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Abstract 

Background: Gastric cancer (GC) is one of the most common causes of cancer-related 
fatalities worldwide, and its progression is associated with RNA modifications. Here, 
using RNA modification-related genes (RNAMRGs), we aimed to construct a prognostic 
model for patients with GC.

Methods: Based on RNAMRGs, RNA modification scores (RNAMSs) were obtained for 
GC samples from The Cancer Genome Atlas and were divided into high- and low-
RNAMS groups. Differential analysis and weighted correlation network analysis were 
performed for the differential expressed genes (DEGs) to obtain the key genes. Next, 
univariate Cox regression, least absolute shrinkage and selection operator, and mul-
tivariate Cox regression analyses were performed to obtain the model. According to 
the model risk score, samples were divided into high- and low-risk groups. Enrichment 
analysis and immunoassays were performed for the DEGs in these groups. Four exter-
nal datasets from Gene Expression Omnibus data base were used to test the accuracy 
of the predictive model.

Results: We identified SELP and CST2 as key DEGs, which were used to generate the 
predictive model. The high-risk group had a worse prognosis compared to the low-
risk group (p < 0.05). Enrichment analysis and immunoassays revealed that 144 DEGs 
related to immune cell infiltration were associated with the Wnt signaling pathway 
and included hub genes such as ELN. Overall mutation levels, tumor mutation burden, 
and microsatellite instability were lower, but tumor immune dysfunction and exclu-
sion scores were greater (p < 0.05) in the high-risk group than in the low-risk group. 
The validation results showed that the prediction model score can accurately predict 
the prognosis of GC patients. Finally, a nomogram was constructed using the risk score 
combined with the clinicopathological characteristics of patients with GC.

Conclusion: This risk score from the prediction model related to the tumor micro-
environment and immunotherapy could accurately predict the overall survival of GC 
patients.
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Background
Gastric cancer (GC) is the fifth most diagnosed malignancy worldwide [1]. The most 
common pathological type of GC is stomach adenocarcinoma (STAD), which originates 
from the epithelial cells of the mucosa [2]. Surgery is the cornerstone treatment for GC 
[3], and survival rates have been improved using chemotherapy [4]. Although many 
individuals with GC have benefited from the recent development of tailored treatment 
options, such as immunological, targeted, and combination therapies [5], the mortal-
ity rate of GC remains high, making it the third most common cause of cancer-related 
death [6]. It is therefore important to identify novel prognostic markers and therapeutic 
targets for patients with GC.

Over 170 different types of modifications for coding and non-coding RNA (ncRNA) 
have been identified, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), 
and N1-methyladenosine (m1A) [7]. The methyltransferases, demethylases, and binding 
proteins, together known as “writers,” “erasers,” and “readers,” can control the dynam-
ics and reversibility of RNA epigenetic modifications [8, 9]. Accumulating evidence sug-
gests that the aberrant expression of RNA modifications is associated with cell survival, 
proliferation, self-renewal, differentiation, stress adaptation, invasion, and resistance to 
therapy, all of which are hallmarks of cancer [10–17]. Abnormal post-transcriptional 
alterations contribute toward cancer cell migration, self-renewal, proliferation, and sur-
vival [18] and thus are promising therapeutic targets for cancer. The most prevalently 
distributed RNA post-transcriptional modification is m6A [19]. It has been reported that 
the m6A writers METTL3 and METTL14 have an impact on GC progression [20–22], 
the expression of METTL3 is associated with GC prognosis [21]. Therefore, studying the 
relationship between RNA modification-related genes (RNAMRGs) and GC would facil-
itate exploration of potential prognostic markers and therapeutic targets.

In this study, we identified 48 RNAMRGs associated with m6A, m5C, and m1A. Simi-
lar to bioinformatics methods of some studies [23–26], we used The Cancer Genome 
Atlas (TCGA) data to screen prognosis-related genes and built a predictive model 
according to the study flowchart shown in Fig. 1 to explore whether RNAMRGs were 
associated with GC prognosis.

