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Abstract 

Background:  The identification of disease-related genes is of great significance for the 
diagnosis and treatment of human disease. Most studies have focused on developing 
efficient and accurate computational methods to predict disease-causing genes. Due 
to the sparsity and complexity of biomedical data, it is still a challenge to develop an 
effective multi-feature fusion model to identify disease genes.

Results:  This paper proposes an approach to predict the pathogenic gene based on 
multi-head attention fusion (MHAGP). Firstly, the heterogeneous biological information 
networks of disease genes are constructed by integrating multiple biomedical knowl-
edge databases. Secondly, two graph representation learning algorithms are used to 
capture the feature vectors of gene-disease pairs from the network, and the features 
are fused by introducing multi-head attention. Finally, multi-layer perceptron model is 
used to predict the gene-disease association.

Conclusions:  The MHAGP model outperforms all of other methods in comparative 
experiments. Case studies also show that MHAGP is able to predict genes potentially 
associated with diseases. In the future, more biological entity association data, such as 
gene-drug, disease phenotype-gene ontology and so on, can be added to expand the 
information in heterogeneous biological networks and achieve more accurate predic-
tions. In addition, MHAGP with strong expansibility can be used for potential tasks such 
as gene-drug association and drug-disease association prediction.

Keywords:  Pathogenic gene prediction, Heterogeneous network, Multi-head 
attention, Graph representation learning

Background
Gene mutation and abnormal expression are usually the key factors that cause dis-
ease. Predicting disease genes is greatly significant for the diagnosis of human disease. 
With the rapid development of DNA sequencing technology, more and more biologi-
cal databases are established, which provide sufficient data for the study of pathogenic 
genes. Many studies have confirmed that there is a complex cross-regulation relation-
ship among diseases, genes, lncRNAs, and miRNAs. MiRNAs and lncRNAs play an 
important role in developing complex human diseases [1, 2]. Using multi-omics data 
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and computer technology to predict pathogenic genes has become a research hotspot in 
recent years.

So far, traditional approaches, using gene expression, genome-wide association studies 
(GWAS) or clinical trials, are useful for discovering disease-related genes [3–6]. How-
ever, these methods are time-consuming and costly. Methods, using gene similarity, 
have been proposed successively to overcome this issue. For example, the Katz measure 
method [7], the gene-specific score method [8], the shortest path method [9] and the 
Endeavour method rely on the guilt-by-association concept [10]. These methods work 
under the hypothesis that genes with similar functions are more likely to be related to 
similar diseases. Therefore, it is necessary to develop computational methods which 
do not depend on the known gene-disease association information to identify disease-
causing genes. Recently, Machine Learning (ML) has been widely used in predicting 
disease genes. Matrix factorization (MF) is a strategy to fill partially observed matrix. 
The methods based on MF have been used to discover unknown disease-related genes 
and achieved better performance [11–13]. These MF algorithms usually require a lot of 
computing power. Most algorithms can only handle limited data types, and the predic-
tion performance is affected by the amount of data. The kernel function is a method to 
transform nonlinear data in original data space into high-dimensional linearly separable 
data, which has made great achievements in gene-disease association prediction [14–
16]. Nonetheless, these kernel methods only focus on the single trait of genes but ignore 
biodiversity, and are incomplete in extracting gene features. The methods of combining 
Laplace with random walk [17–20] have achieved success in the prediction of pathogenic 
genes. In addition, He and Li et  al. [21, 22] compared and analyzed the performance 
results of different machine learning methods used for predicting disease genes. How-
ever, with the rapid growth of biological data in recent years, the above methods still 
have challenges in effectively dealing with the sparsity of biological networks and still 
have certain constraints in specific applications.

