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Abstract 

Background: Complex diseases such as neurodevelopmental disorders (NDDs) 
exhibit multiple etiologies. The multi-etiological nature of complex-diseases emerges 
from distinct but functionally similar group of genes. Different diseases sharing genes 
of such groups show related clinical outcomes that further restrict our understand-
ing of disease mechanisms, thus, limiting the applications of personalized medicine 
approaches to complex genetic disorders.

Results: Here, we present an interactive and user-friendly application, called DGH-GO. 
DGH-GO allows biologists to dissect the genetic heterogeneity of complex diseases by 
stratifying the putative disease-causing genes into clusters that may contribute to dis-
tinct disease outcome development. It can also be used to study the shared etiology 
of complex-diseases. DGH-GO creates a semantic similarity matrix for the input genes 
by using Gene Ontology (GO). The resultant matrix can be visualized in 2D plots using 
different dimension reduction methods (T-SNE, Principal component analysis, umap 
and Principal coordinate analysis). In the next step, clusters of functionally similar genes 
are identified from genes functional similarities assessed through GO. This is achieved 
by employing four different clustering methods (K-means, Hierarchical, Fuzzy and PAM). 
The user may change the clustering parameters and explore their effect on stratifica-
tion immediately. DGH-GO was applied to genes disrupted by rare genetic variants in 
Autism Spectrum Disorder (ASD) patients. The analysis confirmed the multi-etiological 
nature of ASD by identifying four clusters of genes that were enriched for distinct 
biological mechanisms and clinical outcome. In the second case study, the analysis of 
genes shared by different NDDs showed that genes causing multiple disorders tend to 
aggregate in similar clusters, indicating a possible shared etiology.

Conclusion: DGH-GO is a user-friendly application that allows biologists to study the 
multi-etiological nature of complex diseases by dissecting their genetic heterogeneity. 
In summary, functional similarities, dimension reduction and clustering methods, cou-
pled with interactive visualization and control over analysis allows biologists to explore 
and analyze their datasets without requiring expert knowledge on these methods. 
The source code of proposed application is available at https:// github. com/ Muh- Asif/ 
DGH- GO
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Background
Complex diseases manifest with a broad range of phenotype, mediated by hundreds 
of genetic variants that differ in their structure, mode of inheritance, and frequency of 
occurrence. Complex diseases such as Autism Spectrum Disorder (ASD) present a het-
erogeneous phenotype and genotype that hinders the establishment of phenotypic and 
genotypic associations, thus, restricting the applications of modern precision medicine 
and biomedicine approaches.

A large number of genetic variants, including Single Nucleotide Variants (SNVs) and 
Copy Number Variants (CNVs) contribute to genetic heterogeneity of several disease by 
altering different functionally important genes [1, 2]. For example, CNVs are associated 
with several complex diseases such as ASD, Schizophrenia, Epilepsy, and Intellectual 
Disability (ID) [3–8]. Previous studies have reported that CNVs contribute to pheno-
typic heterogeneity of complex diseases [9].

Genetic variant(s) disrupting a gene that follows a certain path across different bio-
logical levels may cause a spectrum of disease phenotypes. One example of such gene 
is syndromic genes. Multiple genes located at different genomic locations disrupted by 
different variants converge at certain biological level to generate a specific disease phe-
notype. The group of genes converging on certain biological level tends to have similar 
biological functional. In case of complex disease each group of genes may consequent 
into a distinct biological mechanisms and clinical outcome.

Due to recent advances in genomic technologies, it is possible to accurately detect 
genetic variants in a larger population. Consequently, consortium based studies have 
genotyped thousands of patients and have revealed a large amount of genetic variants 
[6–8, 10, 11], providing opportunities to infer their biological mechanism, functional 
similarities and disease relevance. Enhanced understanding of functional interactions of 
putative disease causing genes forming a distinct group could pave a way to the estab-
lishment of phenotypic and genotypic associations. However, it is challenging to unravel 
the functional relationships of these potential disease candidates. Additionally, variants 
like CNVs span several genes, thus further intensifying the problem of putative causal 
gene identification.

Pipelines have been developed to annotate and infer biological functions of genetic 
variants using existing resources such as Gene Ontology (GO) [12]. Asif et al. presented 
a systematic pipeline that include both pre and post processing steps to infer biological 
mechanisms for rare CNVs [12]. Also, there exist the state-of-the-art methods to predict 
ASD putative casual genes [13, 14].

However, the phenotypic manifestations of predicted disease genes are not reproduc-
ible on other datasets. Furthermore, to better understand the disease prognosis and to 
facilitate the precision medicine currently, one of the fundamental challenges is to iden-
tify groups of functionally similar genes that govern specific and distinct disease traits.

