
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

O’Connell et al. BMC Bioinformatics (2023) 24:221
https://doi.org/10.1186/s12859-023-05292-2

BMC Bioinformatics

Accelerating genomic workflows using
NVIDIA Parabricks
Kyle A. O’Connell1, Zelaikha B. Yosufzai1, Ross A. Campbell1, Collin J. Lobb1, Haley T. Engelken1, Laura M. Gorrell1,
Thad B. Carlson2, Josh J. Catana1, Dina Mikdadi1, Vivien R. Bonazzi1* and Juergen A. Klenk1* 

Abstract 

Background:  As genome sequencing becomes better integrated into scientific
research, government policy, and personalized medicine, the primary challenge for
researchers is shifting from generating raw data to analyzing these vast datasets.
Although much work has been done to reduce compute times using various con-
figurations of traditional CPU computing infrastructures, Graphics Processing Units
(GPUs) offer opportunities to accelerate genomic workflows by orders of magnitude.
Here we benchmark one GPU-accelerated software suite called NVIDIA Parabricks
on Amazon Web Services (AWS), Google Cloud Platform (GCP), and an NVIDIA DGX
cluster. We benchmarked six variant calling pipelines, including two germline callers
(HaplotypeCaller and DeepVariant) and four somatic callers (Mutect2, Muse, LoFreq,
SomaticSniper).

Results:  We achieved up to 65 × acceleration with germline variant callers, bring-
ing HaplotypeCaller runtimes down from 36 h to 33 min on AWS, 35 min on GCP, and
24 min on the NVIDIA DGX. Somatic callers exhibited more variation between the num-
ber of GPUs and computing platforms. On cloud platforms, GPU-accelerated germline
callers resulted in cost savings compared with CPU runs, whereas some somatic callers
were more expensive than CPU runs because their GPU acceleration was not sufficient
to overcome the increased GPU cost.

Conclusions:  Germline variant callers scaled well with the number of GPUs across
platforms, whereas somatic variant callers exhibited more variation in the number of
GPUs with the fastest runtimes, suggesting that, at least with the version of Parabricks
used here, these workflows are less GPU optimized and require benchmarking on the
platform of choice before being deployed at production scales. Our study demon-
strates that GPUs can be used to greatly accelerate genomic workflows, thus bringing
closer to grasp urgent societal advances in the areas of biosurveillance and personal-
ized medicine.

Keywords:  GPU acceleration, NVIDIA Parabricks, Cloud computing, Amazon Web
Services, Google Cloud Platform

*Correspondence:
vbonazzi@deloitte.com;
jklenk@deloitte.com

1 Health Data and AI,
Deloitte Consulting LLP, VA
22009 Arlington, USA
2 Cloud Managed Services,
Deloitte Consulting LLP, Detroit,
MI 48226, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05292-2&domain=pdf

Page 2 of 15O’Connell et al. BMC Bioinformatics (2023) 24:221

Background
As the cost of genome sequencing continues to decrease, genomic datasets grow in both
size and availability [1]. These processes will greatly enhance aims such as whole genome
biosurveillance and personalized medicine [2, 3]. However, one challenge to attaining
these goals is the computational burden of analyzing large amounts of genomic sequence
data [4]. Two trends (among others) are helping to ameliorate this burden. The first is
the migration to Cloud for data analysis and storage, and the second is the use of Graph-
ics Processing Units (GPUs) to accelerate data processing and analysis [5, 6]. We discuss
each of these trends in this article.

Cloud computing addresses many of the challenges associated with large whole
genome sequencing projects, which can suffer from siloed data, long download times,
and slow workflow runtimes [7]. Several papers have reviewed the potential of cloud
platforms for sequence data storage, sharing, and analysis [1, 5, 8–12], thus here we
focus on one cloud computing challenge, how to select the right compute configuration
to optimize cost and performance [13, 14].

