
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Eschrich et al. BMC Bioinformatics (2023) 24:164
https://doi.org/10.1186/s12859-023-05288-y

BMC Bioinformatics

Fast all versus all genotype comparison
using DNA/RNA sequencing data: method
and workflow
Steven A. Eschrich1, Xiaoqing Yu1 and Jamie K. Teer1*

Abstract

Background: Massively parallel sequencing includes many liquid handling steps
which introduce the possibility of sample swaps, mixing, and duplication. The unique
profile of inherited variants in human genomes allows for comparison of sample iden-
tity using sequence data. A comparison of all samples vs. each other (all vs. all) provides
both identification of mismatched samples and the possibility of resolving swapped
samples. However, all vs. all comparison complexity grows as the square of the number
of samples, so efficiency becomes essential.

Results: We have developed a tool for fast all vs. all genotype comparison using
low level bitwise operations built into the Perl programming language. Importantly,
we have also developed a complete workflow allowing users to start with either raw
FASTQ sequence files, aligned BAM files, or genotype VCF files and automatically
generate comparison metrics and summary plots. The tool is freely available at https://
github. com/ teerjk/ TimeA ttack GenCo mp/.

Conclusions: A fast and easy to use method for genotype comparison as described
here is an important tool to ensure high quality and robust results in sequencing
studies.

Keywords: Massively parallel sequencing, Quality control, Genotype comparison

Background
The continuing decrease in massively parallel or next-generation sequencing (NGS)
costs has enabled large projects consisting of hundreds or thousands of samples.
Although sample and sequencing library preparation protocols have improved and are
often automated, there are many sample manipulations and considerable human input
required. This leads to the chance of sample integrity issues, including sample swapping,
mixing, duplication, and sequencer lane assignment errors [1]. Human genotype com-
parison at common inherited variant positions can determine the degree of genetic dif-
ference between samples. Samples from the same individual should have a variation rate
near zero, whereas samples from unrelated individuals will have higher variation rates.

*Correspondence:
Jamie.Teer@moffitt.org

1 Department of Biostatistics
and Bioinformatics, H. Lee Moffitt
Cancer Center and Research
Institute, Tampa, FL, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05288-y&domain=pdf
http://orcid.org/0000-0003-4513-0282
https://github.com/teerjk/TimeAttackGenComp/
https://github.com/teerjk/TimeAttackGenComp/

Page 2 of 9Eschrich et al. BMC Bioinformatics (2023) 24:164

Confirmation of sample identity has become an important quality control step in NGS
experiments.

Sample quality control via genotyping comparison is most informative when relation-
ships between samples exist: tumor-normal matched pairs for somatic mutation detec-
tion, family studies to identify rare variants, and multi-omics studies with DNA and
RNA sequencing from the same patient. Matching pairs can be confirmed using variant
comparison to ensure they come from the same (or a related) individual. Indeed, pair-
wise comparison tools like Genome Analysis Toolkit (GATK) GenotypeConcordance [2]
and IDcheck [3] allow for such an analysis. However, even when no relationships are
known to exist, we have uncovered cases in which samples show genotype concord-
ance even though they should not. Comparing each sample in a sequencing project to
all other samples can reveal unexpected genetic similarity due to sample handling issues,
hidden relatedness, patient re-enrollment, etc. In addition, sequencing experiments can
include samples from the same individual where some genetic differences are expected,
such as in matched tumor/normal tissue comparisons. An all vs. all comparison provides
a more complete range of genotype discordances, so a matched pair with non-zero dis-
cordance is easily distinguished from the greater discordance of samples from different
individuals.