Complex diseases exhibit multiple etiologies, indicating the role of hundreds of genetic 
variants. These genetic variants hardly act in isolation and studies have shown that puta-
tive disease causing genetic variants converge on common biological processes, indi-
cating a functional relationship. It has also been hypothesized that functionally related 
genes tend to develop similar phenotypes. Studies have used Protein–Protein Interaction 
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(PPI) networks and genes co-expression network to identify modules of genes, which 
may or may not lead to similar phenotype development [15].

One alternative to networks is ontological resources such as GO that contains more 
specific and higher level biological details for genes. GO is an ontological resource with 
three type of vocabularies namely biological process, molecular functional and cel-
lular locations. The GO resource is an extensive and uniform biological resource with 
frequent updates. Functional similarities between genes can be assessed by applying 
semantic similarity measures on GO terms associated for the targeted genes. Previously, 
Asif et  al. has highlighted the importance of genes functional similarities, computed 
using GO and semantic similarity measures [14]. The proposed classifier outperformed 
existing tools in predicting disease genes [14].

The GO is the most widely used and extensive ontological resource in biology and con-
sists of three controlled vocabularies i.e. biological process, molecular function and cel-
lular location. GO implements a Directed Acyclic Graph (DAG) structure where nodes, 
presenting GO terms, are linked through parent–child relationships. In such relation-
ships, child nodes inherit all the annotations (genes in this study) associated with all of 
its parent nodes through a specific relationship. An example of such a relationship is 
“part-of ’’ meaning the child node is a subset of the parent node (Fig. 1).

Semantic similarity measures use this structure to assess the similarities between 
nodes i.e. GO terms (Fig.  1). Resnik [16], Wang [17], Lin [18] and Jiang [19] are fre-
quently used semantic similarity measures. Semantic similarity measures use the GO 
structure to find the functional similarities between genes and score it in the range of 
0–1, where 0 indicates that genes are highly distant and 1 means genes are identical. The 
score closer to 1 indicates functional similarity between genes.

In this study we proposed a pipeline, called Dissecting the Genetic Heterogene-
ity using GO (DGH-GO) with a graphical user interface. DGH-GO hypothesized 
that putative disease causing genes tend to converge on similar biological processes 
and pathways, indicating the functional relationship between them. Also, function-
ally similar genes may lead to similar or identical phenotype(s). The DGH-GO allows 
biologists to analyze a list of genes emerged from their large scale genomic studies 

Fig. 1 Graphical representation of GO DAGs structure. Child term 1 has three ancestor terms (parent term 
1, 2, and 3) with a part-of relationship. In such relationship, all the genes annotated with child term 1 are 
coming from its ancestor’s terms
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or created from known disease databases to study the shared biological mechanisms 
among different diseases or conditions.

The proposed study contributes as follows:

(1) In depth analysis of genes. DGH-GO allows the users to perform extensive analysis 
i.e. discovering the biological convergence patterns or functional associations for 
input genes. The analysis starts from descriptive statistics, calculation of semantic 
similarities, and dimension reduction, followed by clustering of genes.

(2) Higher level of biological functional details: DGH-GO applies semantic similarity 
measures on GO to compute gene’s functional similarities that allow inferring the 
biological convergence patterns of putative or known disease causing genes.

(3) User friendly: DGH-GO is the first interactive web application that aims for the 
identification of clusters comprising functionally similar genes. Furthermore, it 
allows users to apply different dimension reduction methods to visualize the input 
data in a reduced dimension. Currently, DGH-GO supports the analysis by five 
semantic similarity measures (coupled with four aggregate functions), four dif-
ferent dimension reduction and clustering methods. The users are free to choose 
any method to analyze their input genes. The ease of applying multiple methods 
in DGH-GO also makes it easier for users lacking computing skills to compare the 
performance of different methods for their targeted genes.

(4) Biological applications:

a. The proposed methodology was applied on genes disrupted by rare CNVs in 
ASD patients. The analysis through DGH-GO revealed that rare CNVs dis-
rupting the genes in ASD patients converge on biological processes and form 
multiple clusters that were enriched for distinct but ASD related pathways and 
phenotype(s), confirming the multi-etiological nature of ASD.

b. In addition, DGH-GO was also tested to dissect the shared etiology of complex 
diseases. The analysis showed that genes involved in multiple disorders tend to 
aggregate in separate clusters.

Implementation
DGH-GO uses gene’s functional similarities to infer the convergence pattern of puta-
tive/known disease causing gene. Figure 2 provides a graphical overview of DGH-GO 
workflow. The DGH-GO consists of three modules. The DGH-GO is developed in R 
Shiny. Shiny is an R package, which has been recently widely used to develop interac-
tive web applications for bioinformatics data analysis. For example, Shiny applications 
have been developed for single-cell RNA seq and bulk RNA seq [20, 21].