GPU acceleration in either a cloud or High Performance Computing (HPC) environ-
ment makes rapid genomic analysis possible at previously unattainable scales. While
these are still early days for GPU-acceleration in the ‘omics fields, several studies have
begun benchmarking various algorithmic and hardware configurations to find the ‘Gold-
ilocks zone’ between cost and performance. Two recent studies [6, 15] benchmarked
GATK HaplotypeCaller using the original CPU algorithm and the GPU-accelerated
version from NVIDIA Clara™ Parabricks (hereafter Parabricks) on HPC platforms and
found notable acceleration (8 × and 21 × speedups respectively) when using GPUs.
They also inferred high concordance of SNP calls (~ 99.5%) between the CPU and GPU
algorithms suggesting no to low loss of accuracy with the GPU-configured algorithms,
for both germline and somatic variant callers [16], a finding also corroborated by [17].
Likewise [18], introduced a new GPU-accelerated pipeline called BaseNumber, which
achieved runtimes slightly faster than previous benchmarks using Parabricks.

While the aforementioned studies conducted benchmarking using on-premises
computing clusters, only a few studies have begun benchmarking GPU-accelerated
algorithms in the cloud. The Parabricks team at NVIDIA benchmarked GATK Haplo-
typeCaller using Parabricks on Amazon Web Services (AWS) and achieved runtimes as
low as 28 min for a 30 × genome with eight A100 NVIDIA GPUs [17]. NVIDIA com-
pared an m5-family virtual machine (32 CPUs, 128 GB Memory; Intel Skylake 8175M or
Cascade Lake 8259CL) with several GPU configurations, including g4dn.12xlarge (four
T4 GPUs, 48 2.5 GHz Cascade Lake 24C processors), the g4dn.metal (eight T4 GPUs,
96 2.5 GHz Cascade Lake 24C processors, p3dn.24xlarge (8 V100 GPUs, 96 Intel Sky-
lake 8175 CPU processors) and the p4d.24xlarge (8 A100 GPUs, 96 Intel Cascade Lake
P-8275CL processors), with the largest acceleration observed with the p4 machine fam-
ily (with NVIDIA A100s). NVIDIA also benchmarked four somatic callers, and achieved
speedups ranging from 4× to 42× with a 50 × human genome. In this somatic variant
calling study, they comparing an m5 machine to the g4dn.12xlarge (with four T4 GPUs),
though they did not benchmark the newer compute-optimized A100 and V100 GPU
machines [16]. Relatedly [13], benchmarked GWAS workflows using Spark Clusters (not
NVIDIA Parabricks) on Google Cloud Platform (GCP; using standard n2 machines)

Page 3 of 15O’Connell et al. BMC Bioinformatics (2023) 24:221 	

and AWS (machines not specified) and found comparable performance between cloud
platforms. While several of these studies have shed light on the performance of GATK
HaplotypeCaller using Parabricks, fewer studies have compared CPU and GPU perfor-
mance across a range of germline and somatic variant callers, or compared performance
across AWS, GCP and an NVIDIA DGX cluster. Benchmarking a range of algorithms on
several platforms and hardware configurations is important to inform future decisions
around algorithmic, hardware and platform selection.

Here, we benchmark two germline variant callers and four somatic variant callers
comparing traditional × 86 CPU algorithms with GPU-accelerated algorithms imple-
mented with NVIDIA Parabricks on AWS and GCP, and benchmark GPU-accelerated
algorithms on an NVIDIA DGX cluster. In the case of GPU-accelerated algorithms, we
compare 2, 4, and 8 GPU configurations. For germline callers, we observed speedups of
up to 65x (GATK HaplotypeCaller) and found that performance scaled linearly with the
number of GPUs. We also found that because GPUs run so quickly, researchers can save
money by using them for germline variant callers. Alternatively, somatic variant callers
achieved speedups up to 56.8 × for the Mutect2 algorithm, but surprisingly, did not scale
linearly with the number of GPUs in some contexts, emphasizing the need for algorith-
mic benchmarking before embarking on large-scale projects where sub-optimal optimi-
zation can substantially increase costs.

