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Abstract 

The flourishment of machine learning and deep learning methods has boosted the 
development of cheminformatics, especially regarding the application of drug discov-
ery and new material exploration. Lower time and space expenses make it possible for 
scientists to search the enormous chemical space. Recently, some work combined rein-
forcement learning strategies with recurrent neural network (RNN)-based models to 
optimize the property of generated small molecules, which notably improved a batch 
of critical factors for these candidates. However, a common problem among these 
RNN-based methods is that several generated molecules have difficulty in synthesizing 
despite owning higher desired properties such as binding affinity. However, RNN-
based framework better reproduces the molecule distribution among the training set 
than other categories of models during molecule exploration tasks. Thus, to optimize 
the whole exploration process and make it contribute to the optimization of specified 
molecules, we devised a light-weighted pipeline called Magicmol; this pipeline has 
a re-mastered RNN network and utilize SELFIES presentation instead of SMILES. Our 
backbone model achieved extraordinary performance while reducing the training cost; 
moreover, we devised reward truncate strategies to eliminate the model collapse prob-
lem. Additionally, adopting SELFIES presentation made it possible to combine STONED-
SELFIES as a post-processing procedure for specified molecule optimization and quick 
chemical space exploration.

Keywords: Generative models, Reinforcement learning, Deep learning, Synthetic 
accessibility, De novo drug design

Introduction
Generative models, which use computational methods to devise molecules inversely, can 
be roughly separated into several categories: variational autoencoders (VAEs) [1–3], gen-
erative adversarial networks (GANs) [4, 5], recurrent neural networks (RNNs) [6, 7], and 
flow-based models [8, 9]. In essence, a generative model learns valid molecule presenta-
tions [10] from an extensive, cleaned database. For RNN-based models, while training, 
the input is like a “prefix” [11]; for each iteration, a particular prefix is fed into the model, 
and the next character is defined as the training target. Concerning the existence of the 
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hidden layer, which the ability of RNN models to process sequential data, RNN models 
take the output of last step as the next input and thus memorize coherent sequential 
information. During this process, an initial character and a terminal character are used 
to indicate the start and termination of generation. Following the established probabilis-
tic rules, a well-trained generative model can “reproduce” the process while generating 
molecules with different sampling strategies (different sampling temperatures [12], etc.), 
which accounts for the validity and novelty of generated molecules.

Many experiments [13–15] have confirmed the feasibility and generative capacity of 
RNN-based models. Recently, Alan et al. [16] compared chemical language models and 
concluded that RNN-based models prevail over VAE-based models when reproduc-
ing the molecule distribution of the training set. However, biases of the training data 
can lead to corresponding tasks to be grossly overestimated [17]; Without extra opti-
mizations, RNN-based models perform well in terms of common evaluate metrics 
(for instance, novelty, validity, and originality), but many generated molecules contain 
unwanted structures, or they are just not available because difficult to synthesize.

We see this problem is caused by the partiality of the evaluation metrics, especially the 
metric - novelty. Specifically speaking, the novelty of a generative model is defined as:

where ( Vm ) is a batch of valid, non-duplicate generated molecules, and N is the original 
training set. Any molecules that have never emerged in the training set will contribute 
to the novelty score. Concerning the aforementioned situation, the classic novelty eval-
uation metric cannot reflect such implicit structural problem, and it should be regard 
as “permissive novelty” [18].

Meanwhile, Deep generative models (DGMs) are not the only way to conduct effi-
cient chemical space exploration. Recently, some research utilized genomic algorithms 
(GAs), such as Monte-Carlo Tree Search (MCTS), instead of DGM, demonstrating that 
GAs served as potent candidates for searching for desired chemical compounds [19, 20]. 
These search-based methods generally regard molecule fragments as tree nodes, and the 
whole process can be viewed as searching for a feasible connection between the existing 
root and leaves [21, 22]. Feasible connections not only ensure the validity of generated 
molecules but also make the molecular exploring process more efficient. However, the 
search process needs to get feedback from third-part supervision, which could be a scor-
ing function, a neural network [22], or some mechanism such as expectation maximiza-
tion [23]. This step requires extra training and must be devised precisely to ensure it 
leads the search process in the right direction.