As a kind of advanced technology in the field of machine learning, deep learning 
methods can quickly and efficiently process unstructured data and efficiently extract 
potential features from complex networks. For example, graph convolutional neural net-
work methods using multi-source data extract features from heterogeneous networks 
to predict disease-causing genes [23–26]. Based on the deep neural network method of 
multi-source data fusion, four sub-neural networks are constructed to extract the corre-
sponding features of genes and diseases, to achieve pathogenic gene prediction [27]. He 
et al. [28] proposed an algorithm based on network enhancement to identify pathogenic 
genes. Different kinds of biological entities could provide complementary information 
for disease-causing genes prediction, hence it is essential to construct a heterogeneous 
networks using multi-omics data and represent nodes effectively for the prediction of 
pathogenic genes. However, it remains a challenge to integrate multiple biological enti-
ties to construct heterogeneous networks, effectively deal with the sparsity of biologi-
cal networks, tap the complex cross-regulatory relationships among organisms, and 
improve the ability of disease gene prediction.

With the rapid development of artificial intelligence technology, various network rep-
resentation learning methods have been proposed and applied to disease gene predic-
tion. Most of the cutting-edge network representation methods, such as Node2vec and 
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LINE, use biased random walk technology to obtain the similarity of nodes, which can 
effectively get the local and global features of the network. These network representa-
tion algorithms have achieved good performance in various scenarios [29, 30]. In recent 
years, attention mechanism has been widely used in Natural Language Processing (NLP) 
[31] and Computer Vision (CV) [32] to improve data correlation, enhance features and 
improve model accuracy. As well as attention has been successfully applied to bioinfor-
matics. Such as Yu et al. [33] used single-head attention with a graph convolution net-
work to predict drug targets. Snderby et al. [34] applied single-head attention to protein 
subcellular location prediction analysis. Because the single-head attention uses a single 
attention weight vector to weight the hidden state, the feature can only be mapped into 
a single space. It has some defects in interpreting the prediction results, and the perfor-
mance is not very good. The multi-head attention composed of fully connected neurons 
is efficient and accurate in a calculation, and it presents powerful advantages in the most 
advanced NLP architecture, such as Transformer [35] and Bert model [36]. Wang et al. 
[37] also achieved the prediction of mRNA subcellular location by utilizing multi-head 
attention.

Therefore, inspired by network representation learning algorithm and multi-head 
attention, to make more effective use of the complex regulatory relationship between 
multi-omics data, we propose a method called MHAGP for pathogenic gene predic-
tion based on multi-head attention fusion. The overall model is shown in Fig. 1. Firstly, 
the MHAGP constructs three heterogeneous networks by integrating information from 
four biological entities, including gene, disease, lncRNA and miRNA, along with seven 
kinds of association, including disease-miRNA, gene-miRNA, gene functional similarity, 
gene-disease, semantic similarity of disease, gene-lncRNA, and disease-lncRNA. Then, 
Node2vec and LINE algorithms are used to mine the biological association features of 
gene and disease from three heterogeneous networks. The three features are fused by 

Fig. 1  MHAGP framework. A Three heterogeneous networks are constructed based on the four integrated 
data sources (gene, disease, lncRNA and miRNA) and seven kinds of association (disease-miRNA, 
gene-miRNA, gene functional similarity, gene-disease, semantic similarity of disease, gene-lncRNA, 
disease-lncRNA). B The Node2vec and LINE algorithms are used to mine the biological association features 
of genes and diseases from three heterogeneous networks. The features extracted from the GMD and GLD 
networks are used to fusion the gene-disease association features in GD networks by multi-head attention. 
C Self-attention is introduced to predict the pathogenic gene in the multi-layer perceptron and output the 
gene-disease association score
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multi-head attention to enhance gene-disease association features. Finally, self-attention 
is introduced to predict the pathogenic gene in the multi-layer perceptron and output 
the gene-disease association scores. Through the evaluation of model performance, 
MHAGP is proved to be an effective method to merge the features of gene-disease asso-
ciation. The empirical results of five-fold cross-validation demonstrate that MHAGP 
outperforms all baselines. Besides, the assessment results of Alzheimer’s disease, lung 
cancer and myocardial infarction case studies verify the effectiveness and advantages of 
the proposed method.

The rest of the paper is organized as follows. Section II describes the implementation 
and architecture details of MHAGP. Section III introduces the datasets and analyzes 
the performance of MHAGP, compares it with eleven other competing algorithms, and 
makes a case study and some conclusions in section IV.