Methods
Data collection

Expression profiles and clinical data of patients with STAD were downloaded from 
TCGA. GC samples with an overall survival (OS) > 0 were retained, leaving a total of 
328 samples (Table 1). "Masked Somatic Mutation" data were downloaded and analyzed. 
The tumor mutational burden (TMB) and microsatellite instability (MSI) were obtained. 
“Masked Copy Number Segment” data were used as copy number variation (CNV) data 
for 440 patients with STAD, who were divided into high- and low-risk groups. Seg-
ments were analyzed using GenePattern (https:// cloud. genep attern. org) for GISTIC 2.0 
[27] with default settings and a confidence level of 0.99. The STAD datasets GSE26899 
(93 samples) [28], GSE26901 (109 samples) [28], GSE84437 (357 samples) [29], and 
GSE62254 (300 samples) [30] were downloaded from Gene Expression Omnibus (GEO) 
[31], and 48 RNAMRGs (Additional file 1: Table S1) were extracted from an article [32].

https://cloud.genepattern.org
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RNA modification score (RNAMS) analysis

The RNAMS was calculated for TCGA samples based on the RNAMRGs using the 
“ssGSEA” algorithm. Samples were divided into high- and low-RNAMS groups, and 
differentially expressed genes (DEGs) were screened using adj. p < 0.01 and |log fold 
change (FC)|> 1.

Weighted gene correlation network analysis (WGCNA) was performed using 
TCGA data as the input, and 0.85 was calculated as the optimal soft threshold by the 
“pickSoftTreshold” function. With 200 as the minimum number of genes per mod-
ule, gene modules were dynamically assigned to identify genes. We screened four 
modules with the strongest positive and negative correlations with the high-RNAMS 
group. Genes with module membership > 0.5 and significance > 0.2 were screened as 
key gene modules. DEGs in the high- and low-RNAMS groups were intersected with 
key gene modules to obtain key genes.

Consensus clustering was performed using TCGA data and the key genes to 
improve the differentiation between different GC subtypes. The number of clusters 
was set between 2 and 8, and 80% of all samples were drawn in 1000 repetitions with 
clusterAlg = “pam” and distance = “spearman.”

Risk prediction model construction

Univariate Cox regression analysis was used to calculate the association between the 
expression of each key gene and OS. The least absolute shrinkage and selection opera-
tor (LASSO) algorithm was then used to eliminate multicollinearity and screen for 
significant variables. Following multivariate Cox regression analysis, final screening 
was performed using stepwise regression. The risk score formula was calculated by 
considering the expression of optimized genes and the multivariate Cox regression 
coefficients, as follows:

Fig. 1 Study flow chart
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TCGA patients were divided into high- and low-risk groups based on the calculated 
optimal risk score cutoff. Kaplan–Meier analysis and log-rank tests were performed, and 
time-dependent receiver operating characteristic (ROC) curves were used to assess sur-
vival prediction by calculating the area under curve (AUC).

GSE26901, GSE26899, GSE84437 and GSE62254 were used as validation datasets. 
After calculating risk scores using the formula above, data were grouped according to 
the optimal risk score cutoff and subjected to Kaplan–Meier analysis and log-rank tests.

Risk score analysis

Differential analysis was performed based on the high- and low-risk groups from 
TCGA data, with adj. p < 0.01 and |logFC|> 1.5 as screening thresholds. Gene Ontology 
(GO) analysis [33] and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

Riskscore =

i

Coefficient genei ×mRNAexpression genei

Table 1 Characteristics of patients with gastric cancer in TCGA-STAD data

Alive Dead Total

258 70 328

Age (years)

Mean 64.7 67.4 65.2

Median 66 68.5 67

 > 67 116 (45%) 42 (60%) 158 (48.2%)

 ≤ 67 142 (54%) 28 (40%) 170 (51.8%)

Gender

Female 101 (39.1%) 14 (20%) 115 (35.1%)

Male 157 (60.9%) 56 (80%) 213 (64.9%)

T stage

T1 14 (5.4%) 1 (1.4%) 15 (4.6%)

T2 54 (20.9%) 12 (17.2%) 66 (20.1%)

T3 116 (45%) 36 (51.4%) 152 (46.3%)

T4 74 (28.7%) 21 (30%) 95 (29%)

TX 0 (0%) 0 (0%) 0 (0%)

N stage

N0 85 (33%) 14 (20%) 99 (30.2%)

N1 67 (26%) 16 (22.9%) 83 (25.3%)

N2 53 (20.5%) 16 (22.9%) 69 (21%)

N3 47 (18.2%) 22 (31.3%) 69 (21%)

