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Abstract 

Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental dis-
order that is highly phenotypically and genetically heterogeneous. With the accumula-
tion of biological sequencing data, more and more studies shift to molecular subtype-
first approach, from identifying molecular subtypes based on genetic and molecular 
data to linking molecular subtypes with clinical manifestation, which can reduce 
heterogeneity before phenotypic profiling.

Results: In this study, we perform similarity network fusion to integrate gene and 
gene set expression data of multiple human brain cell types for ASD molecular subtype 
identification. Then we apply subtype-specific differential gene and gene set expres-
sion analyses to study expression patterns specific to molecular subtypes in each cell 
type. To demonstrate the biological and practical significance, we analyze the molecu-
lar subtypes, investigate their correlation with ASD clinical phenotype, and construct 
ASD molecular subtype prediction models.

Conclusions: The identified molecular subtype-specific gene and gene set expression 
may be used to differentiate ASD molecular subtypes, facilitating the diagnosis and 
treatment of ASD. Our method provides an analytical pipeline for the identification of 
molecular subtypes and even disease subtypes of complex disorders.

Keywords: Single-nucleus RNA-seq data, Gene set, Similarity network fusion, Autism, 
Molecular subtype

Background
Autism spectrum disorder (ASD) is a severe neurodevelopmental disorder that is 
characterized by deficits in social communication and the presence of repetitive and 
restricted patterns of behaviors and interests [1]. ASD has significant phenotypic and 
genetic heterogeneity. Even though ASD is highly heritable, the genetic etiology is com-
plex and influenced by over 1000 risk genes [2]. Together with environmental factors, it 
is challenging to diagnose and define ASD subtypes.

In the last decades, researchers have attempted to define subtypes of ASD. Tradi-
tionally, researchers first identify different clinical phenotypes and then identify and 
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compare the biomolecular factors that may explain the differences in disease manifes-
tation. For example, Diagnostic and Statistical Manual for Mental Disorders, version 5 
(DSM-5) [3] defines subtypes of ASD, including Autistic Disorder, Asperger’s Syndrome, 
Childhood Disintegrative Disorder, and Pervasive Developmental Disorder-Not Oth-
erwise Specified. However, the rapidly advancing genetic technology today still has dif-
ficulty in identifying genetic differences between these clinically behaviorally-defined 
subtypes, resulting in a lack of specific treatment options for them [4].

With the accumulation of sequencing data, studies are shifting to a genetic and molec-
ular data-first approach for subtype definition [5], known as molecular subtype-first 
approach, which focuses on exploring molecular subtypes first based on genetic and 
molecular data [6]. This approach identifies recurrent genetic variants or expression 
patterns, reducing heterogeneity before phenotypic profiling [7]. Until now, molecular 
subtype analyses have defined some meaningful ASD molecular subtypes. For instance, 
a recent study identified a convergent molecular subtype of ASD with shared dysreg-
ulation across both epigenome and transcriptome [8]. Some ASD molecular subtypes 
caused by recurrent de novo disruptive mutations, such as CHD8 [9] and DYRK1A [10], 
have also been reported.

Recently widely used single-cell RNA sequencing (scRNA-seq) and single-nucleus 
RNA sequencing (snRNA-seq) technologies have the advantage of detecting hetero-
geneity between cells and distinguishing different cell types. In 2019, Velmeshev et al. 
published snRNA-seq data of human brains from ASD patients and healthy controls 
and analyzed cell type-specific gene dysregulation in ASD [11]. ASD is characterized by 
cell type heterogeneity [12, 13], thus utilizing gene expression from multiple different 
cell types of human brains provides an unprecedented opportunity to more accurately 
identify ASD molecular subtypes. In addition, complementary to individual gene-based 
analyses, gene set-based analytical methods can better reveal the related gene sets whose 
components show subtle but coordinated expression changes that may not be detected 
by the usual individual gene-based analyses [14–16]. Considering that the presence of 
ASD-associated gene sets may determine the manifestation of ASD in different cell 
types, integrating gene and gene set analyses to mine ASD snRNA-seq data can broaden 
horizons for ASD molecular subtype identification.

To this end, we utilize similarity network fusion (SNF) [17] to integrate gene and gene 
set expression data of multiple human brain cell types for ASD molecular subtype iden-
tification. Then molecular subtype-specific gene and gene set expression patterns are 
analyzed, and the molecular subtypes are related to clinical diagnostic data to explore 
ASD disease subtypes. Finally, we construct ASD molecular subtype prediction mod-
els to aid clinical diagnosis and treatment. Our method provides new insights into the 
underlying genetic causes of ASD and can be also applied to the identification of molec-
ular subtypes of other diseases.

Materials and methods
Single‑nucleus RNA‑seq data

We collected single-nucleus RNA-seq data of ASD and controls [11] from the website 
of https:// autism. cells. ucsc. edu. The matrix of raw counts includes 104,559 nuclei of 
15 ASD patients and 16 control individuals, involving 41 post-mortem tissue samples 
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from anterior cingulate cortex and prefrontal cortex. These nuclei are classified into 17 
cell types, including fibrous astrocytes (AST-FB), protoplasmic astrocytes (AST-PP), 
endothelial, parvalbumin interneurons (IN-PV), somatostatin interneurons (IN-SST), 
SV2C interneurons (IN-SV2C), VIP interneurons (IN-VIP), layer 2/3 excitatory neurons 
(L2/3), layer 4 excitatory neurons (L4), layer 5/6 corticofugal projection neurons (L5/6), 
layer 5/6 cortico-cortical projection neurons (L5/6-CC), microglia, maturing neurons 
(Neu-mat), NRGN-expressing neurons I (Neu-NRGN-I), NRGN-expressing neurons 
II (Neu-NRGN-II), oligodendrocytes and oligodendrocyte precursor cells (OPC). We 
preprocessed the raw data with R package scran [18], normalized and log transformed 
the gene expression data. After excluding the mitochondrial and nuclear genes, 11,559 
highly variable genes were kept. After excluding the cell types with low nucleus numbers 
and severe imbalance in nucleus numbers between ASD patients, the gene expression 
data of 15 cell types were analyzed for downstream analyses, including 3662, 7089, 2001, 
3713, 4180, 1834, 5620, 12,809, 6517, 3405, 4395, 2502, 3543, 12,214, and 9652 nuclei 
from cell types of AST-FB, AST-PP, endothelial, IN-PV, IN-SST, IN-SV2C, IN-VIP, L2/3, 
L4, L5/6, L5/6-CC, microglia, Neu-mat, oligodendrocytes, and OPC, respectively.