Methods
Our model consists of three steps: (1) Network construction. We integrated four data 
sources and built three heterogeneous networks based on the complex regulatory rela-
tionship between biological characteristics. (2) Feature fusion. We use Node2vec and 
LINE algorithm to mine the original biological association features of genes and diseases 
from three heterogeneous networks and fuse the three gene-disease association features 
through multi-head attention. (3) Pathogenic gene prediction. Self-attention is intro-
duced in the multi-layer perceptron to predict the pathogenic gene and output the gene-
disease association score. The workflow is shown in Fig. 1.

Construction of heterogeneous networks

We used four types of nodes and their seven associations to construct three heterogene-
ous biological networks, including GD ( gene-disease ), GMD ( gene-miRNA-disease ), 
and GLD ( gene-lncRNA-disease ) (see Fig. 1A). GD is constructed by integrating gene 
functional similarity, semantic similarity of disease and gene-disease association. Like-
wise, GMD is constructed by integrating gene-miRNA association and disease-miRNA 
association, and GLD is constructed by integrating gene-lncRNA association and dis-
ease-lncRNA association. If the association weight between biological nodes is greater 
than 0, an edge will be added. The constructed biological heterogeneous networks are 
undirected graphs.

Extracting node features from networks

Graph representation learning is also called network representation. Its generation solves 
a series of difficulties in traditional manual feature extraction. In network modeling, it is 
an essential step in mapping node information to real vectors and can automatically learn 
the potential representation features of nodes. Node2vec [29] and LINE [30] are two avant-
garde graphical representation algorithms. As an extension of the DeepWalk algorithm, 
Node2vec improves the sampling strategy of vertices in the Random Walk algorithm. 
It controls the random walk strategy by introducing two hyperparameters p and q. LINE 
algorithm optimizes the calculation method of similarity between nodes and considers the 
first-order and second-order similarity of nodes in the network graph. It can be applied to 
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various types of networks (directed, undirected, weighted, and unweighted) and is suitable 
for large-scale networks.

In this study, we use Node2vec and LINE algorithms to extract the original feature repre-
sentation of genes and diseases in three heterogeneous networks. For each node in the net-
work, Node2vec and LINE get an e-dimensional real vector about genes and disease nodes 
according to the neighborhood information of the node. They finally get three different 
gene-disease association features of the two algorithms. Specifically, Node2vec and LINE 
obtain three gene-disease association feature matrices ( GDgd ,GDgmd and GDgld ) from GD, 
GMD and GLD networks respectively. GDgd ∈ R

n×2e is obtained by combining 
Gi
gd = g1, g2, · · · , ge and D

j
gd = d1, d2, · · · , de  vectors. GDgmd ∈ R

n×2e is obtained by 
combining Gi

gmd =
[

g1, g2, · · · , ge
]

and D
j
gmd =

[

d1, d2, · · · , de
]

 vectors. GDgld ∈ R
n×2e is 

obtained by combining Gi
gld =

[

g1, g2, · · · , ge
]

and D
j
gld =

[

d1, d2, · · · , de
]

 vectors. Where 
e is the embedding dimension, and n is the number of gene-disease pairs.

The above feature representation is obtained simultaneously by Node2vec and LINE 
algorithms. Therefore, the feature matrices obtained by the two algorithms from three het-
erogeneous networks are fused separately to get: 
GD′

gd ∈ R
n×4e,GD′

gmd ∈ R
n×4e,GD′

gld ∈ R
n×4e.

Multi‑head attention fusion

Vaswani et al. [35] proposed a multi-head attention on the basis of attention. The purpose of 
the attention mechanism is to focus on the information that is more critical to the current 
task among the numerous input information, reduces the attention to other information, 
and even filters out irrelevant information, which can solve the problem of information 
overload and improve the efficiency and accuracy of task processing. The classic attention 
mechanism module consists of Query (Q), Key (K) and Value (V) operations. The core pro-
cess is calculating the attention weight through Q and K, then acting on V to get the whole 
weights and outputs. Specifically, for the input matrices Q, K and V, the output vector is 
calculated as shown in Eq. (1).

