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Abstract 

Background: Massively parallel sequencing includes many liquid handling steps 
which introduce the possibility of sample swaps, mixing, and duplication. The unique 
profile of inherited variants in human genomes allows for comparison of sample iden-
tity using sequence data. A comparison of all samples vs. each other (all vs. all) provides 
both identification of mismatched samples and the possibility of resolving swapped 
samples. However, all vs. all comparison complexity grows as the square of the number 
of samples, so efficiency becomes essential.

Results: We have developed a tool for fast all vs. all genotype comparison using 
low level bitwise operations built into the Perl programming language. Importantly, 
we have also developed a complete workflow allowing users to start with either raw 
FASTQ sequence files, aligned BAM files, or genotype VCF files and automatically 
generate comparison metrics and summary plots. The tool is freely available at https:// 
github. com/ teerjk/ TimeA ttack GenCo mp/.

Conclusions: A fast and easy to use method for genotype comparison as described 
here is an important tool to ensure high quality and robust results in sequencing 
studies.
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Background
The continuing decrease in massively parallel or next-generation sequencing (NGS) 
costs has enabled large projects consisting of hundreds or thousands of samples. 
Although sample and sequencing library preparation protocols have improved and are 
often automated, there are many sample manipulations and considerable human input 
required. This leads to the chance of sample integrity issues, including sample swapping, 
mixing, duplication, and sequencer lane assignment errors [1]. Human genotype com-
parison at common inherited variant positions can determine the degree of genetic dif-
ference between samples. Samples from the same individual should have a variation rate 
near zero, whereas samples from unrelated individuals will have higher variation rates. 
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Confirmation of sample identity has become an important quality control step in NGS 
experiments.

Sample quality control via genotyping comparison is most informative when relation-
ships between samples exist: tumor-normal matched pairs for somatic mutation detec-
tion, family studies to identify rare variants, and multi-omics studies with DNA and 
RNA sequencing from the same patient. Matching pairs can be confirmed using variant 
comparison to ensure they come from the same (or a related) individual. Indeed, pair-
wise comparison tools like Genome Analysis Toolkit (GATK) GenotypeConcordance [2] 
and IDcheck [3] allow for such an analysis. However, even when no relationships are 
known to exist, we have uncovered cases in which samples show genotype concord-
ance even though they should not. Comparing each sample in a sequencing project to 
all other samples can reveal unexpected genetic similarity due to sample handling issues, 
hidden relatedness, patient re-enrollment, etc. In addition, sequencing experiments can 
include samples from the same individual where some genetic differences are expected, 
such as in matched tumor/normal tissue comparisons. An all vs. all comparison provides 
a more complete range of genotype discordances, so a matched pair with non-zero dis-
cordance is easily distinguished from the greater discordance of samples from different 
individuals.

Confirming sample relatedness is an important consideration for family studies, and 
several tools exist that leverage common pedigree file formats. These tools allow for all 
vs. all comparisons to ensure relatedness is as expected (HYSYS [4], NGSCheckMate [5], 
Peddy [6]). However, these tools may require specific input formats describing related-
ness structures, and it is not always clear how well they will scale to larger cohorts. Here 
we assume no relatedness structure and use after-the-fact inference to determine associ-
ations/sample swaps. We have developed a Perl tool to rapidly compare genotypes from 
thousands of samples in an all vs. all manner. The key optimization for rapid comparison 
is the use of bitwise representation and operations. An end-to-end Workflow Descriptor 
Language (WDL)/Cromwell workflow taking FASTQ, BAM, or VCF files as input was 
developed for reproducibility and ease of use. The workflow, TimeAttackGenComp, is 
publicly available at https:// github. com/ teerjk/ TimeA ttack GenCo mp under the 3-clause 
Berkeley Software Distribution (BSD) license.