Gene set variation analysis

Gene set variation analysis (GSVA) [19] is a non-parametric and unsupervised method 
for assessing the enrichment of transcriptomic gene sets by calculating sample-wise gene 
set enrichment scores and estimating variation of gene set enrichment over the samples. 
It converts an expression matrix of genes into an expression matrix of gene sets to assess 
whether gene sets are differently enriched between samples. We chose three catego-
ries of annotated gene sets in molecular signatures database (MSigDB) [20], including 
hallmark gene sets (H), the commonly used pathway gene sets in curated gene sets (C2) 
including KEGG [21], REACTOME and BIOCARTA, and gene ontology gene sets (C5). 
For each cell type, we supplied the gene expression matrix as well as the selected gene 
sets to an R package of GSVA for scoring gene sets for each cell, i.e., obtaining gene set 
expression level of each cell. The parameter kcdf was set to Gaussian, and min.sz was set 
to 10.

Similarity network fusion

Similarity network fusion (SNF) [17] is a comprehensive method commonly used to 
integrate different modal data to identify cancer subtypes. SNF constructs similarity 
networks of samples for each modal data and then fuses the networks into a final one. 
To classify ASD molecular subtypes, the R package SNFtool [22] was used to perform 
SNF analysis to integrate gene and gene set expression data of all cell types to obtain a 
patient-patient similarity matrix.

For the gene expression data of cells in each cell type, we first calculated the average 
expression of each patient across all cells. Then we used the affinityMatrix function to 
calculate a patient-patient affinity matrix for each cell type, setting the number of neigh-
bors K = 3. Next, we used the SNF function to fuse affinity matrices of all cell types, set-
ting the number of neighbors K = 3 and the number of iterations T = 100. Based on the 
fused affinity matrix, patients were clustered using spectral clustering. We used the opti-
mumNumberOfClustersGivenGraph function in SNFtool, i.e., utilizing eigen-gaps [22], 
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rotation cost [22], and also calculated silhouette coefficient [23] to determine the opti-
mal number of clusters, i.e., the number of ASD molecular subtypes. For the gene set 
expression data, we used the same way to obtain a fused affinity matrix of all cell types 
and to determine the number of clusters. Then, a final patient-patient affinity matrix was 
generated using the SNF function again, integrating the affinity matrix based on the gene 
expression matrix and that based on the gene set expression matrix.

ASD molecular subtype‑specific analyses

Based on the identified ASD molecular subtypes, we analyzed subtype-specific differ-
entially expressed genes (DEGs) and differentially expressed gene sets (DEGSs). For 
each molecular subtype and each cell type, we firstly identified the DEGs for cells from 
patients belonging to the considered subtype relative to cells from patients belonging 
to the other subtypes, and also identified the DEGs for cells from patients belonging to 
the considered subtype relative to cells from normal controls. The intersection of these 
two sets of DEGs was taken as the subtype-specific DEGs. For this, MAST [24] was 
used to perform zero-inflated regression analysis by fitting a linear mixed model, which 
included molecular subtype group, individual label, gene detection rate, age, sex, RIN 
(RNA integrity number), PMI (post-mortem interval), cortical region, as well as 10X 
capture and sequencing batches and per-cell ribosomal RNA fraction. To identify genes 
differentially expressed due to the influence of molecular subtype, a likelihood ratio test 
was performed by comparing the model with and without the designated molecular sub-
type factor. Genes with log2 fold change (logFC) of expression ≥ 0.14 (i.e., 10% differ-
ence) and FDR < 0.05 were regarded as differentially expressed. To identify the molecular 
subtype-specific DEGSs for each subtype and each cell type, we used R package limma 
[25] to analyze the gene set expression data obtained from GSVA. Gene sets with logFC 
of expression ≥ 0.14 and FDR < 0.05 were regarded as significant.

Correlation analysis with clinical scores

We used the Autism Diagnostic Interview-Revised (ADI-R) data of patients obtained 
from the ASD snRNA-seq study [11], including scores of five categories: A, B-verbal, 
B-nonverbal, C and D, where A stands for social, B for communication, C for repetitive 
behavior and D for abnormal development. We ranked the scores of all ASD patients 
within each category and used the average of ranks of each patient as the combined clin-
ical score. To analyze the correlation between subtype-specific DEGs/DEGSs and com-
bined clinical score, for each gene of subtype-specific DEGs/DEGSs, we firstly calculated 
individual-level gene expression fold change using MAST by comparing each ASD case 
with the control group, and then calculated Pearson’s correlation coefficient and associ-
ated P-value between individual-level fold changes and combined clinical scores. Next, 
we determined the meta Pearson’s P-value by combining the P-values of all genes of 
subtype-specific DEGs/DEGSs using Fisher’s method [26]. Meta P-value was used as an 
approximation of how well the changes of genes correlate with the clinical severity of 
ASD. To analyze the different clinical ADI-R category in score ranks between one con-
sidered molecular subtype and the other subtypes, we performed t test for each cate-
gory, i.e., A, B-verbal, B-nonverbal, C and D, and the t test P-values of all categories were 
corrected using Benjamini–Hochberg procedure [27] to obtain FDR-adjusted P-values.
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ASD molecular subtype prediction model