In this paper, we attempted a new pattern of combining GA and DGM and treat novel 
molecule exploration as a two-step task. First, we re-mastered a three-layer stacked 
RNN model as our backbone model for quick chemical space exploration. Then we turn 
to solve the problem of permissive novelty among RNN-based models using reinforce-
ment learning and the target is reinforcement score (for details, see chapter Reinforce-
ment Score). During this, we adopt SELFIES [24] as the molecule presentation instead of 
SMILES [25]. Second, when the network converged, we utilize its exploration power to 

(1)Novelty = 1−
|set(Vm) ∩ N |

|set(Vm)|
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find the evolution target (a molecule with ideal properties), and the target will lead the 
optimization for our specified molecule.

The main contribution of this paper are summarized below: (1) We re-trained a more 
efficient backbone model without inheriting the former framework and the post-pro-
cessing bases on reinforcement score could make our model cater to different require-
ments. (2) We devised a light-weighted baseline that combines GA and DGM for 
specified molecule evolution without introducing extra parameters,the whole process is 
intervention-free and does not need further supervision. (3) We issued reward truncate 
strategies to reduce the side-effects of reinforcement learning optimization and prevent 
model collapse, which could to be transferable to other tasks.

Methods
Molecule presentation

To make the model learn contextual relation and presentation of valid chemical com-
pounds, a certain chemical molecule must be first presented as a meaningful vector [26]. 
As formerly mentioned, our baseline would be combined with STONED-SELFIES [27] 
for molecule exploration, and therefore we used SELFIES, which is a novel and robust 
molecule presentation. SELFIES mitigated the problem of the random invalidity found 
with SMILES and ensured validity after structure modification.

We obtained excellent experimental results when adopting SELFIES for encoding mol-
ecules as network inputs (Table 1), which shows superiority not only in the validity of 
generated molecules but also reduced training cost.

Dataset and processing

A larger dataset provides more abundant combination of molecule fragments, which 
empowers DGM to search the enormous chemical space. Therefore, we use the 
ChEMBL30 dataset (https:// www. ebi. ac. uk/ chembl/) [28], which contains more than 2.2 
million compounds and 1.92 million small molecules. We derive all small molecules for 
data preprocessing. The data cleaning procedure is done by Rdkit (https:// www. rdkit. 
org/) [29] as follows: (1) confirm the validity of SMILES in the original dataset; (2) use 
LargestFragmentChooser to select the largest fragment while including more than one 
fragment; (3) use uncharge to clean the electrons and make them neutral; (4) (optional) 
use TautomerEnumerator to handle the tautomerism factors; and (5) convert all valid 
SMILES into canonical form, and we arbitrarily ignored isomeric SMILES.

After data cleaning, we take the SELFIES package to convert all selected small mol-
ecules to SELFIES presentation and make up a chemical corpus of size c. This corpus 
records all chemical substructures, such as [Branch1_1] or [C + expl] , and three place-
holders named < start > , < pad > , and < end > , which are the start generation, pad-
ding, and end generation, respectively. While training, we first decompose all molecules 
in our cleaned dataset into small fragments. Every fragment corresponds to one token 
in c, and the process is shown in Fig. 1. We note that not all molecules can be encoded 
as SELFIES presentation for several reasons, such as violating the predefined rules, we 
excluded all  these molecules. Before we feed the data into our  model, molecules are 
splited and transformed into meaningful vectors according to the chemical corpus. Here 
we choose the length of the longest encoded molecule (l) of each batch as the final vector 

https://www.ebi.ac.uk/chembl/
https://www.rdkit.org/
https://www.rdkit.org/
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length. A placeholder pads any molecule that does not match the final length in order to 
facilitate training. Finally, < start > and < end > are added to the head and tail of the 
encoded vector, respectively.