Confirming sample relatedness is an important consideration for family studies, and
several tools exist that leverage common pedigree file formats. These tools allow for all
vs. all comparisons to ensure relatedness is as expected (HYSYS [4], NGSCheckMate [5],
Peddy [6]). However, these tools may require specific input formats describing related-
ness structures, and it is not always clear how well they will scale to larger cohorts. Here
we assume no relatedness structure and use after-the-fact inference to determine associ-
ations/sample swaps. We have developed a Perl tool to rapidly compare genotypes from
thousands of samples in an all vs. all manner. The key optimization for rapid comparison
is the use of bitwise representation and operations. An end-to-end Workflow Descriptor
Language (WDL)/Cromwell workflow taking FASTQ, BAM, or VCF files as input was
developed for reproducibility and ease of use. The workflow, TimeAttackGenComp, is
publicly available at https:// github. com/ teerjk/ TimeA ttack GenCo mp under the 3-clause
Berkeley Software Distribution (BSD) license.

Results
Our goal is to measure genotype discordance between samples across all pairwise
sample combinations. We start by defining a region of positions to query as a BED
file. Although any positions can be defined, common human variant positions will be
the most informative. We used 1000 Genomes positions with population allele fre-
quency ≥ 15% in protein coding regions for this study as they are likely to be covered
in Whole Exome Sequencing and RNAseq experiments. Single nucleotide variant geno-
type information for each sample at each position in the region is stored in memory as
either the reported genotype or a missing value. Genotypes are internally encoded as
single upper-case characters as defined by the International Union of Pure and Applied
Chemistry (IUPAC), and missing or low-quality genotypes are encoded as the American
Standard Code for Information Interchange (ASCII) text NULL character (\0, decimal

https://github.com/teerjk/TimeAttackGenComp

Page 3 of 9Eschrich et al. BMC Bioinformatics (2023) 24:164

value of 0). All genotypes for a sample at all positions in the region are then stored as a
concatenated string, allowing for full precision in the region of interest.

To achieve fast performance the genotype comparison itself is performed using bitwise
string operations on the stored genotype strings as illustrated in Fig. 1. Perl performs bit-
wise operations on each byte of a string. By using single character ASCII representations
of our genotypes, we can compare genotypes at all desired positions more efficiently.
Three binary Boolean operations (AND, OR, XOR) are used to derive comparisons and
the Perl transliteration operator is used in scalar context to count bitwise byte compari-
son results of NULL. In our comparisons, we only count instances of the NULL value;
non-NULL results are ignored. Pairwise comparisons are performed once for each pos-
sible sample pair. In Step 1 (Position Matches), the total number of matching genotypes
is counted by performing an XOR operation on the genotype strings and counting the
resulting NULL. Positions at which both samples are missing (Missing Matches) are
counted by performing an OR operation and counting NULL characters that only result
from comparing two missing (\0) values (Step 2). We next calculate the total number of
queryable positions where neither sample has a missing (NULL) value (Step 3, Positions
Missing). Since genotypes are encoded as upper-case ASCII, all non-missing genotypes

Fig. 1 Overview of bitwise comparison algorithm. \0 indicates a value of zero, which in ASCII is the NULL
character. Steps 1–3 describe the bitwise operation used between the two genotype strings, and result
values of 0 (NULL character) are counted. A period (.) is used to represent a non-zero value, which is not
counted

Page 4 of 9Eschrich et al. BMC Bioinformatics (2023) 24:164

have bit 6 set ensuring an AND operation will return NULL only when at least one
genotype is missing (Step 3). The number of queryable positions is then calculated by
subtracting the Positions Missing count from the total genotype string length (Eq. 1).
Genotype matches also include positions where both samples have a NULL genotype
(both are missing data), so Missing Matches are subtracted from Position Matches to
give the true number of Genotype matches (Eq. 2). Discrepant positions are counted by
subtracting the genotype matching count from the total number of queryable positions
(Eq. 3). The discordance rate is finally calculated by dividing the discrepancy count by
total queryable positions (Eq. 4).