R package caret [28] was used to construct subtype prediction models for each cell type 
based on partial least squares (PLS) algorithm, using the genes of molecular subtypes-
specific DEGs/DEGSs as features. We constructed three kinds of prediction models. For 
the first one, cells were randomly divided into a training set and a test set in a ratio of 
7:3 for each molecular subtype. For the second one, cells from one randomly selected 
patient of each molecular subtype were used as a test set and cells from other patients 
as a training set to avoid information leakage. For these first two kinds of models, based 
on the split training set, we chose the optimal model by performing ten-fold cross-vali-
dation 10 times and tuning over the model hyperparameter, i.e. the number of PLS com-
ponents, with a grid search. Then the optimal model was used for the prediction of the 
test set. For the third one, the gene expression average of all cells of one patient was used 
as the patient’s gene expression data and one randomly selected patient of each subtype 
was used as a test set and the left patients as a training set. Based on the split training 
set, we chose the optimal model by performing three-fold cross-validation 10 times and 
tuning over the model hyperparameter with a grid search. To evaluate the prediction 
performance, we calculated micro F1, macro F1, and weighted F1 as performance met-
rics. F1 score can be considered as a weighted average of the precision and recall of the 
model, taking values in the range of [0,1]. The larger the F1 score, the better the model 
prediction.

Results
Analytical workflow

To integrate gene expression and gene set expression of multiple human brain cell 
types, we performed similarity network fusion (SNF) analysis. Specifically, based on 
the snRNA-seq data of ASD patients, SNF was applied to integrate the patient-patient 
similarity networks obtained from gene expression data of multiple cell types. At the 
same time, for each cell type, we supplied gene expression data and curated gene sets 
for gene set variation analysis (GSVA) to obtain gene set expression data, and then SNF 
was applied to integrate the patient-patient similarity networks obtained from gene set 
expression data of multiple cell types. Next, we used SNF again to integrate the above 
patient-patient similarity networks to get a final patient-patient affinity matrix. Then we 
performed clustering based on the affinity matrix to determine the molecular subtypes 
of ASD patients (Fig.  1A). Based on the identified molecular subtypes, we performed 
subtype-specific differential expression analyses including identifying differentially 
expressed genes (DEGs) and differentially expressed gene sets (DEGSs) for each cell type 
(Fig. 1B). We performed GO [29, 30] and KEGG [21] enrichment analyses of subtype-
specific DEGs, ASD risk gene enrichment analysis and clinical score association analy-
sis of subtype-specific DEGs and DEGSs. Finally, partial least squares (PLS)-based ASD 
molecular subtype prediction models were constructed (Fig. 1C).

Identification of ASD molecular subtypes

Using the gene expression data of multiple cell types, we used SNF to obtain a patient-
patient affinity matrix. Based on eigen-gaps [22], rotation cost [22] and silhouette 
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coefficient [23], the optimal number of clusters was set to three and three ASD patient 
clusters were determined (Fig. 2A). At this time, the silhouette coefficient was 0.63. Sim-
ilarly, based on the gene set expression of multiple cell types, SNF was used to get a 
patient-patient affinity matrix. Three clusters were also obtained (Fig. 2B). The silhou-
ette coefficient was 0.65. Afterward, we fused the above two affinity matrices by SNF 

Fig. 1 Analytical workflow including A molecular subtype recognition, B subtype-specific differential 
expression analysis, and C downstream analysis for subtype-specific DEGs and DEGSs

Fig. 2 Patient-patient affinity matrix and clustering diagram. Patient-patient affinity matrices and clustering 
results based on A gene expression data and B gene set expression data. C The final patient-patient affinity 
matrix integrating (A) and (B) and the final clustering result
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to obtain a final patient-patient affinity matrix. Again, the optimal number of clusters 
was three and three ASD clusters were determined (Fig. 2C). At this time, the silhouette 
coefficient was 0.92. Noted that the clustering results are the same no matter in Fig. 2A, 
B, or C. Hence, we classified the 15 ASD patients into three molecular subtypes, denoted 
by ASD molecular subtype I, II, and III, including six, four, and five patients respectively.

ASD molecular subtype‑specific DEGs

Based on the three recognized ASD molecular subtypes, we identified subtype-specific 
DEGs for each molecular subtype and each cell type (Additional file 1: Table S1). Fig-
ure 3A shows the number of up-regulated and down-regulated subtype-specific DEGs 
relative to other molecular subtypes in each cell type. The number of subtype-specific 
DEGs varies considerably among the three molecular subtypes, but all molecular sub-
types have a large number of subtype-specific DEGs in L2/3, L4, and L5/6-CC. Subtype 
I has more subtype-specific DEGs in AST-PP and OPC, while subtype III has a large 

Fig. 3 Analysis of subtype-specific DEGs. A The number of subtype-specific DEGs in each cell type. B The top 
10 subtype-specific DEGs unique to each molecular subtype ranked by |logFC|. The regulation direction and 
|logFC| are relative to other molecular subtypes. The number of (C) GO terms [29, 30] and D KEGG pathways 
[21] enriched with subtype-specific DEGs in each cell type. The top three subtype-specific E GO terms [29, 30] 
and F KEGG pathways [21] ranked by adjusted P-value in each cell type



Page 8 of 16Zhang et al. BMC Bioinformatics          (2023) 24:142 

number of subtype-specific DEGs in L5/6-CC, implying the different influence of ASD 
on different cells for different molecular subtypes.