NX 6 (2.3%) 2 (2.9%) 8 (2.5%)

M stage

M0 235 (91.1%) 56(80%) 291 (88.7%)

M1 11 (4.3%) 11(15.7%) 22 (6.7%)

MX 12 (4.6%) 3(4.3%) 15 (4.6%)

Stage

I 34 (13.2%) 9 (12.9%) 43 (13.1%)

II 96 (37.2%) 8 (11.4%) 104 (31.7%)

III 108 (41.9%) 31 (44.3%) 139 (42.4%)

IV 15 (5.8%) 18 (25.7%) 33 (10.1%)

X 5 (1.9%) 4 (5.7%) 9 (2.7%)
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enrichment analysis [34] were performed on the intersecting genes, the critical value of 
FDR < 0.05 was considered statistically significant, and the entry screening criteria were 
adj. p < 0.05 and q-value < 0.05, and the p-value correction method was the Benjamini–
Hochberg method. Based on the gene expression profile dataset for patients with STAD 
in TCGA, we performed gene set enrichment analysis (GSEA) [35], and adj. p < 0.05 was 
considered statistically significant.

The STRING (https:// string- db. org/) database [36] was used to construct a protein–
protein interaction (PPI) network for DEGs in the high- and low-risk groups, with a coef-
ficient of 0.4. PPI results were exported from STRING and visualized using Cytoscape 
[37], and the “CytoHubba” plugin [38] was used to analyze the bub genes in the PPI net-
work. miRNA–mRNA interaction information was downloaded from the miRTarBas 
(https:// mirta rbase. cuhk. edu. cn/) database [39]. Based on the hub genes identified using 
the PPI network, an miRNA–mRNA regulatory network was constructed by predicting 
possible regulated miRNAs.

Immune-related genes were downloaded from a pan-cancer immunogenomic analy-
sis article [40], which included 782 genes and 28 cell types. The degree of immune cell 
infiltration was analyzed using TCGA-STAD data, and an immune score is obtained for 
each tumor sample. Tumor Immune Dysfunction and Exclusion (TIDE) [41] (http:// tide. 
dfci. harva rd. edu) was used to analyze the treatment response in patients with high- and 
low-risk scores.

Finally, a nomogram was constructed using the risk score and clinicopathological 
characteristics significantly associated with OS. Calibration curves were generated to 
assess nomogram performance.

Statistical analysis

All data processing and analyses were conducted using R (v4.1.1). To compare two 
groups of continuous variables, the statistical significance of normally distributed 
variables was estimated using independent Student’s t-tests, and differences between 
non-normally distributed variables were analyzed using Mann–Whitney U-tests. Chi-
square or Fisher’s exact tests were used to compare and analyze statistical significance 
between two groups of categorical variables. All statistical p values were bilateral and 
statistically significant at p < 0.05. Significance labeled as NS, p > 0.05; *p < 0.05; **p < 0.01; 
***p < 0.001; ****p < 0.0001.

The following packages were used in this study: TCGAbiolinks [42], maftools [43], 
TCGAmutations, GEOquery [44], GSVA [45], survival, survminer, limma [46], WGCNA 
[47], Venn, ConsensusClusterPlus [48], survivor, timeROC [49], clusterProfiler [50], 
ESTIMATE [51], rms, glmnet [52], Pheatmap, and ggplot2.

Results
Data pre‑processing

First, to analyze the effect of RNA modification on the process of gastric carcinogenesis, 
we downloaded the gene expression profiles of STAD patients from the TCGA database 
as the training set and the GSE26899, GSE26901, GSE84437 and GSE62254 gene expres-
sion profiles associated with STAD from the GEO database as the validation sets. The 
box line plots of the gene expression matrices of GSE26899 (Fig. 2a), GSE26901 (Fig. 2b), 

https://string-db.org/
https://mirtarbase.cuhk.edu.cn/
http://tide.dfci.harvard.edu
http://tide.dfci.harvard.edu
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GSE84437 (Fig. S1a) and GSE62254 (Additional file 2: Fig. S1b) were plotted. The results 
showed the same expression trends between samples for these datasets, with no intra-
group differences, and can be used for subsequent analysis.