The 1.7.1 shiny version was installed in R of version: 4.2.0. To calculate the func-
tional similarities of genes the GOSemSim R package [22, 23] was used. DGH-GO 
uses the GOSemSim R package to apply semantic similarity measures and output the 
functional similarity matrix.
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Dataset

For the case study of disease signature identification, genes disrupted by rare CNVs in 
ASD patients were obtained from Sander et al. [22]. Sander et al. reported rare CNVs 
disrupting the 3698 genes in 3802 patients diagnosed with ASD. For the second case 
study to explore the shared etiology of complex diseases, a list of genes known for 
ID, DD and EE was obtained from Zhang et al. [23]. Genes causing ASD were down-
loaded from the SFARI gene database (https:// gene. sfari. org/). SFARI gene database is 
a well curated source of ASD genes which is periodically updated by domain experts. 
The expert researchers curate genes associated with ASD based on available refer-
ences in literature. The SFARI gene database is a public database and ASD genes can 
be downloaded freely as a CSV file.

Fig. 2 Graphical representation of workflow of DGH-GO. MDS multidimensional scaling

https://gene.sfari.org/
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Results
Overview of DGH‑GO

DGH-GO aims to dissect the genetic heterogeneity by identifying the clusters of 
functionally similar genes that may develop a distinct biological mechanism and dis-
ease phenotypes.

Identification of clusters containing the functionally similar genes is based on 
functional similarities, computed by applying semantic similarity measures on GO 
information for the targeted genes. Figure  2 shows the graphical representation of 
DGH-GO workflow.

DGH-GO consists of three modules, (1) Functional Similarities (FunSim) module; 
(2) Dimension Reduction (DimReduct) module; and (3) Clustering the Functional 
Similarities (ClusFunSim) module.

(1) Functional Similarities (FunSim) module

The FunSim module calculates pairwise functional similarities among input genes. 
The functional similarities of genes can be determined by using controlled biologi-
cal vocabularies, such as GO. Input genes may be a list of genes disrupted by genetic 
variants such as CNVs or SNPs. Alternatively, it can also be a list of genes involved in 
different complex diseases. For example, ASD and ID are complex NDDs. Genes caus-
ing ASD are also involved in ID. MBD5 is a syndromic gene and associated with both 
ASD and ID [24]. To estimate the functional similarities of genes, semantic similarity 
measures namely Resnik, Wang, Lin, Rel, and Jiang has been widely used. Most often, 
these measures are based on annotation details of the common ancestor terms. Some 
measures, in particular proposed by Wang utilizes the DAG structure of GO to com-
pute the functional similarities of genes. Each measure has its own reported limita-
tions, strengths and applications. The measures that utilize the annotation statistics 
of common ancestor, for example Resnik, Jiang, Rel and Lin are based on information 
content (IC). The IC of a GO term is defined by the negative logarithm of its probabil-
ity of occurrence in a given collection of GO terms (Eq. 1).

As showed in Fig. 1, a GO term may have more than one ancestor terms. Due to the 
possibility of multiple parents for each term, it is possible that two terms can have 
shared parents by multiple paths in the DAG of GO. The measures based on IC com-
pute the functional similarity of two terms by estimating the information content of 
their closest common ancestor terms, referred as most informative common ancestor 
(MICA). The Resnik similarity measure computes relatedness between two GO terms 
by utilizing the information content of the MICA. Resnik measure to calculate simi-
larity between two GO terms is defined as:

Another measure proposed by Lin is also based on IC and for GO terms it is defined 
as:

(1)IC(GOterm) = −log(p(GOterm))

(2)SimResnik(Goterm1,Goterm2) = IC(MICA)
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The Rel measure combines Lin and Resnik measures to determine the relatedness 
between two GO terms. The mathematical expression for Rel measure is provide in 
Eq. 4.

Jiang similarity measure also computes similarity between GO terms by comparing 
their IC values. Equation 5 provides the mathematical formula for Jiang measure.

The Wang similarity measure does not use IC values of GO terms, instead it utilizes 
the DAG of GO. Wang measure first computes the semantic value (SV) for a GO term 
by estimating the contributions of its neighboring GO terms. A set of neighboring 
terms is created using the DAG structure.

SV is calculated as:

where t refers to terms having child terms in a DAG structure.
The description and mathematical derivation of similarity measures is provided 

in the context of GO and was adapted from GoSemSim vignette, available through 
Bioconductor.

The FunSim module employs these similarity measures (Resnik, Wang, Lin, Rel, 
and Jiang) to compute genes functional similarities. Semantic similarity measures uti-
lize the structure of the ontology resource to calculate similarities for biomedical or 
non-biomedical entities. The most commonly used ontologies in life sciences are GO, 
Human Phenotype Ontology (HPO), and Disease Ontology (DO).

To calculate the similarities at gene level, semantic similarities scores of GO terms 
(associated with input genes) are aggregated into a final score, ranging between 0 and 
1 through aggregate functions. The available aggregate functions are max, avg, rcmax 
and BMA.

The max combining function calculates the functional similarity among all GO 
terms and chooses the maximum score from created scoring matrix. The avg function 
computes the average functional similarity for all GO terms. The rcmax calculates the 
column and row scores separately and chooses the maximum value from created set 
of values. The BMA combining function is based on best match average approach, 
meaning final score is calculated by the average of all maximum similarities across 
each row and column.