Backbone model

A common problem with DGMs is the chemical  invalidity of generated strings while 
adopting SMILES as the model input; this is usually caused by unmatched parenthesis 
[30], the emergence of  DeepSMILES [31] aims to solve this problem.  Because of this, 
DGMs need more training epochs to reach convergence and get rid of the invalidity 
problem, for example, ReLeaSE [32] used stacked memory layers to enhance its capacity.

In our work, the molecule presentation has changed, and we define our work as a light-
weighted pipeline. Thus, we turn to not use the same generating networks with pre-
trained weights, and we instead trained our backbone model. The workflow and model 
structure is shown in Fig. 2. We adopt a three-layer stacked RNN model with GRU [33]. 
GRU is an alternative solution to LSTM [34] that can ease vanishing and exploding gra-
dients [12], and thus make it possible to update more effectively during backpropagation. 
Compared with LSTM, GRU only contains two gates instead of three, thus reducing the 
training time and network parameters without sacrificing model performance. The two 

Fig. 1 The encoding process and an example of a benzene molecule, which is first decomposed into 
items and structural tokens, and then each part is encoded by the established chemical corpus. Finally, the 
molecule is transformed into a meaningful vector

Fig. 2 Data flow and backbone generative model for molecule generation
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gates of the GRU are the reset gate and update gate. The reset gate controls the informa-
tion dependency of latest time ht of last time ht−1 , while the update gate determines the 
extent of information to be reserved from last time ht−1.

Here, we expect our model to learn the valid presentation while also being confined 
by chemical properties such as chemical valance. Given a sequence of encoded vectors 
(V1, ..., Vi), we let the model predict the distribution of the word (Vi + 1). Take a common 
molecule as an example: if the model receives the sequence ’c1ccccc’,we want the model 
to learn to maximize the probability distribution of the word ’1’, and yield the desired 
molecule. Formally, given a vector V we try to maximize the probability of the equation. 

where P is the probability that each token in c is chosen as the next character, and i is the 
time step.

After training, we sampled 10,000 molecules to evaluate the generative capacity of our 
model. We utilize principal component analysis (PCA) [35] and select the first two prin-
cipal components and visualize them to confirm the exploration capacity of our genera-
tive model (Fig. 3). Note that, in our experiment, the whole chemical space is defined as 
the possible combination derived from corpus c, and for SELFIES presentation, the cor-
pus contains 148 different tokens. For both training and sampling, we take all available 
tokens into consideration, and thus ensure that the whole chemical space is included.

(2)−

o

i=1

P(i)logiP(Vi+1|V1,V2...Vi)

Fig. 3 Visualization of training molecules and generated molecules within chemical space using PCA. For 
convenient viewing, the data is diluted 100 times
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The generation result illustrates that our backbone model reached over 99% validity of 
generated molecules, diversity, and novelty, as shown in Table 1. These results are dis-
cussed in detail in the next session.

Model optimization

As we inferred, RNN-based models perform well in terms of common evaluation met-
rics, but many generated molecules contain unwanted structures. In Fig. 4, we exhibit 
two molecules that may cause problems while conducting virtual screening [36] with 
the goal of seeking drug-like compounds (the binding score is provided by IGEMDOCK 
[37], and the synthetic score is supplied by SYBA [38]).

In silico molecule design can always be formulated as an optimization problem and it 
has been widely explored [39, 40]. However, the optimization may be problematic. First, 
multi-object optimization is still a problem in the drug design field because a certain 
compound must obey multiple physicochemical properties to be a drug candidate, and 
a single property being varied may lead to the changing of another property [7]. Second, 
pursuing too much on some properties may not work well; it is a bit comical that a mol-
ecule with the highest LogP would be such a long carbon string and of course is of no 
means for molecule design [41].