Prognostic analysis of RNAMS in GC and identification of key genes

We calculated the RNAMS for patients with STAD in TCGA to indicate their RNA 
modification levels. Based on the optimal RNAMS cutoff value (1.207673), TCGA-
STAD patients were then divided into high- and low-RNAMS groups. Survival analysis 
revealed that patients with a high RNAMS had a better prognosis than those with a low 
RNAMS (Fig. 3a), while clinical analysis showed that patients in the low-RNAMS group 
had a low age bias and those in the high-RNAMS group had a high age bias (Fig. 3b).

To identify key RNAMRGs in GC, we analyzed DEGs in the high- and low-RNAMS 
groups (Fig.  3c, d). Of the 275 DEGs identified, 77 were significantly upregulated and 
198 were significantly downregulated (Additional file 3: Table S2). Next, we constructed 
a gene co-expression network to identify biologically significant gene modules as well as 
genes closely related to RNAMS. Eleven modules were obtained (Fig. 3e) and screened 
to identify the four modules with the strongest positive and negative correlations with 
the high-RNAMS group (blue; purple; brown; pink). Intersecting the strongly related 
genes in the four modules yielded 2,675 module key genes (Additional file 4: Table S3), 
of which 236 overlapped with the DEGs (Additional file 5: Table S4) and were considered 
key RNA modification-associated genes in GC (Fig. 3f ).

Analysis of key genes and molecular typing of RNAMS‑related genes

To investigate the overall expression of the 236 key genes in patients with STAD, we 
plotted a heatmap (Fig. 4a) and analyzed their correlation (Additional file 6: Table S5). 
Fifty genes were randomly selected for visualization (Fig. 4b). Most of the key genes were 
highly expressed in the low-RNAMS group, and the correlations between genes were 
generally positive. When we further analyzed the DNA level variation of key genes, we 
found that single nucleotide polymorphisms (SNPs) were present in key genes in 193 
(60.12%) of TCGA-STAD samples (Fig. 4c).

Next, we used the expression profiles of the 236 key genes in all samples to perform unsu-
pervised clustering using a consensus clustering algorithm. The optimal number of clusters 
was calculated and determined to be three (Fig. 4d–g); therefore, k = 3 was used to clus-
ter all samples into three subtypes that were subjected to principal components analysis 

Fig. 2 Boxplots of GSE26899 (a) and GSE26901 (b) expression profile data
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(Fig. 4h). The three subtypes were well differentiated, and prognostic analysis revealed that 
survival differed significantly among the three subtypes (Fig. 4i), indicating the accuracy of 
the clustering results.

RNAMS risk model construction and evaluation

To quantify the effect of the 236 key genes on prognosis, we combined their expression 
to construct a risk score model. First, the key genes were screened using univariate Cox 
regression, and 66 genes were retained for LASSO regression to eliminate covariance 
(Fig. 5a, Additional file 7: Table S6). After the best lambda values had been determined and 
crossed by ten-fold validation, six genes (SELP, APOD, MXRA8, CST2, RRAD, and GPX3; 
Fig.  5b) were subjected to multivariate Cox regression analysis, and the optimal combi-
nation was screened using stepwise regression to obtain two genes (SELP and CST2) for 
model construction (Fig. 5c). The model scoring formula was as follows:

Riskscore = (0.189× SELPexpression)+ (0.119× CST2expression)

Fig. 3 Prognostic analysis of RNA modification score (RNAMS) in gastric cancer and identification of key 
genes. a Survival curves for the high- and low-RNAMS groups; b Bar chart of age subgroups in high- and 
low-RNAMS groups; c Differential expression volcano plot of high- and low-RNAMS groups; d Heatmap 
of differentially expressed genes (DEGs) in the high- and low-RNAMS groups; e Heatmap of correlation 
between modules and traits in weighted gene correlation network analysis molecules; f Venn diagram of the 
intersection between DEGs and key gene modules
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To verify the validity of the model, the correlation between risk score and RNAMS 
for TCGA patients was plotted (Fig.  5d), and a significant negative correlation was 
found (cor = -0.49, p < 2.2e−16). A risk score cutoff value of 0.4448089 was used to 