Then, we analyzed the subtype-specific DEGs unique to each molecular subtype 
(Additional file  2: Table  S2), and listed the top 10 with the largest absolute value of 
logFC relative to other molecular subtypes (Fig. 3B). Previous studies have shown these 
subtype-specific DEGs are associated with ASD, for example, LEPR [31] and GALNT13 
[32] for molecular subtype I, GRIK1 [33] and CUX2 [34] for molecular subtype II, and 
SLC1A2 [35] and PDE1C [36] for molecular subtype III. We also selected the subtype-
specific DEGs possessed by all molecular subtypes and compared the logFC of these 
genes in corresponding cell types relative to controls to screen for genes with inconsist-
ent regulatory direction among the three molecular subtypes. We detected 19 different 
regulatory orientation events in 17 unique genes (Additional file  2: Table  S2). Among 
them, two ASD risk genes, CNTN5 in subtype I and CNKSR2 in subtype II, are of 
interest.

To explore the biological significance of the ASD molecular subtypes, we performed 
GO and KEGG enrichment analyses of subtype-specific DEGs using clusterProfiler [37] 
(Additional file  3: Table  S3). After the correction of multiple tests using Benjamini–
Hochberg procedure [27], GO terms with count > 10 and FDR-corrected P-value < 0.05 
were reported. The number of significant GO terms in each cell type is shown in Fig. 3C. 
For the three subtypes, GO terms are enriched in six, three and five cell types, respec-
tively. All molecular subtypes in L2/3 have a large number of enriched GO terms while 
only molecular subtype III also has many enriched GO terms in L5/6-CC. Listing the 
top three significant GO terms according to adjusted P-value in Fig. 3E, it shows that the 
majority of these GO terms are associated with neurological function. Similarly, KEGG 
pathways with count > 5 and FDR-corrected P-value < 0.05 were screened. Figure  3D 
shows the number of significantly enriched KEGG pathways. For the three subtypes, 
KEGG pathways are enriched in four, two and four cell types, respectively. All molecu-
lar subtypes also have a large number of enriched KEGG pathways in L2/3 while only 
molecular subtype III has many enriched KEGG pathways in L5/6-CC. The top three 
significant pathways are listed in Fig. 3F. Among them, most are related to neurological 
function. The results of GO and KEGG enrichment analyses show that the three molec-
ular subtypes are closely related to ASD, while each has its characteristics.

ASD molecular subtype‑specific DEGSs

Based on the three identified ASD molecular subtypes, we also identified subtype-spe-
cific DEGSs for each molecular subtype and each cell type (Additional file 4: Table S4). 
As shown in Fig.  4A, the number of subtype-specific DEGSs varied greatly among 
molecular subtypes. Molecular subtype I has subtype-specific DEGSs in six cell types, 
with the most abundant in L4. Most of these subtype-specific DEGSs exhibits down-
regulation relative to other molecular subtypes. Molecular subtype II has three sub-
type-specific DEGSs in L2/3 only that exhibits up-regulation relative to other molecular 
subtypes. Molecular subtype III has subtype-specific DEGSs in 13 cell types, with the 
most abundant in IN-VIP. Most of these subtype-specific DEGS exhibits up-regulation 
relative to other subtypes. The top 10 subtype-specific DEGSs with the largest absolute 
value of logFC relative to other molecular subtypes are shown in Fig. 4B. Among them, 
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GOBP_RIBOSOMA_LARGE_SUBUNIT and GOCC_SMALL_ RIBOSOMAL_SUBU-
NIT in subtype I have been shown in previous studies to regulate biological functions 
that affect neurological development and may contribute to neurological disorders 
[38]. It also has been suggested that KEGG_RIBOSOME and GOBP_OSTEOBLAST_
DEVELOPMENT in subtype III may influence the clinical phenotype of ASD [39].

Then, we detected the subtype-specific DEGSs unique to each molecular subtype 
(Additional file  5: Table  S5). We also selected the common subtype-specific DEGSs 
across all molecular subtypes, a total of two gene sets, and compared the logFC of these 
gene sets relative to controls to screen for those with inconsistent regulatory direction 
among the three subtypes. Two different regulatory orientation events were detected 
(Additional file 5: Table S5). HP_PURE_RED_CELL_APLASIA and HP_MALIGNANT 
_GENITOURINARY_TRACT_TUMOR are down-regulated in molecular subtype I and 
up-regulated in the other subtypes relative to the control group. These gene sets may be 
used as marker gene sets to identify molecular subtypes.

Association analysis between molecular subtypes and ASD

To validate the three identified molecular subtypes based on single-nucleus RNA-seq 
data (in this section we denoted as Sn subtypes), we used the human brain bulk RNA-
seq data of 47 ASD samples (32 ASD individuals) and 57 controls (40 control indi-
viduals) [40] to identify ASD molecular subtypes (in this section we denoted as bulk 
subtypes) and then checked if the identified Sn subtypes could correspond to bulk sub-
types. Specifically, after preprocessing the bulk gene expression, we supplied it to GSVA 
for generating gene set expression data, and then the gene and gene set expression data 
were fused with SNF to obtain a patient-patient similarity matrix. Based on the similar-
ity matrix, three bulk subtypes were obtained, denoted as bulk subtypes I, II, and III. 
We calculated the Pearson’s correlation coefficient between the fold changes of genes in 

Fig. 4 Analysis of subtype-specific DEGSs. A The number of subtype-specific DEGSs in different cell types. 
B The top 10 subtype-specific DEGSs ranked by |logFC| for the three molecular subtypes. The regulation 
direction and |logFC| are relative to other molecular subtypes
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each Sn subtype relative to other Sn subtypes and those in each bulk subtype relative to 
other bulk subtypes. When considering the positive correlations, we found that in many 
cell types bulk subtype I is significantly positively correlated with Sn subtype III, bulk 
subtype II is more positively correlated with Sn subtype II, and bulk subtype III is posi-
tively correlated with Sn subtype I (Fig. 5A). Moreover, to mask the effect of cell types, 
we combined and averaged the single-nucleus data across all cell types by individual for 
each identified Sn subtype and then calculated the fold change of each gene in each Sn 
subtype relative to other Sn subtypes based on the combined data. By calculating the 