Where Q ∈ R
n×dk ,K ∈ R

m×dk ,V ∈ R
m×dv . Multi-head attention refers to multi-

ple independent attention calculations, as an integration function, it integrates differ-
ent knowledge generated from the same attention pooling. Q, K and V are transformed 
linearly, and each attention mechanism function is responsible for only one subspace 
in the final output sequence. That is, the so-called multi-head attention mechanism is 
a multi-group attention processing process of the original input sequence. Then the 
results of each group of attention are spliced together for a linear transformation to get 
the final output result. Given the query Q ∈ R

dmodel×dk , key K ∈ R
dmodel×dk and value 

V ∈ R
dmodel×dv , dk = dv , WO ∈ R

dmodel×hdv , the multi-head is calculated by Eqs. (2)–(3).

(1)Attention(Q,K ,V ) = Softmax

(

QKT

√

dk

)

V

(2)headi =Attention
(

QW
Q
i ,KWK

i ,VWV
i

)
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To better fuse the three different perspectives of gene-disease features extracted in the 
previous section, we use GD′

gmd and GD′
gld as auxiliary features of GD′

gd to fuse the data 
of gene-disease association features. The specific implementation details are shown in 
Fig. 1B. We get GDatt

gd−m
 through Eq. (4), as well as, obtains GDatt

gd−l
 through Eq. (5). h is 

set to 8 as suggested by [35]. To keep the original features of genes and diseases undis-
torted, we fuse GDatt

gd−m
 , GDatt

gd−l
 and GD′

gd to obtain an enhanced gene-disease associa-
tion feature matrix through Eq. (6), and recalculate the features again using self-attention 
in the next section.

Gene‑disease association prediction

We use the multi-layer perceptron as the last module of the model (see Fig. 1C). To effec-
tively prevent the gradient disappearance problem in the model’s training, we use self-
attention again to recalculate the feature values of all the available information. The specific 
implementation is as follows. Let GDatt

i =

[

gd1i , gd
2
i , · · · , gd

h
i

]

 represents the feature vector 

of the i th item in the gene-disease association feature after multi-head attention feature 
fusion enhancement, where gdji ∈ R, ∀j = 1, 2, · · · , h . By introducing attention parameter 
Hatt ∈ R

h×h,Watt ∈ R
h×h and bias parameter batt ∈ R

h×h , calculate the attention score of 
each element in GDatt

i  , as in Eq. (7).

Next, as shown in Eq. (8), the enhanced attention feature value is recalculated.

Where ⊗ represents pairwise multiplication.
The feature matrix GDatt ′ =

[

GDatt ′

i

]

 is used as the input h′ of the perceptron module to 

score the relationship between genes and diseases. The number of nodes in the hidden layer 
is kept as the value of the hyperparameter h′ . The output layer sets a node and uses the sig-
moid function to calculate the correlation score. The loss rate is measured to reduce over-
fitting by calculating the binary cross entropy function. The cross entropy loss set as 
L(Y ),Y = [y1, y2, · · · , yn] is calculated as in Eq. (9).

(3)MultiHead(Q,K ,V ) = Concat (head1, . . . , headh)W
O

(4)GDatt
gd−m

=MultiHead
(

GD′
gmd ,GD

′
gd ,GD

′
gd

)

(5)GDatt
gd−l

=MultiHead
(

GD′
gld ,GD

′
gd ,GD

′
gd

)

(6)GDatt
=linear

(

concat
(

GDatt
gd−m

,GDatt
gd−l

,GD′
gd

))

(7)αatt
i = softmax

(

Hatt
· tanh

(

WattGDatt
i + batt

)

(8)GDatt ′

i = αatt
i ⊗ GDatt

i
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The whole workflow of multi-layer perceptron in the prediction layer is summarized as 
in Eq. (10).