Fig. 4 Analysis of key genes and molecular typing of RNA modification score (RNAMS)-related genes. a 
Differential expression heatmap of key genes; b Correlation heatmap of key genes; c Mutation mapping of 
RNAMS-associated genes in patients with stomach adenocarcinoma; d Consistency cumulative distribution 
function graph; e Scree plot; f and g Clustering results for k = 3 (f) and k = 4 (g); h Principal components 
analysis of clustering results; i Survival curves for the three subgroups
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classify the training set TCGA-STAD patients into high- and low-risk groups. Sur-
vival analysis showed that the low-risk group had significantly better survival than 
the high-risk group (Fig. 5e). Consequently, patients in the validation sets were clas-
sified into high- and low-risk groups based on their respective risk score cutoff val-
ues (GSE26899: 2.059207; GSE26901: 2.140648; GSE84437: 2.156697; GSE62254: 
1.788483), and survival analysis showed that the low-risk groups had significantly 
better survival than the high-risk groups (Fig.  5f, g; Additional file  8: Fig. S2a, b). 
Analyses for risk score distribution, survival status, and characteristic gene expres-
sion patterns for TCGA (Fig. 5h), GSE26899 (Fig. 5i), GSE26901 (Fig. 5j), GSE84437 
(Additional file 8: Fig. S2c), and GSE62254 (Additional file 8: Fig. S2d) revealed that 
patients in high-risk groups had worse survival and similar gene expression patterns. 
Time-dependent ROC analysis of risk scores in the five datasets revealed the AUC 
values for 1-, 3-, and 5-year OS in TCGA (Fig.  5k), GSE26899 (Fig.  5l), GSE26901 
(Fig. 5m), GSE84437 (Additional file 8: Fig. S2e) and GSE62254 (Additional file 8: Fig. 

Fig. 5 Construction and evaluation of RNA modification score (RNAMS) risk prediction model. a Univariate 
Cox Forest plot for the top 10 genes; b Least absolute shrinkage and selection operator regression 
cross-check lambda results plot; c Multivariate Cox Forest plot; d Scatter plot of the correlation between 
risk scores and RNAMS; e–g Survival curves for The Cancer Genome Atlas (TCGA)-stomach adenocarcinoma 
(STAD) data (e), GSE26899 (f), and GSE26901 (g); h–j Risk score distribution for TCGA (h), GSE26899 (i), and 
GSE26901 (j) expression profiles; k–m ROC curves for TCGA-STAD (k), GSE26899 (l), and GSE26901 (m)
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S2f ) indicating that the risk score could accurately predict the OS of patients with 
GC.

Enrichment analysis

To determine the ability of the model to predict cancer development in patients with 
STAD, we performed differential expression analysis in high- and low-risk patient 
groups. Of the 144 DEGs identified, 2 were upregulated and 142 were significantly 
downregulated (Fig.  6a, b). Next, we performed GO and KEGG enrichment analyses 
to identify biological processes, molecular functions, cellular components, and biologi-
cal pathways related to the 144 DEGs (Fig. 6c–f, Additional file 9: Tables S7, Additional 
file 10: Table S8), which included the Wnt signaling pathway and vascular smooth mus-
cle contraction.

To elucidate the effect of gene expression levels on GC, we analyzed the associa-
tions between biological processes involved in gene expression in TCGA data using 
GSEA. The MYC targets V2 pathway (Fig. 7a) was significantly enriched in high-risk 

Fig. 6 Analysis of differentially expressed genes (DEGs) in high- and low-risk patient groups. a Volcano plot of 
DEGs; b Heatmap of DEGs; c Top six biological processes; d Top six cellular components; e Top six molecular 
functions; f Kyoto Encyclopedia of Genes and Genomes pathway enrichment results
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patients, whereas KRAS signaling up (Fig. 7b), inflammatory response (Fig. 7c), inter-
feron gamma response (Fig.  7d), IL2–STAT5 signaling (Fig.  7e), KRAS signaling dn 
(Fig. 7f ), TGFβ signaling (Fig. 7g), apoptosis (Fig. 7h), and IL6–JAK–STAT3 signaling 
(Fig. 7i) were significantly enriched in low-risk patients (Additional file 11: Table S9).

Construction of PPI and related regulatory networks

To analyze the protein interactions among the 144 DEGs, we constructed a PPI net-
work (Fig. 8a). The top 10 hub genes (ELN, DCN, MYH11, ACTA2, FBLN5, TAGLN, 
CLU, MFAP5, MFAP4, and FBLN1) were obtained based on local node density, with 
a darker color indicating node importance (Fig.  8b). Functional similarity (Friends) 
analysis revealed that ELN was an important hub gene (Fig.  8c), while correlation 
analysis indicated significant co-expression patterns between hub genes and risk 
scores, all of which correlated positively (Fig. 8d). Based on miRNA–mRNA interac-
tion information downloaded from the miRTarBase database, an miRNA–mRNA reg-
ulatory network was constructed using the hub genes obtained from the PPI network 
(Fig.  8e), which contained a total of 202 miRNAs and 9 mRNAs worthy of further 
study.