We seek the possibility of reducing the training cost while putting the model ahead 
and expect it to generates molecules of high quality. Thus, we focus on optimizing only 
one important property - synthetic accessibility [42, 43], and the following reasons 
described our opinions: (1) We regard the permissive novelty as a problem caused by 
lacking a structural constraint. From an economical perspective, the structure of drug-
like molecules is often regular and easy to synthesize. Thus, changing synthetic acces-
sibility (SA) may increase the quality of produced molecules. To accomplish this, we 
utilize SYBA instead of the traditional SA score as our synthesis difficulty judgment. The 
design of SYBA takes the synthesis routes into concern, which could thus be a good-
quality evaluation tool for the generated molecules. (2) The next step of our pipeline may 

Fig. 4 The deep learning model generates these molecules. Both molecules seem to own high binding 
capacity with the main protease of Covid-19 (code:6LU7). The first molecule is difficult to synthesize because 
of its structural complexity, while the other has no meaningful chemical structure
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bring structure modification to a certain molecule. Since this modification may contain 
randomness, the structure of the variants may deteriorate. Thus, we explicitly optimize it 
to mitigate this problem. (3) Treating SA as the optimization object will grant our model 
interesting capacity and make it cater to different requirements (see the “Optimization 
of different tasks” section).

Synthetic score prediction

To directly optimize the synthetic accessibility from the generative model, we need to 
get feedback from the generated molecules. For this, we use SYBA to judge all sampled 
molecules after one epoch is finished. SYBA is capable classifying organic compounds 
as easy-to-synthesize (ES) or hard-to-synthesize (HS). According to SYBA, 0 serves as 
the threshold when estimating whether a molecule is difficult to synthesize or not. If the 
SYBA score is positive, the molecule is considered to be ES; otherwise, it is deemed to be 
HS [44].

For this work, we first generated numerous molecules from the original backbone 
model. We observed that approximately one-third of molecules should be estimated as 
hard to synthesize (Fig. 6). And the next section, we tried to focus on two opposite direc-
tions - 1. Make the generative molecules harder to synthesize. 2. Make the generative 
molecules easier to synthesize. The whole workflow is shown in Fig. 5.

Optimization of different tasks

Our reinforcement learning pipeline contains two modules: an actor, and a critic. The 
actor takes current state (sT ) and performs an action (aT ) according to the environment. 
Meanwhile, the critic provides feedback based on sv and av propels the actor to be opti-
mized in the right direction.

In traditional training process, the goal of actor is to maximize the reward (equa-
tion 3). The derivative of this maximization is expressed by equation 4.

Fig. 5 Workflow of property optimization. The generated molecules are judged by SYBA, and their attributed 
score is converted to reinforcement score using exponential projection. The reinforcement score is utilized by 
policy gradient optimization, with the molecule properties changing
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The model is trained to find a batch of parameters ( � ) to maximize the reward (R).
In our model, the current state sT  is acquired from each time step t according to 

the input token, and the action aT  is provided as the output of our backbone model. 
During this process, we sampled a group of action pairs ( sT ,aT  ) from which a brand-
new molecule was de novo generated. In order to maximize the mathematical expec-
tation E , for each reinforcement training step, we generated 10 molecules. For each 
molecule, we accumulate the product of reinforcement score and action pairs so that 
we get the reward based on equation 3 mentioned above. Following the optimized 
rules, we force the model to “evolve” and modify its parameters, thus making the 
generated molecules own higher synthetic accessibility.

However, this process is not immutable. Prior works have always maximized the 
mathematical expectation. In our work, we observe that this process can also be 
reversed; this means that, with a slight adjustment, we can reduce the reward step 
by step and lead the model in the opposite direction to reduce synthetic accessibility. 
For this process, we follow equation 5. After training, we sample 10,000 molecules 
from three models (Backbone Model (BM), Negative optimization Model (NM), and 
Positive optimization Model (PM)). The generated result of all molecules is shown in 
Fig. 6, where we can see a significant shift in distribution.

