrugCentral

9 DB00809 Tropicamide P08912 CHRM5 STITCH

10 DB00734 Risperidone P28222 HTR1B KEGG

11 DB00799 Tazarotene P48443 RXRG KEGG

12 DB06216 Asenapine P21918 DRD5 DrugCentral

13 DB00543 Amoxapine P28223 HTR2A DrugBank

14 DB01186 Pergolide P34969 HTR7 STITCH

15 DB00411 Carbachol P20309 CHRM3 DrugBank

16 DB00806 Pentoxifylline Q08499 PDE4D Literature [49]

17 DB01019 Bethanechol P20309 CHRM3 DrugBank

18 DB00185 Cevimeline P08172 CHRM2 KEGG

19 DB00454 Meperidine Q8TCU5 GRIN3A KEGG

20 DB00734 Risperidone P34969 HTR7 DrugBank
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SDGAE to predict potential DTIs. Refer to Additional file 1 for novel DTIs of all drugs 
predicted by SDGAE.

Discussion
The results showed that both AUC and AUPR of SDGAE were higher than the other 
compared methods (Table 2, Fig. 4). AUPR, in particular, was substantially higher than 
other methods. We conjecture that the reason why SDGAE performs better than these 
methods is that it integrates the advantages and mitigates the disadvantages of these 
methods. Among these methods, DTINet leverages multiple association informa-
tion and NGDTP can fully utilise negative samples information to effectively alleviate 
the class imbalance problem; however, both are shallow models with limited learning 
capabilities. GADTI and GANDTI are deep learning methods based on graph convo-
lutional encoding, but GCNs do not perform well in networks with isolated nodes or 
sparse networks. In addition, GADTI and GANDTI do not consider the invariance of 
the nearest neighbour relationships between nodes during representation learning. In 
comparison, SDGAE is a method based on graph convolutional autoencoder and it has 
a powerful learning capability. SDGAE measures similarity from multiple perspectives, 
which makes full use of information from multiple data sources. Moreover, the Light-
GBM in SDGAE makes full use of the information from negative samples and alleviates 
class imbalance problem by building multiple decision trees. SDGAE densifies adjacency 
matrix to deal with isolated nodes in heterogeneous networks, fully exploiting the effec-
tiveness of GCN. In addition, SCC operation maintains the nearest neighbour relation-
ships between nodes unchanged, which is beneficial for the subsequent training of the 
classifier. As an outcome of its enhanced efficacy, SDGAE identified more potential DTIs 
than the other methods, which paves the way for a faster discovery of potential drug tar-
gets. Ablation experiments showed that both the SCC and DDM significantly improved 
the performance of the model. Finally, all 20 novel DTIs predicted by SDGAE were sup-
ported by several published works, which demonstrates the powerful ability of SDGAE 
for DTI prediction.

Compared with the work of others, we paid more attention to the changes occurring 
in the nearest neighbour relationships of the nodes in the process of representation 
learning (Fig. 8). Without SCC, nodes that were not close to each other in the original 
space would likely become close to each other in the embedding space after represen-
tation learning. We believe that an important reason for this is that Ã contains noise. 
There are some interactions that are not yet discovered. SDGAE was designed to reduce 
the interference of these false labels. From Fig. 8 and Table 4, it could be concluded that 
intentionally keeping the nearest neighbours unchanged during representation learning 
is beneficial for DTI prediction to some extent.

Although SDGAE was only used to predict missing DTIs in this work, SDGAE is a ver-
satile method. If the similarity between nodes is defined, SDGAE can be easily applied 
to other link prediction problems, such as the predictions of microRNA-small molecule 
[50–53], drug-side effect [54, 55], gene-disease [56–58], and microRNA-disease [59, 60] 
associations. In the future we will investigate the performance of the SDGAE in other 
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link prediction problems. In addition, the coronavirus disease 2019 (COVID-19) has 
become a major global health problem [61] and is still haunting the entire human race. 
However, researching and designing a new drug for patients with COVID-19 may take a 
lot of time. Drug repurposing may be an effective alternative [62]. We will apply SDGAE 
model to the datasets which contain more targets and drugs related to COVID-19. In 
other words, SDGAE will be used to predict potential therapeutic drugs for the treat-
ment of COVID-19 in the future [62, 63].

Conclusions
We propose a novel method, SDGAE, for DTI prediction. During the representation 
learning stage, the idea of maintaining graph structure was used to make the topology of 
nodes in the embedding space closer to the original space. Thus, the nearest neighbour 
relationships between nodes in the embedding space remained as close as possible to the 
original space. In order to alleviate the disadvantage that GCN cannot encode isolated 
nodes, the DTI matrix was first densified to reduce the number of isolated nodes in het-
erogeneous networks. This operation fully exploited the effectiveness of the GCN.

Taken together, this study provides a good inspiration for DTI prediction models 
based on graph neural network encoding. The idea of SCC and DDM can be applied to 
other methods without difficulty. Thus, it provides a general idea for the optimisation of 
DTI prediction methods based on graph neural network encoding.
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