Hyperparameters

Different hyperparameters determine the robustness of the method in different mod-
ules. In this paper, referring to the parameter method set by [29], a loss rate of 0.2 
is added among the hidden layers of the model, and the grid search method is used 
to adjust the hyperparameters. The dimension e embedded in Node2vec and LINE 
is selected from 32, 64, 128, 256. Other parameters in the network remain at default 
values. The data dimension remains unchanged when multi-head attention fuses the 
features of gene-disease association. The evaluation results are shown in Fig. 2. Our 
method performs best when drop=0.2, e=64, lr=0.01, and h=128. The results show 
that the model performance is poor if the e value is small. When e value is large, it will 
not affect the excellence of the model, but will reduce the training speed of the model. 
We adopt five-fold cross-validation to validate 10 epochs, 20 epochs, 30 epochs and 
50 epochs, respectively, during model training. The model excellence tends to be sta-
ble after 30 epochs. Therefore, the model parameters in this paper is set as batch−size
=30, epochs=30.

Results and discussion
In this section, at first, we have described the datasets and the evaluation metrics 
used in the model. Second, we have compared the performance impact of different 
data fusions on the model. Third, we have performed ablation experiments to assess 
the model’s accuracy. Fourth, we have selected twelve state-of-the-art methods as our 

(9)L(Y ) =
−1

n

∑

yi∈Y

yilog
(

p
(

yi
))

+
(

1− yi
)

log
(

p
(

1− yi
))

(10)y = Sigmoid
(

Linear
(

Relu
(

Linear
(

GDatt ′
))))

Fig. 2  Dimension e-value comparison result
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baseline methods for comparison. Finally, we have performed candidate gene predic-
tions for three diseases and have analyzed the results from the biological literature 
database and clinical perspectives.

Experimental data sources

We use some datasets from Wang et al. [38]. The details are shown in Table 1. The gene-dis-
ease association mainly is from DisGeNET [39] and DISEASES [40]. The gene-lncRNA and 
disease-lncRNA association mainly come from the LncRNADisease2.0 [41], LncRNA2Tar-
get v2.0 [42], EVLncRNAs [43] and Lnc2Cancer 3.0 [44]. The gene-miRNA and disease-
miRNA association come from the MNDR v3.0 [45] and MiRTarBase [46]. Through data 
error correction and data cleaning ( mainly including deleting duplicate, error and empty 
data ) on the data obtained from the database, then a unique ID is retained for each biomol-
ecule. We get 7986 genes, 217 diseases, 814 lncRNAs and 2476 miRNAs.

Performance evaluation metrics

We use five-fold cross-validation to evaluate the performance of MHAGP and existing 
methods in gene-disease association prediction. In the experiment of MHAGP model, 80% 
of the subsets are used as training samples, and the remaining 20% are used as test samples. 
Gene-disease association prediction scores are generated upon test completion, and we 
rank them according to the prediction scores. According to the set threshold, when the pre-
diction score is greater than the threshold, the corresponding prediction result is regarded 
as false positive (FP) or true positive (TP). Otherwise, it is viewed as a true negative (TN) 
or a false negative (FN). Specifically, the following evaluation indicators are used: True Posi-
tive Rate (TPR), False Positive Rate (FPR), Accuracy, Recall, Precision, F1-score and Area 
under Precision-Recall curve (AUPR). Receiver Operating Characteristic (ROC) uses TPR 
and FPR to draw the ROC curve under each value, and the area under the ROC curve is 
called the area under the ROC curve (AUC). The above calculation formula is shown in 
Eqs. (11)–(16).

(11)TPR =
TP

TP + FN

Table 1  Experimental data sources

Name Pair Source URL

Gene–Gene 56,310,502 Wang et al. [38] –

Gene–Disease 37,277 DisGeNET [39] https://​www.​disge​net.​org

DISEASES [40] http://​disea​ses.​jense​nlab.​org

Gene-lncRNA 14,987 LncRNA2Target [42] http://​www.​bio-​bigda​ta.​net/​lnc2c​ancer

Gene-miRNA 216,934 MiR-TarBase [46] https://​mirta​rbase.​cuhk.​edu.​cn

Disease-Disease 43,273 Wang et al. [38] –

Disease-lncRNA 3434 LncRNADisease 2.0 [41] http://​www.​bio-​bigda​ta.​net/​lnc2c​ancer