(3)R(�) = E[ r(sT )|0,�] =
∑

sT∈S

p�(sT )r(sT )

(4)∇R̄θ =
1

N

N
∑

n=1

Tn
∑

t=1

R
(

τn
)

∇ log pθ
(

anT | snT
)

(5)∇R̄θ = −
1
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N
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Fig. 6 Prediction of the synthetic score by SYBA for three different models: BM, NM,and PM. The blue portion 
illustrates the scores derived from the original synthetic accessibility of molecules. Here, 97.2% of molecules 
are judged as HS after negative optimization while 84.5% are believed to be ES after positive optimization
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Reinforcement score

According to the result of our original backbone model, the majority of synthetic 
score of molecules distributes from −150 to 150.

To facilitate the optimization process, an exponential projection is implemented 
to the original SYBA prediction, we named it as Reinforcement Score (RS) and use 
it as a variant of synthetic accessibility for a certain molecule following the formula 
e

1
150 x + e where x refers to the predicted synthesis score predicted by SYBA. Based 

on the converting equation, a generated molecule with a higher predicted synthetic 
score will also own higher reinforcement score. Before we take them into reinforce-
ment optimization, we converted the synthetic score of all valid molecules into RS.

Reward truncate strategies

Reinforcement learning can be viewed as a post-processing procedure for generative 
models; to be specific, the reinforcement score forces the model to change toward 
our desired direction. However, the procedure is delicate and difficult to control, and 
a phenomenon called model collapse immensely  affects the quality of generation. 
This often results in too many duplicate tokens of generated molecules and decreased 
performance. We view this phenomenon as caused by the stable revenue of positive 
examples. The model can repeat such series and get a higher reward easily. Moreover, 
this problem is indirect and obscure.

Some details of our task deserve further discussion: 

(1) We noticed that there are still parts of molecules “born” with ideal synthetic acces-
sibility, from the optimal perspective, these molecules could waive further optimi-
zation.

(2) We also noticed that our appointed reinforcement score may be too smooth for dif-
ferentiating HS molecules or ES molecules. As we former mentioned, SYBA regards 
0 to be the boundary of two categories. The RS projected all SYBA predictions to 
other continuous spaces and after that all attributed RS is positive. But the modi-
fied continuous space becomes not obvious for differentiating the two categories. 
For example, molecules with -10 as a predicted SA score, and after the exponential 
projection, its RS will be e−

1
15 + e ; and a molecule with 10 as the former, its RS will 

be e
1
15 + e . We can see that the difference seems too slight after the projection and 

we expect to provide the model a more clear instruction when it conducts the task 
of positive optimization.

To solve all mentioned problems, a truncation of the reinforcement score is utilized 
to ensure better training results. We try to utilize the ideology of activating func-
tions such as Relu, which exerts a non-linear transformation of the given expression. 
Here we first set an “optimal threshold” to exclude these molecules while conduct-
ing action-pair sampling. Any ES molecules over this threshold will not contribute 
to the calculation of the next step. And in our experiment, this threshold is set to 150 
(before converting it to the reinforcement score). For other ES examples, only half of 
their reinforcement score contributes to the calculation of the next step. Actually, we 
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try to reasonably reduce the reward of these examples to some extent thus getting rid 
of being dominated by token combinations with better rewards too much. To evalu-
ate this, we did experiment with differences on adding these strategies or not, and the 
comparison is shown in Fig.  7. The result shows the issued strategies mitigated the 
phenomenon of ’model collapse’ and ensured the richness of generated molecules.