Fig. 7 Gene set enrichment analysis. a The MYC targets V2 pathway; b KRAS signaling up; c Inflammatory 
response; d Interferon gamma response; e IL2–STAT5 signaling; f KRAS signaling dn; g TGFβ signaling; h 
Apoptosis; i IL6–JAK–STAT3 signaling
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Immune cell infiltration analysis

To evaluate the effect of the risk score on the overall immune characteristics and 
immune cell infiltration levels of patients with STAD, we calculated immune and stro-
mal scores for each patient. A significant positive correlation was observed between 
risk score and both the immune score (cor = 0.37, p = 4.9e−12, Fig. 9a) and stromal score 
(cor = 0.73, p < 2.2e−16, Fig. 9b). Immune cell infiltration scores in TCGA were displayed 
using a heatmap to further examine immune cell expression (Fig. 9c). Most immune cells 
correlated positively with one another (Fig. 9d), with > 90% of immune cells in both high- 
and low-risk groups showing a significant difference and most immune cells displaying 
significantly higher infiltration in the high-risk group than in the low-risk group (Fig. 9e).

Next, we plotted the correlation heatmap between hub genes and immune cells 
(Fig. 9f ) and between hub genes and immune genes (Fig. 9g) to determine the effect of 
hub genes on immune function in patients with STAD. Differential boxplots revealed 
that the expression of all immune genes differed significantly between the high- and low-
risk groups (Fig. 9h).

Effect of risk score on genomic changes in patients with STAD

To determine the effect of the risk score on genetic variation in patients with STAD, 
we analyzed changes in SNPs and CNVs. The overall level of single nucleotide muta-
tions in common tumorigenesis driver genes was lower in the high-risk group than 
in the low-risk group (Fig. 10a, b), whereas the frequency of CNVs was significantly 
increased in all high-risk patients, particularly for copy number deletions (Fig. 10c, d). 
By calculating and plotting the TIDE, TMB, and MSI, we found that TIDE scores were 

Fig. 8 Construction of protein–protein interaction (PPI) and related regulatory networks. a PPI network of 
differentially expressed genes; b Maximal Clique Centrality network of top 10 nodes. Darker color indicates 
more important nodes; c Hub gene importance raincloud plot; d Heatmap of correlations between hub 
genes and risk scores; e miRNA–mRNA regulatory network constructed using hub genes. Node size indicates 
its connectivity in the network
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significantly higher in the high-risk group than in the low-risk group (p = 2.6e−06, 
Fig.  10e), whereas TMB (p = 1.8e−05, Fig.  10f ) and MSI (p = 6.7e−05, Fig.  10g) were 
significantly lower in the high-risk group than in the low-risk group. Together, these 
results indicate that the model risk score can be a potential indicator for evaluating 
the efficacy of immunotherapy in patients with GC.

Fig. 9 Immune cell infiltration analysis. a Scatter plot of correlation between risk score and immune score; 
b Scatter plot of correlation between risk score and stromal score; c Heatmap of immune infiltration; d 
Heatmap of immune cell correlations; e Boxplot of differences in immune cell infiltration in high- and 
low-risk groups. f Heatmap of correlations between hub genes and immune cell infiltration; g Heatmap of 
correlations between hub genes and immune genes; h Boxplot of differences in immune genes in high- and 
low-risk groups
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Construction of a clinical predictive nomogram