(3)SimLin(Goterm1,Goterm2) =
2XIC(MICA)

IC(Goterm1)+ IC(Goterm2)

(4)SimRel(Goterm1,Goterm2) =
2XIC(MICA)(1− p(MICA))

IC(Goterm1)+ IC(Goterm2)

(5)
SimJiang (Goterm1,Goterm2) = 1−min(1, IC(Goterm1)+IC(Goterm2)−2XIC(MICA))

(6)Simwang (Goterm1,Goterm2) =
tǫTGoterm1∩TGoterm2‘

SGoterm1(t)+ SGoterm2(t)

SV (Goterm1)+ SV (Goterm2)

(7)SV (Goterm1) =
∑

tǫTGoterm1

SGoterm1(t)
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DGH-GO allows users to choose one semantic similarity measure from Resink, Rel, 
Wang, Lin, and Jiang and one aggregate function. The selected measure along with 
aggregated function is used to calculate functional similarities for input genes list.

The output of the FunSim module is a squared semantic similarity matrix, coupled 
with genes and their known or putative diseases (Fig. 3A). The resulting similarity matrix 
is interactive and permits searching, sorting and export operations.

(2) Dimension Reduction and Visualization (DimReduct) module

Large scale genomic studies of complex diseases such as ASD produce a large list of 
putative disease causing genes, disrupted by genetic variants in patients. Also, studying 
the shared etiology of several complex diseases such as ASD and ID can generate a large 

Fig. 3 Output of DGH-GO. A Semantic similarity matrix showing the functional similarities of input genes; B 
dimension reduction of input genes; C clustering of genes using functional similarities
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functional similarities matrix. The DimReduct module provides the option of applying 
different dimension reduction methods. Currently, DGH-GO supports Principal Com-
ponent Analysis (PCA), Principal Coordinate Analysis (PcoA) and t-SNE methods to 
reduce dimensions of functional similarity matrix. The input to the DimReduct mod-
ule is the functional similarities matrix generated by the FunSim module. The users can 
decide the number of dimensions and may also choose the specific dimensions for visu-
alization of data in 2D space. The projections of functionality matrix with user defined 
number of dimensions are downloadable for future use. The interactive 2D visualization 
of dimensionally reduced data is also provided (Fig. 3B).

(3) Clustering the functional similar genes (ClusFunSim) module

The ClusFunSim module applies different unsupervised clustering methods either on 
functional similarities matrix coming from FunSim module or dimensionally reduced 
data, output of DimReduct module. The users are free to define inputs for clustering 
methods. The ClusFunSim module contains four different clustering methods, namely 
K-means, PAM, hierarchical and Fuzzy. These clustering methods have been widely used 
in bioinformatic data analysis approaches [17]. Along with deciding the input data type, 
the users can also set the number of clusters for each clustering method.

DGH-GO allows users to validate the clustering results. The Silhouette measure is 
used to find the optimum number of clusters for the input functional similarity matrix 
of genes. Silhouette value estimates the cohesion and separation of identified clusters. It 
measures how much one instance is similar to its cluster and is separated from another 
cluster. Mathematically, the Silhouette value for a gene 

(

geneA
)

 is defined as:

Silhouette(geneA) is the Silhouette value for gene A and a(geneA) is the average dis-
tance of geneA from all the genes in same cluster. Whereas, b

(

geneA
)

 is the average dis-
tance between the geneA and other genes present in the nearest cluster. The Silhouette 
value ranges from − 1 to 1, where − 1 indicates highly dissimilar and 1 means highly 
similar. An instance is considered as wrongly clustered if it has Silhouette score of 0 or 
less than 0.

Silhouette value for a whole cluster can also be estimated from Silhouette values of its 
members, genes. For this purpose, for each gene in a cluster, its average distances from 
its cluster member genes are computed ( a

(

geneA
)

 using Eq. 8). Similarly, for each gene 
in a cluster, b

(

geneA
)

 is calculated. Lastly, a Silhouette value for a cluster is calculated by 
averaging the Silhouette values of each gene present in cluster (Eq. 9).

N is the number of genes. To provide an overview of the Silhouette values for each 
input instance (genes in this study), DGH-GO provides a Silhouette plot for all the clus-
ters. The Silhouette plot also shows the wrongly clustered genes (Silhouette value < 0) 
for each cluster. Furthermore, it also provides the mean of Silhouette values across all 

(8)Silhouette(geneA) =
b
(

geneA
)

− a(geneA)

max(a
(

geneA
)

, b(geneA)

(9)Silhouette(cluster) =

∑

Silhouette(geneA)

N
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clusters by drawing a red line in Silhouette plot. Additionally, a downloadable and quan-
titative table containing inter and intra clusters validation is also shown to user. The table 
includes diameter and size of cluster, average distance between and inside of clusters, 
separation and Silhouette score for each cluster.