Fig. 5 Association analysis between molecular subtypes and ASD. Pearson’s correlation coefficient 
and corresponding P-value between the fold changes of genes in each bulk subtype relative to other 
bulk subtypes and those in each Sn subtype relative to other Sn subtypes, calculated based on (A) 
single-nucleus gene expression data and B the combined and averaged single-nucleus data across all cell 
types by individual. C The degree of overlap between SFARI ASD genes and subtype-specific DEGs for the 
three molecular subtypes. The dotted line indicates the threshold of statistical significance, FDR adjusted 
P-value = 0.05. D Meta P-values of Pearson’s correlation between subtype-specific DEGs and ADI-R clinical 
scores in each cell type. NA indicates that the cell types were excluded because there are fewer than 
five subtype-specific DEGs. E The top 10 subtype-specific DEGSs having the most significant correlation 
with ADI-R scores ranked by -log10 (meta P-value). The dotted line indicates the threshold of statistical 
significance, meta P-value = 0.1
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Pearson’s correlation coefficient between the fold changes of genes in each Sn subtype 
relative to other Sn subtypes and those in each bulk subtype, we also noted that Sn sub-
type I is more positively correlated with bulk subtype III, Sn subtype II is significantly 
positively correlated with bulk subtype II, and Sn subtype III is positively correlated with 
bulk subtype I (Fig. 5B). It can be seen that our identified molecular subtypes based on 
single-nucleus RNA-seq data could be verified by bulk RNA-seq data.

To further explore the extent to which the identified ASD Sn molecular subtypes are 
associated with ASD, we assessed the enrichment of curated ASD risk genes with molec-
ular subtype-specific DEGs using hypergeometric tests. Two cell types with less than 10 
subtype-specific DEGs, endothelial and microglia, were excluded. The ASD risk genes 
were obtained from Simons Foundation Autism Research Initiative (SFARI) (released 
on 22 July 2022), of which 429 genes are in our gene expression matrix. The molecu-
lar subtype-specific DEGs are significantly enriched with ASD genes (FDR adjusted 
P-value < 0.05) in the vast majority of cells (Fig. 5C, and Additional file 1: Table S1). For 
all three subtypes, ASD risk genes are the most overrepresented in L2/3. Moreover, we 
estimated the significance of the overlap between each molecular subtype-specific DEGS 
and SFARI ASD genes (Additional file 4: Table S4). HP_TYPICAL_ABSENCE_SEIZUR 
and REACTOME_NEUREXINS_AND_ NEUROLIGINS in molecular subtype III have 
the highest degree of overlap with ASD genes. The high degree of overlap between sub-
type-specific DEGs/DEGSs and ASD risk genes suggests a high correlation between the 
identified Sn molecular subtypes and ASD.

Next, to explore the associations between Sn molecular subtypes and clinical symp-
toms, for each gene of subtype-specific DEGs, we calculated Pearson’s correlation coef-
ficient and corresponding P-value between patient-level fold changes relative to controls 
and combined ADI-R clinical scores of patients, and then obtained meta P-value to 
represent how well the changes of DEGs in a given molecular subtype correlate with 
clinical severity. We excluded two cell types with less than 10 subtype-specific DEGs, 
endothelial and microglia, and for molecular subtype II, we excluded the cell types with 
fewer than five subtype-specific DEGs. In many cell types, the subtype-specific DEGs 
correlate with the clinical severity (meta P-value < 0.1), indicating that the identified Sn 
molecular subtypes are associated with clinical symptoms (Fig. 5D). This suggests that 
in most cells, the clinical scores of the three subtypes are consistent with the underlying 
biomolecular mechanisms. Besides, we also performed an association analysis between 
each molecular subtype-specific DEGS and ADI-R clinical score. Molecular subtype I 
has 34 gene sets and molecular subtype III has 114 gene sets showing a high correlation 
with clinical scores. The top 10 significant subtype-specific DEGSs for subtypes I and III 
are shown in Fig. 5E. GOMF_STRU CTU RAL_CONSTITUENT_OF_RIBOSOM of sub-
type I, and REACTOME_SIGNALING_BY_ROBO_RECEPTORS of subtype III have the 
highest correlation with ASD clinical scores.

As to the analysis of different clinical ADI-R category in score ranks between one 
considered Sn molecular subtype and the other subtypes, we performed t test for each 
category of ADI-R score and the P-values of all categories were corrected using Benja-
mini–Hochberg procedure [27] (Additional file 6: Table S6). It was noted that C (repeti-
tive behavior) score rank of Sn molecular subtype I is lower than those of the other two 
molecular subtypes (P-value = 0.016, FDR adjusted P-value = 0.078). There may be also a 



Page 12 of 16Zhang et al. BMC Bioinformatics          (2023) 24:142 

tendency that A (social) score rank of Sn molecular subtype II is lower than those of the 
other subtypes (P-value = 0.069), though it is not significant. These observations may be 
helpful in the diagnosis of molecular subtypes of ASD, which then facilitates the treat-
ment of ASD. The association analysis with ADI-R or other clinical data, linking ASD 
molecular subtypes with clinical manifestation, would be more practical when more 
clinical data become available in the future.

ASD molecular subtype prediction

Constructing machine learning-based disease prediction model can facilitate the clini-
cal diagnosis of diseases [41–43]. Using the identified ASD molecular subtype-specific 
DEGs, we built PLS-based prediction models for classifying molecular subtypes. The 
data from endothelial and microglia were not used as there are few subtype-specific 
DEGs. For each cell type, the subtype-specific DEGs of all three subtypes were used as 
features to construct prediction models at the cell level based on cell gene expression 
for predicting the patient subtype a cell belongs to. Firstly, for each molecular subtype, 
cells were randomly divided into a training set and a test set in a ratio of 7:3. It can be 
seen that the performance is good in most cell types (Fig. 6A). Especially in L2/3, L4 and 
L5/6-CC, which have a high correlation with ASD, macro F1, micro F1 and weighted 
F1 on the test set can reach 0.9, proving that molecular subtype-specific DEGs have a 
good prediction. Secondly, for each molecular subtype, considering using cells from one 
randomly selected patient as a test set and cells from other patients as a training set, we 
constructed prediction models at the cell level again. The performances in AST-PP, IN-
VIP and L5/6-CC are better than other cell types (Fig. 6B). This kind of data partitioning 
ensured that no information leakage occurs between training and test sets and the con-
structed model is of high practical value.