Our initial approach to genotype comparison was a simple two-way string compari-
son (performed in both directions; sample A vs. B and sample B vs. A). However, this
approach did not scale well with increasing sample sizes. We compared two-way string
comparisons using array copying (pass-by-value) (Test 1), array referencing (pass-by-
reference) (Test 2), one-way string comparison (sample A vs. sample B) (Test 3), one-
way numeric index comparison (genotypes encoded as integers, Test 4), and finally our
one-way bitwise approach (Test F). Testing was performed on a high performance com-
pute cluster node (2 × Intel Xeon E5-2470 2.3 GHz, 165 GB RAM, perl 5.10). Results
were compared after each test to ensure they were the same. Sample loading time, com-
parison time, and memory use were measured with increasing sample numbers. Sample
loading time is proportional to the total number of samples (N), with some methods
showing a slight increase above a certain N (Fig. 2a). While the original string compari-
son (Test 1) showed reasonable comparison time with sample counts up to around 100,
comparison time increases as a function of N2 (Fig. 2b). Unsurprisingly, a one-way com-
parison (Test 3) reduced time to almost half. Numeric index comparison reduced time
an additional amount compared to string comparison. However, bitwise comparison of
genotype strings reduced comparison time dramatically, and allowed an all vs. all com-
parison of 1600 samples in 143 s (Test F) compared to 26 h for the two-way string com-
parison (Test 1). When it became impractical to apply our earlier approaches to a large
dataset of 8037 samples, the bitwise method (Test F) took 58.2 min. Memory usage was
also decreased in the bitwise approach: comparison with 8037 samples used just over
half the memory of the string-comparison methods with only 1600 samples (Fig. 2c).
Performance time (Fig. 2d) was modelled based on linear regression of square root time
in Fig. 1b. Finally, we ran the final bitwise comparison algorithm (Test F) on 8037 sam-
ples using a 2019 MacBook Pro (Intel Quad-Core i5 2.4 GHz, 16 GB RAM, perl 5.30).

(1)Queryable positions =
(

Length− PositionsMissing
)

(2)Genotypematches =
(

PositionMatches−MissingMatches
)

(3)Discrepancy count = Queryable positions− Genotypematches

(4)Discordance rate =
Discrepancy count

Queryable positions

Page 5 of 9Eschrich et al. BMC Bioinformatics (2023) 24:164

Performance was slightly better than that observed on the HPC: load time = 20.5 min,
comparison time = 45.3 min, memory usage = 2.6 GB.

Implementation
Quality control is an essential part of DNA/RNA sequencing analyses, but tool-specific
input format requirements may result in users ignoring this step. We have therefore
packaged our tool in an end-to-end workflow designed to start with either raw FASTQ,
aligned BAM files, or genotype VCF files and produce a summary output matrix and
heatmap of pairwise genotype discordance values. This workflow is written in WDL
(https:// openw dl. org) and was tested with the Cromwell execution engine (https://
github. com/ broad insti tute/ cromw ell). Sequence alignment of raw FASTQ files is per-
formed using the SNAP rapid aligner (https:// arxiv. org/ abs/ 1111. 5572), and genotype
calling utilizes samtools bcftools [7]. A VCF-converter prepares the genotypes for com-
parison, and the comparison is performed with the Perl tool described above. Tasks are

Fig. 2 Performance of different approaches to genotype comparison. Test description: (1) two-way string
comparison using array copying (pass-by-value), (2) array referencing (pass-by-reference), (3) one-way string
comparison (sample A vs. sample B), (4) one-way numeric index comparison with genotypes encoded
as integers, (F) our one-way bitwise approach. A Time to load versus sample count. B Time to perform all
comparisons versus sample count. Note the y-axis is plotted as a square-root transform. C RAM used during
comparison versus sample count. D Linear models of time per sample of the different approaches

https://openwdl.org
https://github.com/broadinstitute/cromwell
https://github.com/broadinstitute/cromwell
https://arxiv.org/abs/1111.5572

Page 6 of 9Eschrich et al. BMC Bioinformatics (2023) 24:164

also included to extract and plot allele frequency information for the genotype calls.
Plotting is performed in R (https:// www.r- proje ct. org/).