The ClusFunSim module outputs the 2D clustering plot, plot for optimum number of 
clusters, a qualitative table showing the intrinsic and extrinsic validation of clusters, and 
a downloadable tabular representation of genes and their assigned clusters (Fig. 3C). The 
interactive plots and tables are available for each clustering method, hence providing the 
possibility of comparing different clustering methods for a given dataset.

Applications
The biological applicability of DGH-GO was assessed by two case studies:

(1) Dissecting the multi-etiological nature of ASD i.e. inferring the biological conver-
gence of putative ASD causing genes disrupted by rare CNVs

(2) Understanding the shared etiology of complex diseases
(3) Dissecting the multi-etiological nature of ASD

ASD is a complex neurodevelopmental disorder and difficult to diagnose due to phe-
notypic heterogeneity. ASD is defined by repetitive behavior and social deficits [25]. It 
is hypothesized that ASD candidate genes converge on biological processes, creating 
distinct groups of functionally similar genes. Each group follows a different or shared 
biological mechanism to generate a specific phenotype. To test this hypothesis, DGH-
GO was applied to genes spanned by CNVs in ASD patients, which were obtained from 
Sanders et  al. [26]. Rare CNVs disrupting 3698 genes in 3802 individuals diagnosed 
with ASD were collected from Sanders et  al. [26]. The semantic scores were available 
for 2457 genes. Rel semantic similarity measure with the Max aggregation function was 
used to compute the functional similarities among genes. PCA was applied to functional 
similarity matrix to visualize it in a lower space. Additional file 1 contains supplemen-
tary details of PCA and clustering results. First nine PC components that explained the 
majority of the variance were selected for clustering (Additional file 1: Fig. S1).

Silhouette measure was used to find the optimum number of clusters, which were 16 
clusters (Additional file 1: Fig. S2). A tabular representation of clustering results valida-
tion can be found in Additional file  1: Table  S1. Silhouette analysis of each individual 
cluster showed the presence of outliers (Additional file 1: Fig. S3). A gene occurring in 
one cluster with a silhouette score less than 0 was considered as outlier. All the outliers 
(N = 376) were excluded and optimum number of clusters was re-computed. The new 
refined data gave 14 optimum numbers of clusters, again using the silhouette score as a 
criterion (Additional file 1: Fig. S4).

The first 6 components of PCA explained majority of the variance in data (Addi-
tional file 1: Fig. S5). The variance explained by each component was estimated. The 
elbow plot was used to visualize the variance explained by the first 50 components 
(Additional file  1: Fig. S5).  1st PC component explained majority of the variance in 
data, which was declining for next components. The elbow plot shows that from the 
7th PC component the change in explained variance is minimal. The difference in 
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variance explained by 6th and 7th PC components was higher than the difference in 
variance explained by 7th and 8th components of PCA. Therefore, the first six PC 
components were selected for further analysis. The validation of all clusters is pro-
vided in Table 1 and Additional file 1 (Figs. S6 and S7). The validation of all clusters is 
provided in Table 1 and Additional file 1 (Figs. S6 and S7).

Silhouette analysis of all the 14 clusters showed that 9 clusters (2, 3, 4, 6, 8, 10, 12, 
13, and 14) are well separated and cohesive (Table  1). To annotate these compact 
and cohesive clusters of genes, functional enrichment analysis was performed sep-
arately for each cluster using Enrichr [27]. From Enrichr, KEGG database [28–30], 
DisGeNET [31], and mammalian phenotype ontology [32] was chosen for functional 
enrichment analysis. Additional files (2-6) contains the functional enrichment analy-
sis results for each cluster. 

5 clusters (3, 4, 8, 10, and 11) out of 9 stable clusters were enriched for ASD related 
biological processes and pathways. They were also significantly associated with 
ASD phenotype and its co-occurring conditions such as mood disorders. The clus-
ters enriched for ASD related terms were compact and consistent as indicated by 
Sil-widths values from Silhouette validation measure (Table  1). Other clusters were 
either unstable or not related to ASD (Table 1). Figure 4 shows the umap of 5 stable 
and ASD related clusters and also enriched pathways and phenotypic terms for each 
cluster.

Cluster 11, containing 89 genes, was enriched for Axon guidance and cell adhesion 
molecules related pathways. The 7 and 5 genes from cluster 11 were significantly asso-
ciated with abnormal spatial leaning and abnormal social investigation phenotype 
respectively. This cluster was also linked with Autism Spectrum Disorder, Schizo-
phrenia and Bipolar Disorder from DisGeNET database [31, 33]. Top and ASD related 
enriched pathways, phenotypic terms and disease terms for cluster 11 are shown in 
Fig. 4 (Additional file 2).