Finally, we generated boxplots to visualize the differences between risk score and clini-
cal characteristics. Risk score differed significantly with pathological stage, T stage, 
and N stage (Fig. 11a), and the RNAMS was significantly lower in the high-risk group 
than in the low-risk group (p = 1.5e−08, Fig. 11b). To determine whether the risk score 
and clinicopathological characteristics were independent prognostic factors, we per-
formed regression analyses. Univariate Cox regression analysis showed that risk score 
(p < 0.001), pathological stage (p = 0.00159), M stage (p = 0.00243), T stage (p = 0.00565), 
and gender (p = 0.0473) were all associated with OS (Fig. 11c, Table 2), and multivariate 
Cox regression analysis of these significant factors revealed that risk score (p = 0.001), 
M stage (p < 0.001), T stage (p = 0.014), and gender (p = 0.005) were significantly associ-
ated with OS (Fig. 11d, Table 3). Therefore, we combined the risk score with these three 
clinicopathological characteristics to construct a predictive nomogram to assess the OS 
of patients with STAD (Fig. 11e). Calibration curves revealed good uniformity between 
the OS estimates of the nomograph for 1-, 2- and 3-year OS of patients and the actual 
observed values (Fig. 11f ), suggesting that the nomogram predictions were accurate.

Fig. 10 Effect of risk score on genomic changes in patients with stomach adenocarcinoma. a and b 
Mutation profiles of common tumorigenic driver genes in high-risk group (a) and low-risk group (b); c and d 
Changes in copy number levels of genes in the high-risk group (c) and low-risk group (d); e–g Boxplots of the 
difference in Tumor Immune Dysfunction and Exclusion (TIDE) (e), tumor mutational burden (TMB) (f), and 
microsatellite instability (MSI) (g) in high- and low-risk groups
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Fig. 11 Construction of a nomogram based on the risk score. a Boxplot of differences in risk scores across 
clinical characteristics; b Boxplot of differences between risk scores and RNA modification scores; c Univariate 
Cox regression Forest plot; d Multivariate Cox regression Forest plot; e Nomogram predicting the 1-, 2-, and 
3-year overall survival status of patients with gastric cancer; f Nomogram calibration curve. g 1-, 2-, and 3-year 
receiver operating characteristic curves for the nomogram. AUC: area under curve

Table 2 Univariate Cox regression analysis results

CI Confidence level

Hazard ratio Lower 95% CI Upper 95% CI p

Risk score 2.72 1.52 4.85 0.000709

Stage 0.892 0.333 2.38 0.00159

TNM_M 2.74 1.43 5.27 0.00243

TNM_T 2.42 1.29 4.53 0.00565

Gender 1.81 1.01 3.26 0.0473

Age 1.52 0.94 2.47 0.0873

TNM_N 1.6 0.873 2.94 0.128

RNA 0.329 0.0697 1.55 0.161
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The ROC curves of the prognostic discrimination of patients at 1  year, 2  years and 
3 years of the nomogram were plotted (Fig. 11g), and the results showed that the AUC 
values of the nomogram for predicting the prognosis of patients at 1 year, 2 years and 
3 years were 0.696, 0.683 and 0.655, respectively, indicating that the nomogram has good 
predictive ability.

Discussion
Although the incidence and mortality rates of GC have declined in the past 5 decades 
[53–55], GC remains the third leading cause of cancer-related deaths [56]. Cancer cells 
are characterized by genomic instability, which favors mutation accumulation and 
increased tumor heterogeneity [57–59]. RNA modifications have recently emerged as 
key post-transcriptional regulators of gene expression and are thought to be associated 
with various diseases, including cancer [60]. However, the intrinsic relationship between 
RNA modifications and GC progression remains unknown. In this study, we analyzed 
the relationship between RNAMRGs and GC using bioinformatics analyses and statisti-
cal methods and constructed a prognostic model.

First, we scored each TCGA sample and grouped the samples according to their 
RNAMS and found that patients with high RNA modification correlation had a worse 
prognosis. Dynamic RNA modification events can promote tumor progression by pro-
moting tumor cell proliferation or regulating invasive and metastatic potential, resulting 
in a poor prognosis, consistent with our findings. Therefore, we explored hub RNAM-
RGs and established a prognostic prediction model for patients with GC using selec-
tin P (SELP) and cystatin SA (CST2). SELP encodes a protein stored on platelets and 
endothelial cells that is redistributed to the plasma membrane during platelet activation 
and degranulation and mediates the interactions between activated endothelial cells or 
platelets and leukocytes [61]. Coxsackievirus B 1 and 3 interact with human platelets to 
trigger SELP expression [62], and SELP has predictive value in various cancers [63, 64]; 
however, the relationship between SELP and RNA modification in GC carcinogenesis 
and development remains unclear. CST2 overexpression enhances the growth, migra-
tion, and invasion of GC cells by regulating the epithelial–mesenchymal transition and 
TGF-β1 signaling pathways [65]. According to the formula of our predictive model, 
higher SELP and CST2 expression were associated with a higher risk score, and survival 
analysis further indicated that the high-risk group had a worse prognosis. The high pre-
dictive efficacy of the model was further validated using GEO datasets. Taken together, 
these findings are consistent with the hypothesis that SELP and CST2 may act as cancer 
progression-promoting genes in various tumors.