We have used this workflow extensively to perform quality control on a variety of
sequencing projects. This includes Whole Exome Sequencing (WES) projects with mul-
tiple samples for each individual, as well as projects with WES and RNAseq from each
individual. We have detected instances where samples that are reported as being from
the same person do not match genetically, and also instances where samples reported
as not being from the same person do match genetically. The all vs. all analysis provides
the ability to identify where similarities and differences exist. In some cases it was clear
that a sample swap occurred, and further investigation justified correction of the sample
swap. In other cases, no apparent swap occurred, but problematic samples were iden-
tified for resequencing. Figure 3a and b (zoomed view) illustrates the distribution of
discordance values across 8037 samples. Discordances between samples from different
individuals range from 40 to 55%, while samples from the same individual (the minority

Fig. 3 Comparison output examples. A Distribution of discordance rates between samples. B Zoomed y-axis
of sample discordance distribution, illustrating low discordance of samples from the same individuals. The
number of low discordance comparisons is low as most comparisons are between samples from different
individuals in this example. C Example heatmap highlighting lower discordance (dark red) between samples
from the same individuals. In this example, every two samples belong to the same individual, and the
immediate off-axis dark-red indicates low discordance between these matching samples. D Example allele
frequency plot of a single sample, colored by chromosome

https://www.r-project.org/

Page 7 of 9Eschrich et al. BMC Bioinformatics (2023) 24:164

of comparisons in this example) range from 0 to 3%. However, we note that discordance
rates between samples from the same individual can vary across experiments. The work-
flow also plots a heatmap of discordances, allowing easy visualization of inappropriate
matching when samples are grouped by individual in the input file (Fig. 3c). Finally, allele
frequency plots at the region of interest positions are plotted (Fig. 3d) which may help
identify sample contamination, copy number variations, or other chromosomal aberra-
tions. Although the actual genotype comparison can be run on a modern desktop or
laptop computer, sequence alignment and genotype calling have higher memory and
compute requirements, and we recommend running the complete pipeline on an HPC.
The main limitation in the number of samples able to be compared on either HPC or
local computers is based on the available free RAM (Fig. 2c).

Conclusions
Genotype comparison across samples at inherited polymorphic positions has become
an important part of NGS quality control. This has been used to compare samples that
should come from the same individual. We find it useful as a general tool for any experi-
ment to confirm samples were not duplicated or otherwise mis-handled. All vs. all com-
parison is very powerful as this approach allows identification of samples that should
match (but don’t) and samples that should not match (but do). We also find this approach
helpful in resolving sample swaps by allowing identification of the unknown samples
that match the mismatching pair. However, all vs. all is an O(n2) problem, and scalability
is an issue for larger projects. We increased the performance of genotype comparisons
using low-level bitwise operations to speed up the bottle neck operation of genotype
comparison. By leveraging Perl’s string bitwise operations, we were able to achieve dra-
matic speedup of ~ 650× as compared to string comparisons. Further improvements are
likely possible. Future potential optimizations could include multi-threaded paralleliza-
tion, less exact approaches, and more sophisticated approaches leveraged for sequence
alignment, including clustering [8] and minimizer [9] techniques. Memory usage could
be further improved with bit-packing, bit-vectors, and the use of lower-level languages.
Interestingly, although much effort can be devoted to decreasing algorithmic complexity,
we have found value here in optimization within a scripting language to greatly reduce
the constant in this n2 approach. Of course, despite these efficiencies, novel algorithms
will eventually be needed to reduce the complexity of this problem as scales continue to
increase. Even given this eventuality, we find that leveraging low level operations availa-
ble in scripting languages offers dramatic performance improvements allowing for thor-
ough sample comparisons in large projects.

Availability and requirements
Project name: TimeAttackGenComp.