Fig. 7 Comparison between model implemented our strategies and not after training 10 epochs. The 
post-processing is conducted on the same model with only utilizing the defined rules or not as the 
difference. For each model, we sampled 10 molecules at a single optimization timestep and repeat 20 times 
for a single epoch, the total epoch is set to 10 in our experiment. The upper figure shows that with proper 
strategies, the navigation of chemical space is feasible in comparison with the collapse model without any 
constraint
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Halfway‑targeted drug‑like molecules exploration

In the next part, we utilized STONED-SELFIES - an algorithm using structural evolu-
tion to quickly explore the medium molecules; Following the metrics issued in their 
works, the joint similarity ensures the evolution of the midbody molecule has similar-
ities to their parents (for details, see the original paper [27]). And for our model, the 
light-weighted design empowers it to conduct quick exploration. Thus, we aim for 
using its character to search the enormous chemical space efficiently and find the ideal 
molecule candidate as the evolution endpoint. Hereby the two parts can be combined 
together for designated molecule evolution. And the detail of our experiments is listed 
below:

(1) Following the former parts to train the generative model with positive optimiza-
tion, then we conduct molecule selection to choose the best molecules with ideal LogP 
and QED score (calculated by Rdkit). (2) Assign the “best” candidates as the evolution 
endpoint and drug candidates as the starting point to conduct structure evolution using 
STONED-SELFIES, see Fig. 9.

Thus, the pinpoint of our method lies in finding the ideal evolution target and the pur-
pose is to do the structural evolution from one to another. During this process, a bunch 
of midbodies will be explored in the near chemical space. With proper selection strate-
gies, we could derive molecules with both ideal properties and similarities to their par-
ents. And we called this method - Halfway-targeted drug-like molecule exploration.

Results
Speed and performance

In this study, we re-trained a backbone model without inheriting the same parameter or 
structure of former excellent works [7, 32, 45] and adopted the SELFIES presentation. 
Our model demonstrates high performance throughout the whole training process with 
approximately 4.9 million parameters,which is only one-tenth of the backbone models 
of others [45]. Among our concepts, the sampling capacity matters[46], for the reason of 
efficiently searching for a proper evolution target, thus we take the model structure into 
consideration. The reduction of structures lets our model works rapidly without losing 
performance (BM and NM), even after the reinforcement optimization. While the model 
is working on a laptop with a graphic card (GTX 1060 with 6GB video memory), it still 
reached a high speed of generating approximately 1k novel molecules in less than a sin-
gle second.

And we conduct several experiments to comprehensively validate the potency of our 
proposed pipeline. The first is comparing the adoption of different molecule presentations 
(SMILES and SELFIES). During the training or sampling stage, the backbone model is 
trained on an NVIDIA 3090 GPU with 24 Gigabyte memory; it takes only 90 seconds to fin-
ish a single training epoch. After 10 training epochs, 100,000 molecules are randomly sam-
pled to evaluate the differences in molecule presentations. The result is visualized in Fig. 8. 
Model embedding with SELFIES presentation can generate molecules with 100% validity, 
99.87% uniqueness, and 99.23% for novelty; for SMILES, these values are 91.15%, 99.67%, 
and 98.28%, respectively. This comparison indicates that under our circumstance, adopt-
ing SELFIES presentation may be preferred for molecule generation tasks (this is because 
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validity matters more than other metrics). From another perspective, a longer training time 
or increasing model parameters will make model embedding with SMILES work better; it 
could also be concluded that adopting SELFIES in our model makes the training procedure 
more efficient.

After training toward different expectations, we sampled 10,000 molecules from each 
model as usual and calculated some standard metrics. The result is shown in Table 1. The 
definitions of metrics are as follows:

where Sm means a batch of sampled molecules and Vm represents chemical valid mol-
ecules for a single batch in Sm.