Table 1 The resultant clusters with their average Silhouette values

Silhouette value measures the cohesiveness and separation of a cluster and ranges from − 1 to 1. The clusters with bold 
average Silhouette values are stable and compact

Cluster Genes (N) Cluster average Silhouette Average 
Silhouette

1 192 0.187 0.327

2 355 0.331
3 198 0.279
4 179 0.391
5 100 0.159

6 280 0.524
7 98 0.172

8 84 0.268
9 140 0.04

10 34 0.921
11 89 0.088

12 142 0.576
13 135 0.261
14 55 0.703
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84 genes gathered in cluster 8 were specifically enriched for synapse related path-
ways. The most significant pathway was Neuroactive ligand-receptor interaction. 
8 and 6 genes were associated with Synaptic vesicles cycle and GABAergic synapse 
pathways respectively. Furthermore, genes of cluster 8 were also associated with 
abnormal CNS synaptic transmission and abnormal GABA-mediated receptor cur-
rent in mouse. Functional enrichment analysis against the DisGeNET database 
showed that Autistic disorder, Schizophrenia, and Bipolar Disorder were enriched in 
cluster 8 (Fig. 4 and Additional file 3).

Cluster 4, containing 179 genes, is a mixed cluster and was involved in synapse 
and metabolism related pathways. The most statistically significant pathway for 
cluster 4 was Neuroactive ligand-receptor interaction pathway. Other ASD related 
pathways such as Glutamatergic synapse and purine metabolism was also associated 
with this cluster. GABAergic synapse pathway was marginally significant for cluster 
4. However, no phenotypic term was significantly enriched for this cluster. From 
DisGeNET, Schizophrenia and Mood Disorder were significantly enriched for cluster 
4 (Fig. 4 and Additional file 4).

Cluster 3 was a signaling cluster and exhibited the MAPK and ErbB signaling 
pathways but no statistically significant phenotype term was found for the genes of 
this cluster. From DisGeNET resource, the genes of clusters 3 were associated with 
Autistic Disorder, Schizophrenia, and Depressive Disorders (Fig.  4 and Additional 
file 5).

Cluster 10, with few genes (N = 34) was enriched for Cell Adhesion molecules. 
However, no phenotype term was found for this cluster. Similarly, no ASD related 

Fig. 4 Clusters enriched for ASD related pathways or phenotypic terms. Cluster 3 genes N = 198, Cluster 4 
genes N = 179, Cluster 8 genes N = 84, Cluster 10 genes N = 34, Cluster 11 genes N = 89
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terms were found from DisGeNET. Mainly this cluster was enriched for Cancer 
related terms from DisGeNET resource (Fig. 4 and Additional file 6).

2) Understanding the shared etiology of complex diseases

To show another application of DGH-GO in dissecting the shared etiology of complex 
disorders, genes known for ASD, Developmental Disorders (DD), Intellectual Disabil-
ity (ID), and Epileptic Encephalopathy (EE) were obtained from Zhang et al. [34]. The 
aim of this case study was to test the multi-etiological nature of ASD, instead of dis-
cussing the extent of shared etiology of different NDDs. Functional similarity matrix 
was of 427 (ASD = 74, ASD + DD = 10, ASD + DD + EE = 1, ASD + DD + ID = 19, 
ASD + DD + ID + EE = 2, ASD + ID = 2, DD = 204, DD + EE = 4, DD + ID = 25, 
DD + ID + EE = 3, ID = 63, EE = 19, ID + EE = 1).

PCA was applied to functional similarity matrix of complex diseases and the first six 
PC components were chosen for clustering as they explained the majority of the vari-
ance (Additional file 1: Fig. S5). Silhouette score indicated the existence of 22 optimum 
numbers of clusters (Additional file  1: Fig. S6). Hierarchical clustering on PC compo-
nents was performed with 22 clusters using the Ward linkage criterion. The 14 clusters 
were consistent, stable and compact (Table 2) and were used for further analysis.

Table 2 The resultant clusters of genes, known for multiple disorders with their average Silhouette 
values

Silhouette value measures the cohesiveness and separation of a cluster and ranges from − 1 to 1. The clusters with bold 
average Silhouette values are stable and compact

Cluster Genes (N) Cluster average Silhouette Average 
Silhouette

1 9 0.298 0.273

2 11 0.309
3 32 0.18

4 18 0.15

5 29 0.082

6 21 0.359
7 14 0.278
8 22 0.458
9 26 0.328
10 16 0.179

11 9 0.147

12 40 0.333
13 21 0.274
14 8 0.576
15 18 0.115

16 14 0.135

17 14 0.186

18 25 0.277
19 22 0.311
20 23 0.386
21 23 0.383
22 12 0.306
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Each selected cluster contains outliers (genes clustered with a silhouette score of < 0) 
(Additional file 1: Fig. S7). In contrary to previous analysis of dissecting the multi-etio-
logical nature of ASD, no exclusion criterion was applied to outliers. The reason is the 
authenticity of genes as they are known candidate genes for complex diseases. All the 
genes were known for their associations with diseases. In the analysis of rare CNVs dis-
rupting genes, outliers were expected because not all rare CNVs span disease causing 
genes.