Results
CPU baseline across cloud platforms

CPU machine performance varied considerably between the c6i machine on AWS (c6i)
compared with the n2 machine on GCP for most analyses. For germline analyses, GCP
performed faster for DeepVariant (18.8 h) compared with AWS (22 h), whereas AWS
performed faster for HaplotypeCaller (36.2 h) compared with GCP (38.8 h; Table 1,
Fig. 1). Somatic runtimes favored AWS machines, except for Mutect2, where the n2
machine on GCP ran in 8.1 h compared with 16.9 h on AWS (Table 1, Fig. 1).

GPU performance across cloud platforms

For germline callers, 8-GPU runtimes were below 43 min for HaplotypeCaller and Deep-
Variant across both cloud platforms. On AWS, we observed faster runtimes for the A100
compared with the V100 GPU machines (p4 vs p3 machine families), but the differences
with 8 GPUs, where the number of CPUs were equal, were small for most workflows.
Further, comparisons between the 2 and 4 A100 GPU machines on GCP/AWS were not
precise because we were unable to limit the number of CPUs available for all AWS work-
flows due to constraints on available machine configurations (2 and 4 GPU machines
were not available). As such, execution time differences between the two cloud platforms
were biased towards AWS for some algorithms (DeepVariant and LoFreq with 2 GPUs)
that were able to take advantage of the additional CPUs and memory of the larger GPU
machine (see “Materials and methods” section). Although the two germline workflows
scaled linearly with the number of GPUs (Fig. 2), somatic callers ran faster with 4 versus
8 GPUs for Muse on AWS (but not GCP), and for Mutect2 and SomaticSniper on both
platforms (Fig. 2; Additional file 1: Figure S1). Compared with the CPU baselines, GPU
runs on AWS (p4 machines with A100 GPUs) led to acceleration of HaplotypeCaller up