(6)Uniqueness =
|set(Vm)|

|Vm|

(7)Validity =
|Vm|

Sm

Fig. 8 Valid molecules among all samplers. For model adopting SMILES, the valid number is 9.3k, comparing 
nearly 100% validity for SELFIES

Table 1 Performance of Magicmol in terms of different metrics

Synthesizability: generated molecules judged as ES by SYBA; Druglikeness: average QED score of generated molecules done 
by Rdkit; Match Rules: the percentage of sampled molecules matching Lipinski’s Rule of Five

Models Validity 
(%)

Uniqueness 
(%)

Novelty 
(%)

Training 
set

Synthesizability 
(%)

Druglikeness 
(%)

Model 
parameters

Match 
rules 
(%)

Magicmol 
(BM)

100.00 99.87 99.23 0.89 M 0.655 0.516 4.9 M 66.86

Magicmol 
(NM)

96.22 98.63 100.00 0.027 0.127 17.82

Magicmol 
(PM)

100.00 43.30 99.47 0.885 0.714 91.48

Magicmol 
(SMILES)

91.15 99.67 98.28 0.715 0.579 73.65
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According to the results shown in Table 1, NM holds a similar capacity for gener-
ating molecules with high diversity and validity as BM, but also has terrible drug-
likeness. Here we notice a significant drop in the uniqueness score of PM: from 
99.87% to 43.30%. And the possible explanation are listed below. First, the positive 
optimization procedure can be viewed as propelling the model to navigate from the 
original chemical space to our desired druggable chemical space based on SYBA 
feedback. Thus, ideal tokens and combinations are granted higher reinforcement 
scores, which explains the sequence repetition during the generation process. Sec-
ond, this phenomenon could also be interpreted as PM catching drug-like features 
but the druggable chemical space being relatively narrow compared to the original 
chemical space.

To verify our these speculations, we attempt to multi-dimensionally evaluate the 
quality of PM-sampled molecules beyond the single number. To accomplish this, we 
use a filter function based on Lipinski’s Rule of Five [47] to extract more druggable 
molecules from all samplers. The percentage of molecules that pass the filter are 
identified together with the average QED, SA derived from SYBA in Table 1. The fig-
ure that matches the rules rises from 66.86% to 91.48%. compared with that of BM. 
Although PM faces a decrease in uniqueness, all other druglike properties are still 
ideal and evidently better than those of BM, which proves our hypothesis. Besides, 
PM is not the terminal of our pipeline. Since the concentrated distribution of drug-
like molecules may facilitate the subsequent workflow to some extent, we think that 
such a reduction is still acceptable.

Fig. 9 An evolution process between the formerly mentioned molecules. The molecules with better 
physicochemical properties are circled by the green dotted ellipse
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Molecule evolution

An example of the molecule evolution process is shown in Fig. 9. The evolution starts 
with a drug candidate, i.e., Ribavirin (LogP −3.01, QED 0.44), and ends with the gener-
ated molecule Ma97 [SMILES: COC1=CC=C(Br)C=C1C(=O)NC2=CC=C(F)C=C2, 
LogP 3.84, QED 0.93]. During this process, STONED-SELFIES applies reasonable string 
manipulation. The modification of molecule presentation can be seen as a process of 
exploring the near chemical space around the specified molecule. Our molecule with 
ideal drug-like properties will lead the direction of modification (the joint similarity acts 
as a structural constraint). Although the evolution process indeed has some random-
ness, its advantage is distinct also. First, it is time-consuming and needs fewer compu-
tational resources, and thus it can be replicated round by round to extensively explore 
the surrounding chemical space. Second, the evolution is structurally dense because at 
each timestep we only permit up to two tokens to do alternation; therefore, the evolution 
is explainable and changes between different fragments can be detected and analyzed. 
Third, the whole process is done step-by-step. We first explicitly optimize the SA of gen-
erated molecules and then optimize other chemical properties; we implicitly reach the 
goal of multi-object optimization, which is also a dilemma in this field.

Discussions
In this paper, we proposed Magicmol, which focuses on utilizing the advantages of two 
categories of methods: the exploration capacity of DGMs, and the evolution abilities of 
GAs. We first designed an RNN-based backbone model and conducted optimization, 
thus empowering molecules generation with ideal chemical structures. Then we com-
bined these structures with STONED-SELFIES to perform molecule evolution and 
explore near chemical space to optimize certain molecules. In the next section, we will 
discuss further opinions and potential applications of Magicmol.