In addition, we also considered to constructed predictive models at the patient level. 
The gene expression average of all cells of one patient was used as the patient’s gene 
expression data. For each subtype, we randomly selected one patient as a test set and the 
left patients as a training set. Because the sample size is small and to avoid the effect of 
randomness, we repeated the data set partition and model construction ten times and 
then calculated the average prediction accuracy to assess the effectiveness. The average 
prediction accuracy values are 0.6 for IN-PV, and above 0.7 for all other cell types. This 

Fig. 6 Performance metrics on test set. Performances of predictive models constructed using A randomly 
selected cells as the training set and test set, and B cells from one randomly selected patient as the test set 
and cells from other patients as the training set for each molecular subtype
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reflects that these three subtypes can be well distinguished even in a cell type with a 
small sample size.

As to molecular subtype-specific DEGSs, we also used them to build ASD subtype 
prediction models. Because only in L2/3 all three molecular subtypes possess subtype-
specific DEGSs, we built prediction model only in L2/3 using the genes contained in 
all subtype-specific DEGSs as features. First, when 70% of cells from all patients were 
selected as the training set and the other cells were used as the test set, macro F1, micro 
F1 and weighted F1 are 0.72, 0.69 and 0.71, respectively. Second, when all cells from 
one patient in each molecular subtype were selected as the test set and cells from other 
patients were used as the training set, macro F1, micro F1 and weighted F1 are 0.81, 
0.79 and 0.80, respectively. Finally, when one patient from each molecular subtype was 
selected as the test set and the other patients as the training set, the average accuracy of 
10 training/testing replicates is 0.73. When more patient sequencing data become avail-
able, the construction of predictive models at the patient level to predict the molecular 
subtype of a patient will hopefully be realized.

Discussion
The identification of ASD subtypes remains an unresolved challenge, which adds a bar-
rier to the treatment of patients with ASD. Traditional methods of identifying ASD 
subtypes defined by clinical behaviors directly may just provide limited assistance in 
the genetic genesis and treatment of ASD. With the recent accumulation of biological 
sequencing data, studies are shifting to a genetic and molecular data-first approach to 
subtype definition, i.e., identifying molecular subtypes first. Considering the fact that 
ASD is characterized by cell type heterogeneity and the presence of ASD-associated 
gene sets may determine the manifestation of ASD in different cell types, our study 
innovatively integrated gene and gene set expression data of multiple human brain cell 
types using SNF to define ASD molecular subtypes.

To explore the characteristics of the identified molecular subtypes, we analyzed their 
cell type-specific and subtype-specific DEGs. All three subtypes have a large number of 
subtype-specific DEGs in L2/3, L4 and L5/6-CC, which is similar to the result of the 
ASD snRNA-seq study [11], indicating these cell types are mostly affected by ASD. Sub-
type I has more DEGs in AST-PP and OPC than the other two subtypes, while subtype 
III has more DEGs in L5/6-CC, implying the different influence of ASD on cell types 
for different molecular subtypes. The enriched GO terms and KEGG pathways with the 
subtype-specific DEGs are mostly related to neurological functions. Besides, subtype-
specific DEGs for all molecular subtypes overlap significantly with ASD risk genes and 
show a high correlation with clinical symptom severity.

Except for subtype-specific DEGs, we also identified molecular subtype-specific 
DEGSs. The subtype-specific DEGSs of the three molecular subtypes are distinctive no 
matter in the number of identified DEGSs or in the regulatory orientation, with molecu-
lar subtype I having more down-regulated DEGSs in L4 and molecular subtype III hav-
ing more up-regulated subtype-specific DEGSs in IN-VIP. Furthermore, some gene sets 
of molecular subtypes I and III show a high correlation with the clinical severity, such as 
GOMF_STRU CTU RAL_CONSTITUENT_OF_RIBOSOM and GOCC_RIBOSOMAL_
SUBUNI of subtype I.
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The subtype-specific DEGs/DEGSs unique to molecular subtypes and the common 
subtype-specific DEGs/DEGSs across all subtypes but with different regulatory orien-
tations can be used as distinguishing genes/gene sets for different molecular subtypes. 
To demonstrate their prediction ability, we constructed prediction models. Also, using 
the differences in clinical scores of the identified molecular subtypes would be helpful 
to diagnose the molecular subtype of ASD. Our results may aid in the identification and 
diagnosis of ASD molecular subtypes, and even disease subtypes. Our method can be 
further practically applied in the future when more ASD scRNA-seq/snRNA-seq data 
and clinical data are available.

Conclusions
In this study, we identified ASD molecular subtypes by performing similarity network 
fusion to integrate gene and gene set expression data of multiple human brain cell types. 
Then we applied subtype-specific differential gene and gene set expression analyses to 
study expression patterns of different molecular subtypes. The identified molecular sub-
type-specific genes and gene sets may be used as biomarkers to classify ASD molecu-
lar subtypes, facilitating the diagnosis and treatment of ASD. Our method can also be 
applied for the identification of molecular subtypes and even disease subtypes of other 
complex disorders.