EVLncRNAs [43] https://​www.​sdklab-​bioph​ysics-​dzu.​net/​EVLnc​RNAs2

Disease-miRNA 27,174 Lnc2Cancer 3.0 [44] http://​bio-​bigda​ta.​hrbmu.​edu.​cn/​lnc2c​ancer

MNDR v3.0 [45] http://​www.​rnadi​sease.​org

https://www.disgenet.org
http://diseases.jensenlab.org
http://www.bio-bigdata.net/lnc2cancer
https://mirtarbase.cuhk.edu.cn
http://www.bio-bigdata.net/lnc2cancer
https://www.sdklab-biophysics-dzu.net/EVLncRNAs2
http://bio-bigdata.hrbmu.edu.cn/lnc2cancer
http://www.rnadisease.org


Page 9 of 15Zhang et al. BMC Bioinformatics          (2023) 24:162 	

According to the above formula, we draw the ROC curve (see Fig. 3) and evaluate the 
performance of MHAGP with the AUC value. The ROC curve changes over time. All 
known gene-disease associations were considered as positive samples in five-fold cross-
validation. Conversely, unknown gene-disease association was considered negative sam-
ple. Since the number of positive samples in the data set is far less than that of negative 
samples, we use random sampling to repeat the experiment. According to the number of 
positive samples, we randomly sample an equal number of negative samples and report 
the average results with standard deviation. MHAGP has the best performance when the 
parameters are set to e = 64 , h = 128 , h′ = 384 , lr = 0.01.

(12)FPR =
TP

FP + TN

(13)Accuracy =
TP + TN

TP + TN + FP + FN

(14)Recall =
TP

TP + FN

(15)Precision =
TP

TP + FP

(16)F1−score =
2

1
recall

+
1

precision

= 2×
recall× precision

recall+ precision

Fig. 3  ROC curve for different value of five-fold cross-validation
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Comparison of results of heterogeneous data sources

To compare the contribution of four biological data sources to the prediction accu-
racy of pathogenic genes, we use data sources under different combinations to com-
pare the experimental results. The results are shown in Table  2. Bold values in the 
tables indicate the best performance. By using the association between gene, miRNA 
and disease, as well as the association between gene, lncRNA and disease to fuse the 
association between gene and disease for disease-causing gene prediction, the fusion 
of three heterogeneous network features can obtain more accurate results.

Ablation study

To analyze the influence of the feature representation learned by MHAGP on the predic-
tion model’s performance, we have made experimental comparisons on the combination 
of different modules. Figure 4 shows the results of four ablation experiments. The aver-
age accuracy given by the MHAGP model is 0.91 (± 0.0002), and the overall index is the 
highest among the four combinations. The results show that the accuracy of the pre-
diction model is significantly improved by introducing multi-head attention to feature 
enhancement.

Comparison with other methods

To evaluate the feasibility of MHAGP, we compare our model with the seven excellent 
ML methods proposed by [21], two cutting-edge graph neural network models [47, 48], 
and three disease-causing gene prediction methods proposed in recent years [25, 49]. 

Table 2  Fusion results of different data sources

Data fusion AUC (%) Accuracy (%) F1-score (%) Precision (%) AUPRC (%)

GD 84.44 84.44 83.50 77.99 88.01

GD+ GMD 88.15 88.15 86.11 83.37 91.00

GD+ GLD 87.50 87.49 87.34 81.02 90.06

GD+ GMD+ GLD 93.84 90.64 90.84 86.48 92.86

Fig. 4  Accuracy of the model based on feature combinations
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The results of the model performance comparison are shown in Table 3. The results of 
our model are best in all six-evaluation metrics among seven machine learning meth-
ods, including Logistic Regression (LR), Random Forest (RF), support vector machines 
(SVM), Decision tree, KNN, Gradient Boosting (GB) and Multi-layer Perceptron (MLP). 
Among the two graph neural network models, the Graph Attention Networks (GAT) 
[47] model is based on Graph Convolutional Networks (GCN). Heterogeneous Graph 
Attention Network (HAN) [48] turns a heterogeneous network with different meta-
paths into a homogeneous network with different edge weights and then uses the HAN 
model to predict the association between nodes. Compared with three state-of-the-art 
pathogenic gene prediction models, PINDeL [25] based on graph convolutional neural 
network, dgMDL [49] based on DBN and network enhancement-based DGHNE [28], 
MHAGP shows better performance among the six indicators. Therefore, the model in 
this paper shows the best performance among all baseline methods, as shown in Table 3.