Page 4 of 15O’Connell et al. BMC Bioinformatics (2023) 24:221

Table 1  Results of benchmarking for AWS, GCP and NVIDIA DGX workflow runs

Platform Pipeline VM-type Variant-
caller

Time (min) Time (h) Cost ($) Fold
acceleration

% cost-
savings

AWS Germline C6i.8xlarge DeepVari-
ant

1317.3 21.96 29.9 – –

GPU2 145.16 2.42 29.61 9.07 0.83

GPU4 97.07 1.62 19.80 13.57 33.68

GPU8 42.19 0.7 21.95 31.22 26.49

GCP n2-32 1128 18.8 32.9 – –

GPU2 156 2.6 19.4 7.2 41.03

GPU4 72 1.2 18.3 15.7 44.38

GPU8 42.6 0.71 20.9 26.5 36.47

DGX GPU2 87.9 1.47 – – –

GPU4 49.1 0.82 – – –

GPU8 27.05 0.45 – – –

AWS Germline C6i.8xlarge Haplotype-
Caller

2175.9 36.26 49.32 – –

GPU2 131.99 2.2 26.93 16.49 45.41

GPU4 88.27 1.47 18 24.65 63.49

GPU8 41.51 0.69 21.60 52.42 56.21

GCP n2-32 2328 38.8 67.9 – –

GPU2 118.8 1.98 13.5 19.6 80.12

GPU4 57.6 0.96 14.1 40 79.23

GPU8 35.4 0.59 17.5 65.8 74.23

DGX GPU2 64.6 1.08 – – –

GPU4 39 0.65 – – –

GPU8 24.4 0.41 – – –

AWS Somatic C6i.8xlarge LoFreq 180.2 3 4.1 – –

GPU2 145.14 2.42 29.61 1.24 − 625.07

GPU4 109.23 1.82 22.28 1.65 − 445.68

GPU8 57.18 0.95 29.75 3.15 − 628.55

GCP N2-32 277.8 4.63 8.1 – –

GPU2 155.2 2.59 19 1.8 − 134.5

GPU4 110.9 1.85 27.1 2.5 − 235

GPU8 61.4 1.02 30.1 4.5 − 271

DGX GPU2 113.71 1.9 – – –

GPU4 70.41 1.18 – – –

GPU8 49.5 0.83 – – –

AWS Somatic C6i.8xlarge Muse 425.1 7.09 9.6 – –

GPU2 65.17 1.09 13.29 6.52 − 37.97

GPU4 61.35 1.02 12.52 6.93 − 29.88

GPU8 22.27 0.37 11.59 19.09 − 20.23

GCP N2_32 621.8 10.36 18.1 – –

GPU2 44.2 0.74 5.4 14.1 70.1

GPU4 32.4 0.54 7.9 19.2 56.2

GPU8 28.5 0.48 14 21.8 22.9

DGX GPU2 36 0.6 – – –

GPU4 23.84 0.4 – – –

GPU8 22.7 0.38 – – –

AWS Somatic C6i.8xlarge Mutect2 414.51 6.91 9.40 – _

GPU2 28.4 0.47 5.79 14.60 38.34

GPU4 21.54 0.36 4.39 19.24 53.23

Page 5 of 15O’Connell et al. BMC Bioinformatics (2023) 24:221 	

AWS results presented here are for the p3 family with the NVIDIA Tesla V100 GPU, results for the p4 family with the A100
GPU are shown in Additional file 1: Table S1

Table 1  (continued)

Platform Pipeline VM-type Variant-
caller

Time (min) Time (h) Cost ($) Fold
acceleration

% cost-
savings

GPU8 28.6 0.48 14.88 14.50 − 58.36

GCP N2_32 487.7 8.13 14.2 – –

GPU2 32.9 0.55 4.03 14.8 71.63

GPU4 16.7 0.28 4.1 29.3 71.29

GPU8 31 0.52 15.2 15.7 − 7.06

DGX GPU2 19.17 0.32 – – –

GPU4 17.2 0.29 – – –

GPU8 23.4 0.39 – – –

AWS Somatic C6i.8xlarge SomaticS-
niper

391.9 6.53 8.88 – –

GPU2 83.7 1.4 17.07 4.68 − 92.28

GPU4 134.12 2.24 27.36 2.92 − 208.11

GPU8 144.48 2.41 75.17 2.71 − 746.54

GCP N2_32 482.8 8.05 14.1 – –

GPU2 84.8 1.41 10.4 5.7 26.18

GPU4 69.1 1.15 16.9 7 − 20.33

GPU8 100.5 1.68 49.3 4.8 − 250.2

DGX GPU2 77.54 1.29 – – –

GPU4 65 1.08 – – –

GPU8 63.5 1.06 – – –

Fig. 1  Comparison of execution times of variant calling algorithms on CPU and GPU environments between
AWS and GCP. A 32 vCPU machine with the latest processors was used for CPU benchmarking on both cloud
platforms. Here we show results for varying numbers of NVIDIA Tesla V100 GPUs running the Parabricks
bioinformatics suite for AWS, and NVIDIA Tesla A100 GPUs for GCP

Page 6 of 15O’Connell et al. BMC Bioinformatics (2023) 24:221

to 65.1x, DeepVariant up to 30.7x, Mutect2 up to 56.8x, SomaticSniper up to 7.7x, Muse
up to 18.9x, and Lofreq up to 3.7x (Table 1). On GCP, GPUs resulted in acceleration of
HaplotypeCaller up to 65.8x, DeepVariant up to 26.5x, Mutect2 up to 29.3x, SomaticS-
niper up to 7.0x, Muse up to 21.8x, and LoFreq up to 4.5x.

Although GPU machines are much more expensive on a per hourly basis than CPU
machines, the accelerated runtimes resulted in cost savings for most algorithms (Fig. 3).
Leveraging GPUs on AWS with the p3 machine (with V100 GPUs) resulted in cost

Fig. 2  GPU benchmarking results for NVIDIA Tesla GPUs. On GCP and the DGX results are shown for A100
GPUs, whereas AWS results are shown for the V100 GPU runs

Fig. 3  Comparison of AWS (V100 GPU machine) versus GCP GPU cost savings per variant caller. Percentage
of total cost savings shows higher cost savings using GPUs in algorithms optimized for GPU-acceleration, but
losses when algorithms are not well optimized

Page 7 of 15O’Connell et al. BMC Bioinformatics (2023) 24:221 	

savings up to 63% for HaplotypeCaller with 8 GPUs and up to 21% for DeepVariant with
8 GPUs (Additional file 1: Table S1). Using the p4 machine with the A100 GPU resulted
in savings of 63% for HaplotypeCaller with 4 GPUs, 34% for DeepVariant with 4 GPUs,
and 53% for Mutect2 with 4 GPUs (Table 1).