Project home page: https:// github. com/ teerjk/ TimeA ttack GenCo mp
Operating system(s): Linux (may run on other platforms via containerization).
Programming language: Perl, WDL.
Other requirements: A WDL execution engine (i.e., Cromwell) and container applica-

tion (i.e., Docker) are required to run the workflow. A Perl interpreter is required to run
the genotype comparison tool.

https://github.com/teerjk/TimeAttackGenComp

Page 8 of 9Eschrich et al. BMC Bioinformatics (2023) 24:164

License: 3-clause BSD.
Any restrictions to use by non-academics: none beyond the BSD license requirements.

Abbreviations
NGS
 Next-generation sequencing (massively parallel sequencing)
DNA
 Deoxyribonucleic acid
RNA
 Ribonucleic acid
GATK
 Genome analysis toolkit
WDL
 Workflow descriptor language
BSD
 Berkeley software distribution
IUPAC
 International union of pure and applied chemistry
ASCII
 American standard code for information interchange
WES
 Whole exome sequencing
N
 Number of samples

Acknowledgements
Not applicable.

Author contributions
SAE, XY, and JKT developed and tested the software and contributed to writing the manuscript. All authors read and
approved the final manuscript.

Funding
Our study also received assistance from the Biostatistics and Bioinformatics Core Facility at the H. Lee Moffitt Cancer Center
and Research Institute, an NCI designated Comprehensive Cancer Center, supported under NIH Grant P30-CA76292. The
funding agency did not have any role in the design of the study nor in the collection, analysis, and interpretation of data nor
in writing the manuscript.

Availability of data and materials
The software described is available without cost here: https:// github. com/ teerjk/ TimeA ttack GenCo mp/

Declarations

Ethics approval and consent to participate
Patients were originally consented to the Total Cancer Care Protocol, the Moffitt Cancer Center’s institutional biorepository
(MCC#14690; Advarra IRB Pro00014441). Methods development work for this study was carried out under a non-human
subjects research determination (MCC#18426).

Consent for publication
Consent under MCC#14690 includes provisions for research on collected samples and publication of findings.

Competing interests
The authors declare that they have no competing interests.

Received: 30 August 2022 Accepted: 12 April 2023

References
 1. Goldfeder RL, Parker SC, Ajay SS, Ozel Abaan H, Margulies EH. A bioinformatics approach for determining sample identity

from different lanes of high-throughput sequencing data. PLoS ONE. 2011;6(8):e23683.
 2. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al.

The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome
Res. 2010;20(9):1297–303.

 3. Huang J, Chen J, Lathrop M, Liang L. A tool for RNA sequencing sample identity check. Bioinformatics.
2013;29(11):1463–4.

 4. Schroder J, Corbin V, Papenfuss AT. HYSYS: have you swapped your samples? Bioinformatics. 2017;33(4):596–8.

https://github.com/teerjk/TimeAttackGenComp/

Page 9 of 9Eschrich et al. BMC Bioinformatics (2023) 24:164

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 5. Lee S, Lee S, Ouellette S, Park WY, Lee EA, Park PJ. NGSCheckMate: software for validating sample identity in next-genera-
tion sequencing studies within and across data types. Nucleic Acids Res. 2017;45(11):e103.

 6. Pedersen BS, Quinlan AR. Who’s who? Detecting and resolving sample anomalies in human DNA sequencing studies
with Peddy. Am J Hum Genet. 2017;100(3):406–13.

 7. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical param-
eter estimation from sequencing data. Bioinformatics. 2011;27(21):2987–93.

 8. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R,
et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8.

 9. Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA. Reducing storage requirements for biological sequence comparison.
Bioinformatics. 2004;20(18):3363–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Fast all versus all genotype comparison using DNARNA sequencing data: method and workflow
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Results
	Implementation
	Conclusions
	Availability and requirements
	Acknowledgements
	References