Case studies

To further evaluate MHAGP, we rank gene-disease pairs based on the relevant probabili-
ties calculated by the model. We predict and analyze three specific diseases (Alzheimer’s 
disease, lung cancer and myocardial disease) genes. Firstly, we train the MHAGP model 
using a data set containing all gene-disease associations except the associations between 
three diseases and genes. Secondly, we use the trained model to predict the association 
probability of three diseases with candidate genes and rank them, respectively. Finally, 
the top 20 candidate genes of the three disease prediction results were analyzed and 
demonstrated through scientific publications and the latest updated data of online bio-
logical databases such as OMIM and DisGeNET, as shown in Table 4. The evidence col-
umn indicates the associated citations from some reference databases and literature.

In the prediction results of Alzheimer’s disease, 18 genes (90%) have been related 
to reference databases and literature evidence. Among the two newly predicted can-
didate genes, the latest research [50] shows that the RPL11 gene is significantly up-
regulated in Alzheimer patients. As a tumor invasion-enhancing gene, the ANXA4 
gene can promote trophoblast invasion in preeclampsia patients through PI3K/Akt/

Table 3  The overall performance of compared to the existing methods

Method AUC (%) Accuracy (%) F1-score (%) Precision (%) Recall (%) AUPRC (%)

LR 82.21 82.11 79.62 76.08 83.51 86.49

RF 84.38 84.39 81.79 78.89 84.91 88.24

SVM 82.98 82.98 80.62 77.04 84.56 87.13

DT 70.35 78.25 66.39 64.48 68.42 77.69

KNN 79.67 79.67 78.64 72.78 85.54 84.75

GB 85.09 85.09 82.80 79.56 86.32 88.70

MLP 83.51 83.51 80.16 78.31 82.11 87.77

GAT​ 82.35 91.42 85.36 82.03 88.97 82.00

HAN 90.57 94.75 85.68 82.6 88.99 89.79

PINDeL 81.42 83.45 81.84 79.67 84.13 86.05

dgMDL 87.82 87.82 85.46 83.22 87.82 90.87

DGHNE 78.94 78.94 66.79 78.94 57.89 89.47

MHAGP 93.84 90.64 90.84 86.48 95.66 92.86
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eNOS pathway [51]. In the prediction results of lung cancer, it is surprising that the 
reference database confirmed 19 genes (95%). Our predicted novel gene BTN2A2 
is a T-cell immune regulatory molecule, which can be further studied as a potential 
gene related to lung cancer in the future. 17 (85%) candidate genes highly correlated 
with myocardial infarction predicted by MHAGP were confirmed by the reference 