Abbreviations
ASD  Autism spectrum disorder
DSM-5  Diagnostic and Statistical Manual for Mental Disorders, version 5
scRNA-seq  Single-cell RNA sequencing
snRNA-seq  Single-nucleus RNA sequencing
SNF  Similarity network fusion
AST-FB  Fibrous astrocytes
AST-PP  Protoplasmic astrocytes
IN-PV  Parvalbumin interneurons
IN-SST  Somatostatin interneurons
IN-SV2C  SV2C interneurons
IN-VIP  VIP interneurons
L2/3  Layer 2/3 excitatory neurons
L4  Layer 4 excitatory neurons
L5/6  Layer 5/6 corticofugal projection neurons
L5/6-CC  Layer 5/6 cortico-cortical projection neurons
Neu-mat  Maturing neurons
Neu-NRGN-I  NRGN-expressing neurons I
Neu-NRGN-II  NRGN-expressing neurons II
OPC  Oligodendrocyte precursor cells
GSVA  Gene set variation analysis
MSigDB  Molecular signatures database
DEG  Differentially expressed gene
DEGS  Differentially expressed gene set
LMM  Linear mixed model
LRT  Likelihood ratio test
logFC  Log2 fold change
SFARI  Simons Foundation Autism Research Initiative
ADI-R  Autism Diagnostic Interview-Revised
PLS  Partial least squares

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 023- 05278-0.

Additional file 1. Table S1: Molecular subtype-specific DEGs information, the enrichment with SFARI ASD genes, 
and the association with clinical scores.

https://doi.org/10.1186/s12859-023-05278-0


Page 15 of 16Zhang et al. BMC Bioinformatics          (2023) 24:142  

Additional file 2. Table S2: Molecular subtype-specific DEGs unique to subtypes along with the regulation direc-
tion and |logFC| relative to other molecular subtypes, and those differentially regulated among different molecular 
subtypes relative to controls.

Additional file 3. Table S3: GO and KEGG enrichment analysis of molecular subtype-specific DEGs.

Additional file 4. Table S4: Molecular subtype-specific DEGSs, the enrichment with SFARI ASD genes, and the 
association with clinical scores.

Additional file 5. Table S5: Molecular subtype-specific DEGSs unique to subtypes along with the regulation direc-
tion and |logFC| relative to other molecular subtypes, and those differentially regulated among different molecular 
subtypes relative to controls.

Additional file 6. Table S6: The clinical information of ASD patients in each molecular subtype, and the result of t 
test between each molecular subtype and the other two for each category of ADI-R scores.

Acknowledgements
Not applicable.

Author contributions
JG and JZ conceived and designed the study, JG and JZ analyzed the data, JG, JZ, GJ and XG wrote the paper. All authors 
read and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China (61803320 to JG), and the Natural Science 
Foundation of Fujian Province of China (No. 2022J05012 to JG).

Availability of data and materials
The single-nucleus RNA-seq data of ASD and controls can be downloaded from the website of https:// autism. cells. ucsc. 
edu. Codes will be made available on request from the first author or the corresponding authors.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors have declared no competing interests.

Received: 5 January 2023   Accepted: 7 April 2023

References
 1. Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J. Autism spectrum disorder. The Lancet. 

2018;392(10146):508–20.
 2. Ramaswami G, Geschwind DH. Chapter 21-Genetics of autism spectrum disorder. In: Geschwind DH, Paulson HL, 

Klein C, editors. Handbook of Clinical Neurology, vol. 147. London: Elsevier; 2018. p. 321–9.
 3. Grzadzinski R, Huerta M, Lord C. DSM-5 and autism spectrum disorders (ASDs): an opportunity for identifying ASD 

subtypes. Mol Autism. 2013;4(1):12.
 4. Lord C, Petkova E, Hus V, Gan W, Lu F, Martin DM, Ousley O, Guy L, Bernier R, Gerdts J, et al. A multisite study of the 

clinical diagnosis of different autism spectrum disorders. Arch Gen Psychiatry. 2012;69(3):306–13.
 5. Stessman HAF, Turner TN, Eichler EE. Molecular subtyping and improved treatment of neurodevelopmental disease. 

Genome Med. 2016;8(1):22.
 6. Higdon R, Earl RK, Stanberry L, Hudac CM, Montague E, Stewart E, Janko I, Choiniere J, Broomall W, Kolker N, et al. 

The promise of multi-omics and clinical data integration to identify and target personalized healthcare approaches 
in autism spectrum disorders. OMICS A J Integr Biol. 2015;19(4):197–208.

 7. Jeste SS, Geschwind DH. Disentangling the heterogeneity of autism spectrum disorder through genetic findings. 
Nat Rev Neurol. 2014;10(2):74–81.

 8. Ramaswami G, Won H, Gandal MJ, Haney J, Wang JC, Wong CCY, Sun W, Prabhakar S, Mill J, Geschwind DH. Integra-
tive genomics identifies a convergent molecular subtype that links epigenomic with transcriptomic differences in 
autism. Nat Commun. 2020;11(1):4873.

 9. Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, Penn O, Witherspoon K, Gerdts J, Baker C, van Vulto SAT, et al. 
Disruptive CHD8 mutations define a subtype of autism early in development. Cell. 2014;158(2):263–76.

 10. van Bon BWM, Coe BP, Bernier R, Green C, Gerdts J, Witherspoon K, Kleefstra T, Willemsen MH, Kumar R, Bosco 
P, et al. Disruptive de novo mutations of DYRK1A lead to a syndromic form of autism and ID. Mol Psychiatry. 
2016;21(1):126–32.

https://autism.cells.ucsc.edu
https://autism.cells.ucsc.edu


Page 16 of 16Zhang et al. BMC Bioinformatics          (2023) 24:142 

 11. Velmeshev D, Schirmer L, Jung D, Haeussler M, Perez Y, Mayer S, Bhaduri A, Goyal N, Rowitch David H, Krieg-
stein Arnold R. Single-cell genomics identifies cell type–specific molecular changes in autism. Science. 
2019;364(6441):685–9.