Table 3 Multivariate Cox regression analysis results

CI Confidence level

Exp (coefficient) Lower 95% CI Upper 95% CI p

Risk score 3.28 1.66 6.47 0.001

TNM_M (M0 vs. M1) 3.75 1.86 7.55  < 0.001

TNM_T (T1–2 vs. T3–4) 2.35 1.19 4.64 0.014

Gender (female vs. male) 2.53 1.32 4.86 0.005
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Furthermore, enrichment analysis revealed the importance of the Wnt signaling 
pathway, which plays a key role in tumorigenesis [66, 67]. While constructing the PPI 
network, we identified ELN as an important hub gene. ELN encodes one of the two com-
ponents of elastic fibers that form part of the extracellular matrix and confer elasticity 
to organs and tissues. Abnormal ELN levels have been observed in many fibrotic dis-
eases, including kidney [68], lung [69], and liver fibrosis [70], and ELN accumulation is 
associated with the development of hepatocellular carcinoma [71]. ELN has also been 
shown to regulate tumor development and the tumor microenvironment (TME) in colo-
rectal cancer [72]. Therefore, studying the mechanism of ELN and RNA modification in 
GC carcinogenesis is essential. miRNAs are epigenetic regulators that affect the levels 
of proteins encoded by target mRNAs without modifying gene sequences and are them-
selves regulated by epigenetic mechanisms [73]. Reciprocal relationships between miR-
NAs and epigenetic regulation form miRNA-epigenetic feedback loops that can regulate 
cellular processes such as cell proliferation [74], apoptosis [75], and differentiation [76]. 
To understand the regulatory relationship between the hub genes (e.g., ELN) and miR-
NAs, we constructed an miRNA–mRNA regulatory network to explore whether miR-
NAs and mRNAs are associated with GC development.

Recently, breakthroughs have been made in immunotherapy for cancers [77], includ-
ing GC [78, 79]; however, not all patients with GC benefit from immunotherapy, possibly 
owing to the TME [80]. Here, we found that immune cell infiltration was increased in 
the high-risk group. FBLN1 was highly expressed in most immune cells and correlated 
positively with the majority of immune genes, whereas FBLN5 was expressed at low lev-
els in most immune cells. FBLN1 and FBLN5 are components of extracellular matrix 
fibronectin, and ectopic FBLN1 expression inhibits the growth of GC cells by inducing 
apoptosis [81]. Additionally, FBLN5 is a potential indicator of therapeutic efficacy in 
patients with hepatocellular carcinoma [82]. Thus, FBLN1 and FBLN5 may be poten-
tial immunotherapeutic targets for treating GC. A comparison of the high- and low-risk 
groups revealed that all immune genes exhibited significantly different expression pat-
terns, suggesting that our predictive model is a potential indicator for immunotherapy in 
patients with GC.

We also found that overall mutation levels for common tumor driver genes were lower 
in the high-risk group than in the low-risk group, while CNVs, particularly due to dele-
tion, were significantly increased in all patients in the high-risk group. TIDE, TMB, and 
MSI results further suggested that our model could predict the effect of immune check-
point inhibition therapy in patients with GC. We therefore combined the model with 
clinicopathological features to construct a nomogram to assess the clinical prognosis of 
GC. Despite these promising findings, our study had some limitations. First, the model 
has not yet been applied in a clinical setting, and its actual predictive accuracy remains 
unknown. Second, the value and mechanism of action of the hub RNAMRGs identified 
in this study have not been experimentally verified in patients with GC. To overcome 
these limitations, we will apply the nomogram in future clinical work and conduct fur-
ther experiments to explore the mechanism of key RNA modifications in the develop-
ment of GC.
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In conclusion, the RNAMRG risk prediction model developed in this study could 
effectively predict the overall survival of patients with GC. Thus, the model risk score 
can be used to study GC carcinogenesis and developing targeted therapies for GC.
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