On GCP GPU runs resulted in cost savings of up to 80% for HaplotypeCaller with 2
GPUs, 44% for DeepVariant with 4 GPUs, 72% for Mutect2 with 4 GPUs, 26% for Somat-
icSniper with 2 GPUs, and up to 70.1% for Muse with 2 GPUs. However, on both plat-
forms, algorithms that were not well optimized cost much more to run with GPUs rather
than CPUs because the difference in runtimes was not sufficient to offset the extra GPU
cost (Fig. 3; Additional file 1: Figure S4). For example, CPU runs of LoFreq cost less than
$9/sample to run on both platforms, but as much as $30 with GPUs (Additional file 1:
Fig. S2). Likewise, CPU runs of SomaticSniper cost less than $14.5/sample on both plat-
forms, but as much as $75 on AWS with 8 GPUs.

For well optimized algorithms, results varied between variant callers on which num-
bers of GPUs were the fastest (ranging from 2 to 8); subsequently cost savings reflect
a balance between speed and cost of a particular machine type that is not consistent
between algorithms or cloud providers. For example, A100 GPU runs were expensive
on AWS because the p4d.24xlarge machine type on-demand price is $32.8/h, whereas
the A100 machine type ranges from $12.24/h for a 4 GPU machine, to $24.5/h for an
8 GPU machine. On GCP, the a2-highgpu machine types range from $7.4/h (2 GPUs)
to $29.4.00/h (8 GPUs). Alternatively, CPU runs were slightly cheaper on AWS with
an on-demand price of $1.36/h compared with $1.75 on GCP. Interestingly, because
the somatic callers did not scale with additional GPUs, the greatest increase in accel-
eration (and thus cost savings) was observed with 2 GPUs. Adding additional GPUs to
the somatic runs resulted in minor improvements in runtimes (if any), but substantial
increases in costs/hour. Prices here are given for the northern Virginia region calculated
(at the time of writing) using the pricing calculators from the respective cloud service
providers. As time goes on, these machine types will likely become less expensive.

GPU performance on the DGX

Germline workflows ran considerably faster on the DGX than on the cloud platforms,
with HaplotypeCaller finishing in 24.4 min and DeepVariant finishing in 27.1 min with 8
GPUs (Fig. 2; Additional file 1: Figure S1). Somatic variant callers were not faster in most
cases than the cloud platforms, and in one case, ran slower than on the cloud (Somatic-
Sniper; Fig. 2; Additional file 1: Figure S1). Interestingly, the pattern we observed in the
cloud where the 4 GPU runtimes were the fastest for Muse and SomaticSniper did not
manifest on the DGX, where the 8 GPU runs were the fastest for all algorithms except
Mutect2 (Fig. 2; Additional file 1: Figure S1). For Mutect2, the 4 GPU run was still the
fastest on the DGX, but the 8 GPU run was faster on the DGX than on both AWS/GCP
(Additional file 1: Fig. S1).

We also tested the effect of CPU number on performance of GPU runs. On AWS and
GCP the GPU machine types are preconfigured (and thus unalterable) with 12 CPUs/1
GPU, but on the DGX we were able to modify the number of CPUs for each run. We

Page 8 of 15O’Connell et al. BMC Bioinformatics (2023) 24:221

found that adding CPUs does decrease runtimes (increase performance), but that reduc-
tion of runtimes plateaued after 48 CPUs (Additional file 1: Fig. S5).