Results
Our goal is to measure genotype discordance between samples across all pairwise 
sample combinations. We start by defining a region of positions to query as a BED 
file. Although any positions can be defined, common human variant positions will be 
the most informative. We used 1000 Genomes positions with population allele fre-
quency ≥ 15% in protein coding regions for this study as they are likely to be covered 
in Whole Exome Sequencing and RNAseq experiments. Single nucleotide variant geno-
type information for each sample at each position in the region is stored in memory as 
either the reported genotype or a missing value. Genotypes are internally encoded as 
single upper-case characters as defined by the International Union of Pure and Applied 
Chemistry (IUPAC), and missing or low-quality genotypes are encoded as the American 
Standard Code for Information Interchange (ASCII) text NULL character (\0, decimal 
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value of 0). All genotypes for a sample at all positions in the region are then stored as a 
concatenated string, allowing for full precision in the region of interest.

To achieve fast performance the genotype comparison itself is performed using bitwise 
string operations on the stored genotype strings as illustrated in Fig. 1. Perl performs bit-
wise operations on each byte of a string. By using single character ASCII representations 
of our genotypes, we can compare genotypes at all desired positions more efficiently. 
Three binary Boolean operations (AND, OR, XOR) are used to derive comparisons and 
the Perl transliteration operator is used in scalar context to count bitwise byte compari-
son results of NULL. In our comparisons, we only count instances of the NULL value; 
non-NULL results are ignored. Pairwise comparisons are performed once for each pos-
sible sample pair. In Step 1 (Position Matches), the total number of matching genotypes 
is counted by performing an XOR operation on the genotype strings and counting the 
resulting NULL. Positions at which both samples are missing (Missing Matches) are 
counted by performing an OR operation and counting NULL characters that only result 
from comparing two missing (\0) values (Step 2). We next calculate the total number of 
queryable positions where neither sample has a missing (NULL) value (Step 3, Positions 
Missing). Since genotypes are encoded as upper-case ASCII, all non-missing genotypes 

Fig. 1 Overview of bitwise comparison algorithm. \0 indicates a value of zero, which in ASCII is the NULL 
character. Steps 1–3 describe the bitwise operation used between the two genotype strings, and result 
values of 0 (NULL character) are counted. A period (.) is used to represent a non-zero value, which is not 
counted
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have bit 6 set ensuring an AND operation will return NULL only when at least one 
genotype is missing (Step 3). The number of queryable positions is then calculated by 
subtracting the Positions Missing count from the total genotype string length (Eq.  1). 
Genotype matches also include positions where both samples have a NULL genotype 
(both are missing data), so Missing Matches are subtracted from Position Matches to 
give the true number of Genotype matches (Eq. 2). Discrepant positions are counted by 
subtracting the genotype matching count from the total number of queryable positions 
(Eq. 3). The discordance rate is finally calculated by dividing the discrepancy count by 
total queryable positions (Eq. 4).

Our initial approach to genotype comparison was a simple two-way string compari-
son (performed in both directions; sample A vs. B and sample B vs. A). However, this 
approach did not scale well with increasing sample sizes. We compared two-way string 
comparisons using array copying (pass-by-value) (Test 1), array referencing (pass-by-
reference) (Test 2), one-way string comparison (sample A vs. sample B) (Test 3), one-
way numeric index comparison (genotypes encoded as integers, Test 4), and finally our 
one-way bitwise approach (Test F). Testing was performed on a high performance com-
pute cluster node (2 × Intel Xeon E5-2470 2.3  GHz, 165  GB RAM, perl 5.10). Results 
were compared after each test to ensure they were the same. Sample loading time, com-
parison time, and memory use were measured with increasing sample numbers. Sample 
loading time is proportional to the total number of samples (N), with some methods 
showing a slight increase above a certain N (Fig. 2a). While the original string compari-
son (Test 1) showed reasonable comparison time with sample counts up to around 100, 
comparison time increases as a function of  N2 (Fig. 2b). Unsurprisingly, a one-way com-
parison (Test 3) reduced time to almost half. Numeric index comparison reduced time 
an additional amount compared to string comparison. However, bitwise comparison of 
genotype strings reduced comparison time dramatically, and allowed an all vs. all com-
parison of 1600 samples in 143 s (Test F) compared to 26 h for the two-way string com-
parison (Test 1). When it became impractical to apply our earlier approaches to a large 
dataset of 8037 samples, the bitwise method (Test F) took 58.2 min. Memory usage was 
also decreased in the bitwise approach: comparison with 8037 samples used just over 
half the memory of the string-comparison methods with only 1600 samples (Fig.  2c). 
Performance time (Fig. 2d) was modelled based on linear regression of square root time 
in Fig. 1b. Finally, we ran the final bitwise comparison algorithm (Test F) on 8037 sam-
ples using a 2019 MacBook Pro (Intel Quad-Core i5 2.4 GHz, 16 GB RAM, perl 5.30). 