14 stable clusters are shown in Fig. 5 and Table 2. The genes shared by multiple dis-
orders aggregated on the same clusters and are closer to each other in 2D space. The 
clusters with the largest number of shared genes of ASD, DD, ID, and EE were 1, 2, 7, 8, 
14, and 22 (Fig. 5). Clusters number 6, 9, and 20 contain higher proportions of EE genes 
than other clusters. Cluster 13 contains a larger number of EE genes than all of the other 
clusters. Clusters (19, 21, 12, and 18) contain genes which are not shared by multiple 
disorders. For example, cluster 1 contains genes known for ASD and ID but there is no 
evidence that these genes are common in both diseases.

Discussion
Due to advances in genomic technologies collection of large number of variants, dis-
rupting several protein coding genes in a larger population is possible. One of the most 
recent challenges in post-genomic era is the identification of biological convergence pat-
terns of hundreds of variants that are involved in complex diseases.

The highly precise biological convergence patterns or groups of functionally related 
genes converge to specific biological mechanisms that may be responsible for distinct 
disease phenotype(s). Several methods have been proposed for disease putative causal 
gene prediction or identification [12–15, 35].

However, efforts to understand how hundreds of genes interact to develop disease 
specific phenotype or a spectrum of phenotype have been lagging behind. For exam-
ple, there are unanswered questions such as do all the hundreds of candidate genes of 

Fig. 5 Umap of clusters obtained from genes involved in multiple disorder
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complex diseases interact with each other to develop disease? How all the candidate 
genes or a subset of genes with similar function converges on targeted functional path-
ways to develop a specific disease outcome? Does the multi-etiological nature of com-
plex diseases emerge from distinct or related convergence pattern of disease causing 
genes?

Furthermore, complex diseases also share etiology, meaning that at certain point of 
disease phenotype development the different diseases follow similar biological mecha-
nisms. What are those shared mechanisms and do genes involved in different diseases 
are functionally closer to each other or distant from other genes that are disease specific? 
These are burning and challenging questions for understanding the etiology of complex 
genetic disorders.

In this study, we have proposed an approach, named as DGH-GO with a graphi-
cal interface to find the clusters of functionally similar genes that may exhibit distinct 
biological mechanisms that could generate a specific disease phenotype(s). Previously 
network approaches using PPI and gene expression profiles have been used to detect 
sub-communities in a network [15].

Previously network approaches using PPI and gene expression profiles have been used 
to detect sub-communities in a network [15]. Linkage methods of network approaches 
assume that the close neighbours of disease causing gene products possess higher likeli-
ness of being involved in similar disease phenotype [36, 37]. Oti, M. et  al. predict the 
putative disease causing genes by utilizing the protein–protein interactome [37]. Over 
the time, several structured and well maintained resources for PPI data such as STRING 
[38] and BioGRID [39] have emerged. However, PPI resources differ on criteria and 
objectives for data collection, analysis and manipulation. For example, STRING is using 
a numeric score to rank the protein–protein interactions whereas BioGRID is a binary 
score-based database. Therefore, the selection of the PPI resource could affect the final 
conclusion [40].

Network approaches have also been applied on gene expression networks. Langfelder 
et al. developed an R package, called weighted correlation network analysis (WGCNA) 
[41]. WGCNA determines the clusters of genes that are correlating at the expression 
level. Such methods aiming for the identification of correlation networks have effec-
tive applications in discovering the putative disease-causing genes. Network approaches 
employed on either PPI or gene expression profiles are focused on identification of hub 
entities (genes or proteins) or sub modules in a larger network which may contribute to 
disease development. Barabási et al. has reviewed the network approaches for studying 
human diseases [42].

Alongside with the information provided by PPI and gene expression, GO  is a 
resource which is specially designed for enrichment analyses and is rich in biological 
details. Deciding the data resource to propose a disease gene prediction method is dif-
ficult. Each data set has its own strengths and weaknesses, which is beyond the scope of 
this study. The recently emerged data integration methods can be used to integrate these 
datasets to leverage their strengths. However, integration of diverse datasets is challeng-
ing. GO is uniform resource that has DAGs structure and each new entry follows the 
same structure, which makes it uniform, easy to use, share, and interpret. DGH-GO 
takes advantage of GO uniformity and extensiveness, coupled with detailed biological 
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description and uses it to find functional similarities among genes. These functional 
similarities between genes are fed to unsupervised learning methods such as dimension 
reduction and clustering methods to discovery the converging patterns of putative dis-
ease causing genes.

Another strong aspect of DGH-GO is the freedom of choosing the methods for the 
analysis. Several methods have been routinely used for genetic data analysis and most of 
them require programming experience, thus limiting the role of domain experts (biolo-
gists or clinical doctors) in analyzing their generated data. Also, choosing a method from 
an extensive list of available methods can be a daunting task for people lacking bioinfor-
matics or data analytical skills.