Discussion
The acceleration provided by GPU-accelerated algorithms confers several advantages to
researchers. First, GPU-acceleration enables researchers to rapidly run multiple algo-
rithms for the cost of running a single CPU run [19]. Different variant callers exhibit
biases leading to slightly different variant calls [3]. Combining calls across algorithms
can improve accuracy, albeit with a slightly higher type I error. Future studies could help
better understand this trade off by comparing false positive and negative rates for dif-
ferent strategies of combining calls across algorithms such as majority rule versus con-
sensus site calls. Another advantage of GPU-accelerated genomic workflows is that they
allow researchers to process more samples on a fixed budget. Academic research pro-
grams are often constrained by limited funding; the use of GPU-acceleration may allow
researchers to reduce compute costs (and labor overhead) and thus process more sam-
ples for the same amount of money. Finally, GPU-accelerated algorithms enable near-
real-time decision making. Pathogen biosurveillance benefits from rapid data processing
to identify novel pathogens and could help policymakers to act more quickly during an
outbreak [20]. Likewise, faster clinical test processing could lead to more timely patient-
care decisions in a patient-care settings.

Cloud platform considerations

CPU‑only runs

As more research programs migrate to cloud platforms, researchers will need to make
decisions about which platform provides the most advantages for both performance
and cost considerations. CPU runs were faster on the AWS c6i.8xlarge machine than on
the GCP n2-32 for four algorithms, while DeepVariant and Mutect2 ran faster on GCP
(Fig. 1). While the AWS machines use the 3rd generation Intel Ice Lake processors, the
GCP n2 machines default to the 2nd generation Cascade Lake processors, although Ice
Lake is available in some regions/zones. This difference in processor generation most
likely explains the differences in runtime we observed between cloud platforms, unless
unaccounted-for factors are also influencing observed variation. Past work within our
research group showed that reduced runtimes driven by using the latest CPU processors
outweighs the increased per-second cost (TC unpublished) suggesting that researchers
should also aim to use the latest processors for CPU platforms.

Another consideration that researchers should be aware of in the near term is that
AWS is migrating to newer ARM-based machine types, rather than × 86 architectures.
We had trouble installing existing software on the ARM-based machines, and thus used
the c6i.8xlarge machine which retains the × 86 architecture. This could present chal-
lenges for researchers in the future on AWS as the platform migrates more machine
types to ARM-based architectures, necessitating the rewriting and/or compiling of com-
mon software. On GCP, we chose the N2 machine family as a balance between perfor-
mance and cost. GCP does offer the compute-optimized C2 machine family, which may
run faster than the N2 machines (it also uses Cascade Lake processors), but we did not
benchmark those machines here. Further, future work could quantify CPU plateaus of

Page 9 of 15O’Connell et al. BMC Bioinformatics (2023) 24:221 	

each variant caller to help optimize the ideal CPU machine type, particularly for design-
ing cloud-based computing clusters [13].

GPU considerations on the cloud

For germline workflows, AWS and GCP performed very similarly for both speed and
cost when using 8 A100 GPUs, although the 2 and 4 GPUs runs exhibited more varia-
tion (Figs. 2, 3). To quantify the balance between cost and performance on each cloud
platform, we calculated a cost ratio metric by dividing the cost of the workflow by the
xSpeedup for a GPU run when compared to the CPU run for that workflow. Thus, a
lower cost ratio indicates a better value for a given GPU configuration (Table 1; Fig. 4).
For the germline variant callers, the best cost ratio on both platforms used 8 GPUs,
and the ratio for AWS and GCP was similar enough that we feel it should not impact
the choice between cloud providers. For somatic variant workflows, the best cost
ratio was usually 2–4 GPUs, as these workflows were less optimized (substantially
more expensive relative to speed gains) to use 8 GPUs on the cloud. Further, because
LoFreq and SomaticSniper were less accelerated, their high cost ratio suggests that
it is not worth the extra cost to run these workflows using GPUs with the version of
Parabricks we tested. One caveat to these findings is that we used synthetic somatic
data (though based on sites from a real patient), and some of our findings could be
artifacts of our somatic variant sampling design. Future work could repeat similar
analyses using a variety of somatic variant samples and test if different variant num-
bers or allele frequency variation impact algorithmic performance on GPU platforms.
The newest version of Parabricks may also address some of these biases. Further, we
observed faster runtimes with 4 GPUs compared with 8 GPUs for Mutect2 (on all
platforms) and SomaticSniper (on GCP), and in fact, for Mutect2, using 8 GPUs was

Deep
Variant

Haplotype
Caller LoFreq Muse Mutect2 Somatic

Sniper

0

5

10

Variant Caller

C
os

t R
at

io
 (U

SD
)