(1)Queryable positions =
(

Length− PositionsMissing
)

(2)Genotypematches =
(

PositionMatches−MissingMatches
)

(3)Discrepancy count = Queryable positions− Genotypematches

(4)Discordance rate =
Discrepancy count

Queryable positions
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Performance was slightly better than that observed on the HPC: load time = 20.5 min, 
comparison time = 45.3 min, memory usage = 2.6 GB.

Implementation
Quality control is an essential part of DNA/RNA sequencing analyses, but tool-specific 
input format requirements may result in users ignoring this step. We have therefore 
packaged our tool in an end-to-end workflow designed to start with either raw FASTQ, 
aligned BAM files, or genotype VCF files and produce a summary output matrix and 
heatmap of pairwise genotype discordance values. This workflow is written in WDL 
(https:// openw dl. org) and was tested with the Cromwell execution engine (https:// 
github. com/ broad insti tute/ cromw ell). Sequence alignment of raw FASTQ files is per-
formed using the SNAP rapid aligner (https:// arxiv. org/ abs/ 1111. 5572), and genotype 
calling utilizes samtools bcftools [7]. A VCF-converter prepares the genotypes for com-
parison, and the comparison is performed with the Perl tool described above. Tasks are 

Fig. 2 Performance of different approaches to genotype comparison. Test description: (1) two-way string 
comparison using array copying (pass-by-value), (2) array referencing (pass-by-reference), (3) one-way string 
comparison (sample A vs. sample B), (4) one-way numeric index comparison with genotypes encoded 
as integers, (F) our one-way bitwise approach. A Time to load versus sample count. B Time to perform all 
comparisons versus sample count. Note the y-axis is plotted as a square-root transform. C RAM used during 
comparison versus sample count. D Linear models of time per sample of the different approaches

https://openwdl.org
https://github.com/broadinstitute/cromwell
https://github.com/broadinstitute/cromwell
https://arxiv.org/abs/1111.5572
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also included to extract and plot allele frequency information for the genotype calls. 
Plotting is performed in R (https:// www.r- proje ct. org/).

We have used this workflow extensively to perform quality control on a variety of 
sequencing projects. This includes Whole Exome Sequencing (WES) projects with mul-
tiple samples for each individual, as well as projects with WES and RNAseq from each 
individual. We have detected instances where samples that are reported as being from 
the same person do not match genetically, and also instances where samples reported 
as not being from the same person do match genetically. The all vs. all analysis provides 
the ability to identify where similarities and differences exist. In some cases it was clear 
that a sample swap occurred, and further investigation justified correction of the sample 
swap. In other cases, no apparent swap occurred, but problematic samples were iden-
tified for resequencing. Figure  3a and b (zoomed view) illustrates the distribution of 
discordance values across 8037 samples. Discordances between samples from different 
individuals range from 40 to 55%, while samples from the same individual (the minority 