DGH-GO is an easy to use interactive application that allows users to apply multi-
ple methods and compare their performance. For example, a user can perform differ-
ent dimension reduction methods and perform different clustering methods either 
on semantic similarity scores or one of the dimensionally reduced data. DGH-GO is 
an open source application, which allows people with programming skills to modify it 
according to their need.

The proposed application was evaluated on two different datasets of complex dis-
eases. First rare CNVs spanning putative ASD-causing genes were analyzed to explore 
the genetic heterogeneity of ASD. The DGH-GO analysis showed that putative ASD-
causing gene groups into different clusters and each cluster displayed a different bio-
logical mechanism. Multiple clusters of varying functionality were expected because 
ASD occurs with multiple independent etiologies and it has been hypothesized that 
independent phenotype(s) emerge from different biological mechanisms. Separate phe-
notypic analysis of each cluster also showed that clusters differing on biological mecha-
nisms also differ on phenotype. ASD is a neurodevelopmental disorder and mainly affect 
nervous system, more specifically synapse transmission. The genes of cluster 8 identified 
by DGH-GO were significantly enriched for synapse related term indicating the genes 
of this are involved in ASD core symptoms. Moreover, this cluster was also enriched 
abnormal CNS synaptic transmission and abnormal GABA-mediated receptor phenotype 
terms further confirming that it is highly associated with ASD. Similarly other clusters 
such as cluster 3 were enriched for signalling pathways. Several lines of evidence have 
reported that ASD is linked with Signalling pathways such as ERb and MapK, further 
confirming the role of cluster 3 genes in ASD. The analysis of DisGeNET also indicated 
that genes of cluster 3 are associated with ASD. Cluster 3 and 4 are also enriched for 
Axon guidance and Synapse. Previous studies have the associations of these pathways 
with ASD. The enriched terms for the 5 clusters are related to ASD, which is in line with 
previously published literature [6, 7, 12–14, 43, 44].

To show the biological significance of DGH-GO, it was also applied to genes known for 
multiple disorders such as ASD, ID, EE, and MD. The analysis of genes known for multi-
ple disorders clustered in to same groups, this was inline with previous studies showing 
that genes involved in multiple disorders are aggregated in the same clusters [34].

It was also observed that EE clustered distantly from other clusters, for example, clus-
ter 13, containing the highest number of EE gene, organizes itself distant from others. It 
was expected and consistent with existing knowledge of EE because it is not a truly neu-
rodevelopmental disorder like ASD and ID.
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The proposed application, DGH-GO, is limited to the GO data resource. Recently, 
we proposed a knowledge graph (KG) to explore the disease gene associations [45]. KG 
integrated data from GO and DisGeNET, a publicly accessible database of diseases and 
genes. The created KB consists of 93,657 unique entities (28,243 genes; 21,623 diseases; 
11,170 molecular functions; 4183 cellular components; and 28,438 biological processes) 
and 59 relationship types (900,442 gene-disease associations; 715,550 gene-GO anno-
tations; and 89,593 GO ontology relationships). The proposed KG showed the impor-
tance of data integration and fusion in personalized medicine. Other researchers have 
reviewed data integration and data fusion methods and also heighted their importance 
in both genomic medicine and precision medicine [46, 47]. However, effective transla-
tion of these big and complex methods to the biology domain is still challenging.

Conclusion
In this study we have proposed a pipeline to dissect the genetic heterogeneity of complex 
diseases by identifying the groups of similar genes that may lead to distinct phenotype(s). 
For this we have applied semantic similarity measures, dimension reduction and cluster-
ing methods. A graphical user interface, named as DGH-GO is also available for users 
lacking programming experience. DGH-GO enables biologists control over analysis and 
allows them to infer biological convergence patterns or functional associations for a tar-
geted gene set. Additionally, the possibility of applying different methods in an interac-
tive way, coupled with higher level of biological information helps biologists to enhance 
their mechanistic understanding for an underlying problem.

A case study of ASD-associated genes targeting putative disease causing variants con-
firmed the multi-etiological nature of ASD and showed that identifying clusters of func-
tionally similar genes could hint about the existence of distinct biological convergence 
patterns leading to specific biological mechanisms and phenotypes. The results from the 
analysis of ASD genes were consistent with literature. In another case study, DGH-GO 
confirmed the hypothesis of shared etiology in NDDs. The analysis of genes involved in 
multiple disorders exhibited common convergence patterns, indicating an overlapping 
genetic etiology.

Currently, DGH-GO is limited to GO. However, to complement the limitations of GO, 
the future version of it will be focused on integrating other biological data resources 
such as PPI, gene expression profiles, disease ontology and human phenotype ontology.

Availability and requirements

Project name: DGH-GO
Project home page: https:// github. com/ Muh- Asif/ DGH- GO
Operating system(s): Platform independent
Programming language: R and Shiny
Other requirements: None
License: MIT License
Any restrictions to use by non-academics: None
System specification: 8 GB of RAM and core i7 CPU.

https://github.com/Muh-Asif/DGH-GO
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