De novo drug design

To be honest, Magicmol is not born for de novo devise drug-like molecules. A potent 
drug candidate is a combination of several aspects such as logP, QED, Absorption, Dis-
tribution, Metabolism, Excretion, and Toxicity (ADMET). We expect ideal drug-like 
molecules to have all these characteristics. During the reinforcement learning optimiza-
tion, a single property being varied may lead to the changing of another property [7]; the 
solution is modifying these properties one by one, which works well but also takes time 
and increases computational complexity.

Thus, we tried to focus on altering only one significant property - synthetic accessibil-
ity, and we conducted a series of experiments to assess molecule properties after our 
proposed optimization. There is no absolute evidence proving that the structural com-
plexity is binding with drug-like factors. Still, we witnessed a massive difference between 
these generated molecules after changing their synthetic accessibility (see Fig. 10).

Even though these properties are not perfectly positively correlated with synthetic 
accessibility, we still observed that, accompanying structural optimization, the drug-
likeness of generated molecules increases, especially for the averaged QED score, which 
increases from 0.51 (BM) to 0.69 (PM). This result matches our expectation: this increase 
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in some metrics is achieved by getting feedback and optimizing, which results in modi-
fied network parameters. Thus, the model’s capability to generate ideal molecules is 
enhanced. Furthermore, we think that Magicmol mitigated the difficulty of retro-syn-
thesize route identification to some extent with the less complex generative molecules.

Synthetic accessibility variation

We tried to reverse the rule of policy gradient so that our model can be used to vary the 
synthetic accessibility in a different direction. This can be utilized for either improving 
the synthetic accessibility of molecules or simply generating lots of hard-to-synthesize 
compounds without introducing any other superparameters; moreover, we eliminate 
the need for domain knowledge. To the best of our knowledge, other models have not 
emerged that try to vary the property of molecules directly from the generative model to 
the opposite direction.

Fig. 10 QED and logP scores of generated molecules after reinforcement learning optimization. We derived 
10 batches (10,240) of molecules from our generative model. a NM, b BM, and c PM. QED and logP scores 
are acquired by Rdkit. There is a massive difference in some drug-like properties between these generated 
molecules, even though we just modified the synthetic accessibility

Fig. 11 Distribution of training molecules according to their predicted synthetic score; there are 
approximately 13 times more positive samples than negative samples
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In the real world, intuitively, most compounds are designed to be easier to synthesize. 
We tried to derive the synthetic score of the original training set, and the result is shown 
in Fig. 11. Only approximately 7% of the compounds are judged to be difficult to syn-
thesize. In some particular tasks, e.g., the training of SYBA, a model should balance the 
number of negative samples and positive samples while preparing the training set. Mag-
icmol may serve as a high-velocity negative sample generation tool, and thus could be a 
solution. Figure 12 lists some generated molecules after reinforcement optimization in 
different directions.

Conclusions
In this paper, we proposed Magicmol, which focused on utilizing the advantages of two 
categories of methods: the exploring capacity of DGMs and the evolution abilities of 
GAs. The idea initially seemed contradictory, but actually they can be reasonably com-
bined. We empowered our model to generate molecules with ideal chemical structures 
while utilizing structural constraints that facilitate the following evolution steps. The 
pipeline could conduct quick exploration of enormous chemical space. Moreover, Mag-
icmol solved the model collapse problem to some extent and provided potential solution 
for some problems among in silicon drug design field such as negative sampling.

Abbreviations
BM  Backbone model
PM  Positive optimization model
NM  Negative optimization model
DGM  Deep generative model
GA  Genetic algorithm
SS  Reinforcement score
RNN  Recurrent neural network
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GAN  Generative adversarial network
SYBA  Synthetic Bayesian classifier
GRU   Gated recurrent unit

Fig. 12 Generated molecules of different synthetic accessibility. The top line: the top five molecules 
generated with the highest synthetic accessibility. The bottom line: the top five molecules generated with 
the lowest synthetic accessibility
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