Table 4  Top 20 MHAGP predicted genes associated with three diseases

Rank Alzheimer 
disease

Evidence lung cancer 
gene

Evidence Myocardial 
disease

Evidence

1 HLA-B PMID: 
17176470; 
DisGeNET

CCL2 PMID: 33253790; 
DisGeNET

COTL1 PMID: 32730836; 
DisGeNET

2 RPLP0 PMID: 
35615586; 
DisGeNET

CXCL1 PMID: 31998654; 
DisGeNET

CDKN1A PMID: 31919418

3 TGFB1 PMID: 
31792364; 
DisGeNET

FGFR1OP PMID: 26905588; 
DISEASES

GSPT1 DISEASES

4 MEST PMID: 
34625606

TNF PMID: 35016421; EIF2B4 CREEDS

5 ANXA4 * FAM189A2 OMIM PCBP1 PMID: 26116532

6 ITGB2 PMID: 
30787942; 
DisGeNET

IL6 PMID: 32020709; 
DisGeNET

PTGES2 DisGeNET

7 CDKN2A PMID: 
34219731; 
OMIM

RAB7A PMID:35449308; 
CREEDS

COL18A1 OMIM

8 ATM PMID: 
27022623; 
OMIM

IL1B PMID: 23784458; 
DisGeNET

SERINC5 DisGeNET; 
DISEASES

9 ACTB PMID: 
24628925

CDH13 PMID: 29416663; 
DisGeNET

SRSF2 PMID: 34298011

10 PYCARD PMID: 
33273068

TTC19 CREEDS CCL5 PMID: 28987763; 
DisGeNET

11 ACTA2 PMID: 
34916831

CXCL5 PMID: 29200871; 
DisGeNET

TUBB6 DisGeNET

12 MYC PMID: 
33729395

PARP1 PMID: 33284833; 
DisGeNET

PLAC8 CREEDS

13 TMBIM1 DISEASES LRP11 CREEDS PMPCB DISEASES

14 SPARC​ PMID: 
33400467; 
DISEASES

CCL11 PMID: 33452453; 
DisGeNET

MBNL1 PMID: 33295096; 
DisGeNET

15 ALDH2 PMID: 
27808372; 
DisGeNET

COL3A1 PMID: 32300359; 
DisGeNET

PSMA4 PMID: 35952493

16 TP53 PMID: 
29842899; 
DisGeNET

CCL7 PMID: 30214518; 
DisGeNET

PTGS2 PMID: 35311466; 
PTGS2

17 PTEN PMCID: 
PMC7654589

ZEB1 PubMed: 
31719531;OMIM

PTMA PMID: 33398012

18 RPL10 DisGeNET; 
OMIM

ESR1 PMID: 35281414; 
DisGeNET

AR PMID: 26769913; 
DisGeNET

19 PDCD4 PMID: 
32474742; 
DisGeNET

ARRDC4 CREEDS CCNL1 *

20 RPL11 PMID: 
33541173

BTN2A2 * GPX3 PMID: 35073209
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database. Among the other three predicted new genes, the OMIM database showed 
that the COL18A1 gene was transcribed in multiple organs and was related to vas-
cular endothelial inhibitors. For the AR gene, [52] showed that the lack of androgen 
would cause increased lipid accumulation and aggravate atherosclerosis, but AR 
could inhibit the progression of atherosclerosis. As a potential tumor gene, CCNL1 
is not directly related to myocardial infarction, so that it can be further explored as a 
candidate gene for myocardial infarction.

Due to limited research on bio-molecules, the new genes of the three diseases pre-
dicted in this paper can be used as new suggestions for biological laboratory validation. 
Further research on their biological functions and regulatory mechanisms can provide 
better diagnosis and treatment schemes for clinical medicine. Through association pre-
diction of three disease candidate genes, the performance of the MHAGP model in new 
association prediction is demonstrated. Our approach has potential value in discovering 
novel genes associated with complex human diseases.

Conclusions
In this work, we propose a method to predict the pathogenic genes using multi-head 
attention fusion. Firstly, the heterogeneous biological information networks of disease 
genes are constructed by integrating multiple biomedical knowledge bases. Secondly, 
two graph representation learning algorithms are used to capture the feature vectors 
of gene-disease node pairs from the networks, and the gene-disease association feature 
pairs are fused by introducing multi-head attention. Finally, we use multi-layer percep-
tron model to predict the gene-disease association. The MHAGP model outperforms all 
other methods in comparative experiments. Case studies of Alzheimer, lung cancer and 
myocardial disease also show that MHAGP can predict genes potentially associated with 
the disease. In the future, more types of biological entity data, such as gene-drug, dis-
ease phenotype-gene ontology, etc., can be added to expand the amount of information 
in heterogeneous biological networks and achieve more accurate prediction. In addi-
tion, the MHAGP model can also be used for potential tasks such as gene-drug associa-
tion prediction and drug-disease association prediction. Therefore, MHAGP has strong 
expansibility, which can help to study the mechanism of gene action in diseases in the 
future.
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