Fig. 3 Comparison output examples. A Distribution of discordance rates between samples. B Zoomed y-axis 
of sample discordance distribution, illustrating low discordance of samples from the same individuals. The 
number of low discordance comparisons is low as most comparisons are between samples from different 
individuals in this example. C Example heatmap highlighting lower discordance (dark red) between samples 
from the same individuals. In this example, every two samples belong to the same individual, and the 
immediate off-axis dark-red indicates low discordance between these matching samples. D Example allele 
frequency plot of a single sample, colored by chromosome

https://www.r-project.org/
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of comparisons in this example) range from 0 to 3%. However, we note that discordance 
rates between samples from the same individual can vary across experiments. The work-
flow also plots a heatmap of discordances, allowing easy visualization of inappropriate 
matching when samples are grouped by individual in the input file (Fig. 3c). Finally, allele 
frequency plots at the region of interest positions are plotted (Fig. 3d) which may help 
identify sample contamination, copy number variations, or other chromosomal aberra-
tions. Although the actual genotype comparison can be run on a modern desktop or 
laptop computer, sequence alignment and genotype calling have higher memory and 
compute requirements, and we recommend running the complete pipeline on an HPC. 
The main limitation in the number of samples able to be compared on either HPC or 
local computers is based on the available free RAM (Fig. 2c).

Conclusions
Genotype comparison across samples at inherited polymorphic positions has become 
an important part of NGS quality control. This has been used to compare samples that 
should come from the same individual. We find it useful as a general tool for any experi-
ment to confirm samples were not duplicated or otherwise mis-handled. All vs. all com-
parison is very powerful as this approach allows identification of samples that should 
match (but don’t) and samples that should not match (but do). We also find this approach 
helpful in resolving sample swaps by allowing identification of the unknown samples 
that match the mismatching pair. However, all vs. all is an O(n2) problem, and scalability 
is an issue for larger projects. We increased the performance of genotype comparisons 
using low-level bitwise operations to speed up the bottle neck operation of genotype 
comparison. By leveraging Perl’s string bitwise operations, we were able to achieve dra-
matic speedup of ~ 650× as compared to string comparisons. Further improvements are 
likely possible. Future potential optimizations could include multi-threaded paralleliza-
tion, less exact approaches, and more sophisticated approaches leveraged for sequence 
alignment, including clustering [8] and minimizer [9] techniques. Memory usage could 
be further improved with bit-packing, bit-vectors, and the use of lower-level languages. 
Interestingly, although much effort can be devoted to decreasing algorithmic complexity, 
we have found value here in optimization within a scripting language to greatly reduce 
the constant in this  n2 approach. Of course, despite these efficiencies, novel algorithms 
will eventually be needed to reduce the complexity of this problem as scales continue to 
increase. Even given this eventuality, we find that leveraging low level operations availa-
ble in scripting languages offers dramatic performance improvements allowing for thor-
ough sample comparisons in large projects.

Availability and requirements
Project name: TimeAttackGenComp.

Project home page: https:// github. com/ teerjk/ TimeA ttack GenCo mp
Operating system(s): Linux (may run on other platforms via containerization).
Programming language: Perl, WDL.
Other requirements: A WDL execution engine (i.e., Cromwell) and container applica-

tion (i.e., Docker) are required to run the workflow. A Perl interpreter is required to run 
the genotype comparison tool.

https://github.com/teerjk/TimeAttackGenComp
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License: 3-clause BSD.
Any restrictions to use by non-academics: none beyond the BSD license requirements.

Abbreviations
NGS 
 Next-generation sequencing (massively parallel sequencing)
DNA 
 Deoxyribonucleic acid
RNA 
 Ribonucleic acid
GATK 
 Genome analysis toolkit
WDL 
 Workflow descriptor language
BSD 
 Berkeley software distribution
IUPAC 
 International union of pure and applied chemistry
ASCII 
 American standard code for information interchange
WES 
 Whole exome sequencing
N 
 Number of samples
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