 12. Guan J, Lin Y, Ji G. Cell type-specific gene network-based analysis depicts the heterogeneity of autism spectrum 
disorder. Front Cell Neurosci. 2020;14:59.

 13. Guan J, Lin Y, Wang Y, Gao J, Ji G. An analytical method for the identification of cell type-specific disease gene mod-
ules. J Transl Med. 2021;19(1):20.

 14. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lach-
mann A, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 
2016;44(W1):W90–7.

 15. Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 
2020;36(8):2628–9.

 16. Liu X, Xu Y, Wang R, Liu S, Wang J, Luo Y, Leung K-S, Cheng L. A network-based algorithm for the identification of 
moonlighting noncoding RNAs and its application in sepsis. Brief Bioinform. 2020;22(1):581–8.

 17. Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, Haibe-Kains B, Goldenberg A. Similarity network fusion for 
aggregating data types on a genomic scale. Nat Methods. 2014;11(3):333–7.

 18. Lun AT, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with 
bioconductor. F1000Research. 2016;5:2122.

 19. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioin-
form. 2013;14:7.

 20. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database 
(MSigDB) 3.0. Bioinformatics. 2011;27(12):1739–40.

 21. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
 22. Wang B, Mezlini A, Demir F, Fiume M, Tu Z, Brudno M, Haibe-Kains B, Goldenberg A: SNFtool: similarity network 

fusion. CRAN 2014.
 23. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl 

Math. 1987;20:53–65.
 24. McDavid A, Finak G, Yajima M. MAST: model-based analysis of single cell transcriptomics. Genome Biol. 2015;16:278.
 25. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-

sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e47.
 26. Edwards AW: RA Fischer, statistical methods for research workers, (1925). In: Landmark Writings in Western Mathemat-

ics 1640–1940. Elsevier; 2005: 856–870.
 27. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. 

J R Stat Soc Ser B (Methodol). 1995;57(1):289–300.
 28. Kuhn M: Caret: classification and regression training. Astrophys Source Code Library 2015:ascl: 1505.1003
 29. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene 

ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9.
 30. The Gene Ontology resource. enriching a GOld mine. Nucleic Acids Res. 2021;49(D1):D325-d334.
 31. Vasu MM, Sumitha PS, Rahna P, Thanseem I, Anitha A. microRNAs in autism spectrum disorders. Curr Pharm Des. 

2019;25(41):4368–78.
 32. Menashe I, Grange P, Larsen EC, Banerjee-Basu S, Mitra PP. Co-expression profiling of autism genes in the mouse 

brain. PLoS Comput Biol. 2013;9(7):e1003128.
 33. Doostparast TA, Wang K. Tissue-wide cell-specific proteogenomic modeling reveals novel candidate risk genes in 

autism spectrum disorders. NPJ Syst Biol Appl. 2022;8(1):31.
 34. Barington M, Risom L, Ek J, Uldall P, Ostergaard E. A recurrent de novo CUX2 missense variant associated with intel-

lectual disability, seizures, and autism spectrum disorder. Eur J Hum Genet. 2018;26(9):1388–91.
 35. Kantojärvi K, Onkamo P, Vanhala R, Alen R, Hedman M, Sajantila A, Nieminen-von Wendt T, Järvelä I. Analysis of 9p24 

and 11p12-13 regions in autism spectrum disorders: rs1340513 in the JMJD2C gene is associated with ASDs in Finn-
ish sample. Psychiatr Genet. 2010;20(3):102–8.

 36. Delhaye S, Bardoni B. Role of phosphodiesterases in the pathophysiology of neurodevelopmental disorders. Mol 
Psychiatry. 2021;26(9):4570–82.

 37. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. 
OMICS A J Integr Biol. 2012;16(5):284–7.

 38. Paolini NA, Attwood M, Sondalle SB, Vieira CMdS, van Adrichem AM, di Summa FM, O’Donohue M-F, Gleizes P-E, 
Rachuri S, Briggs JW, et al. A ribosomopathy reveals decoding defective ribosomes driving human dysmorphism. 
Am J Hum Genet. 2017;100(3):506–22.

 39. Lewis KE, Sharan K, Takumi T, Yadav VK. Skeletal site-specific changes in bone mass in a genetic mouse model for 
human 15q11-13 duplication seen in autism. Sci Rep. 2017;7(1):1–8.

 40. Gupta S, Ellis SE, Ashar FN, Moes A, Bader JS, Zhan J, West AB, Arking DE. Transcriptome analysis reveals dys-
regulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat Commun. 
2014;5:5748.

 41. Yang Y, Zhang Y, Li S, Zheng X, Wong MH, Leung KS, Cheng L. A robust and generalizable immune-related signature 
for sepsis diagnostics. IEEE/ACM Trans Comput Biol Bioinform. 2021;5:458.

 42. Cheng L, Nan C, Kang L, Zhang N, Liu S, Chen H, Hong C, Chen Y, Liang Z, Liu X. Whole blood transcriptomic investi-
gation identifies long non-coding RNAs as regulators in sepsis. J Transl Med. 2020;18(1):217.

 43. Guan J, Wang Y, Lin Y, Yin Q, Zhuang Y, Ji G. Cell type-specific predictive models perform prioritization of genes and 
gene sets associated with autism. Front Genet. 2021;11(1778):2147.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Single-nucleus gene and gene set expression-based similarity network fusion identifies autism molecular subtypes
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Materials and methods
	Single-nucleus RNA-seq data
	Gene set variation analysis
	Similarity network fusion
	ASD molecular subtype-specific analyses
	Correlation analysis with clinical scores
	ASD molecular subtype prediction model

	Results
	Analytical workflow
	Identification of ASD molecular subtypes
	ASD molecular subtype-specific DEGs
	ASD molecular subtype-specific DEGSs
	Association analysis between molecular subtypes and ASD
	ASD molecular subtype prediction

	Discussion
	Conclusions
	Anchor 23
	Acknowledgements
	References