VM Type
GPU2
GPU4
GPU8

GPU Cost per Fold−Speedup

Fig. 4  Comparison of AWS V100 versus GCP A100 GPU cost ratio per variant caller. Cost ratio is the ratio
between cost per hour and fold speed-up. Cost per fold-speedup shows the benefit of harnessing GPU over
CPU in select algorithms, while other algorithms are more cost-efficient with CPUs when using the version of
Parabricks that we benchmarked

Page 10 of 15O’Connell et al. BMC Bioinformatics (2023) 24:221

barely faster than using only 2 GPUs. We attempt to explain these results but hypoth-
esizing that either (1) the algorithm is hard coded to only use up to 4 GPUs, or (2)
the MPI used is overloaded by adding additional GPUs. We struggled to compare our
results with those of [16] because the NVIDIA study only presented results for the T4
GPU machine with 4 GPUs. Further, they benchmarked on 50 × whole genome sam-
ples compared with our 30 × data, making it difficult to directly compare run times.
Nonetheless, future releases of Parabricks may resolve the issue with 4 versus 8 GPUs,
but more work is needed to understand the underlying causes of these patterns.

GPU-accelerated bioinformatic workflows are still relatively new to the cloud, and as
such, not all tools are readily available everywhere. For example, while we were conduct-
ing our analyses, Parabricks did not offer a Marketplace solution for GCP, although it has
since been released. Likewise, the Marketplace solution on AWS offered a user-friendly
way to access the Parabricks software suite without purchasing an annual license, but
this machine image did not support the p4 machine family with the A100 GPUs. None-
theless, although we were able to install Parabricks on the A100 machine on AWS, this
machine type was not readily available (at the time of writing) in most regions, and it was
difficult to procure this machine type to conduct our benchmarking. Perhaps using spot
instances would have been a better solution for these difficult to procure machine types.
After we conducted our study, NVIDIA has now made Parabricks free to download, and
also made it available on several platforms, including Terra and Amazon Omics. Finally,
we observed some decreases in runtime between the A100 and V100 GPU machines
on AWS (Fig. 5). However, differences were relatively minor when using 8 GPUs—less
than a minute for DeepVariant and 8 min for HaplotypeCaller. The 8 GPU p3 machine
also uses newer Intel CPU processors, which may explain some of this difference. Future
work could investigate the relative impact of the GPUs versus CPUs when running GPU-
accelerated algorithms to better inform machine selection. Nonetheless, while the A100
machine type is difficult to obtain and was not available with the Marketplace machine

Fig. 5  Comparison of runtimes between V100 and A100 GPU machines on AWS

Page 11 of 15O’Connell et al. BMC Bioinformatics (2023) 24:221 	

image, we recommend using the V100 GPU machine without significant cost to perfor-
mance (Table 1, Additional file 1: Table S1; Fig. S3).

On‑premises computing clusters

For a myriad of reasons, some bioinformatic analysis will not migrate to the cloud,
thus requiring on-premises infrastructure. Although not every institution will have a
DGX cluster with A100 GPUs available, we show here that Parabricks runs well in an
on-premises environment. For those looking to achieve the fastest possible runtimes
in a production environment, the DGX ran considerably faster than AWS or GCP for
germline callers, reducing runtimes for HaplotypeCaller by 8 min and DeepVariant by
15 min, differences that could be significant at large enough scales. We attribute these
differences to the network communication between GPUs and CPUs on the machines,
which is better optimized on the DGX compared with cloud-based instances, where
GPUs may not be located in as close of proximity.

Conclusions
We found that germline variant callers were well optimized with Parabricks and that
GPU-accelerated workflows can result in substantial savings of both time and costs.
Alternatively, somatic callers were accelerated, but exhibited substantial variation
between algorithms, number of GPUs, and computing platform, suggesting that bench-
marking algorithms with a reduced dataset is important before scaling up to an entire
study or running at production scale. Though early days for GPU-accelerated bioinfor-
matic pipelines, ever faster computing processors bring us closer to important societal
aims such as tracking pathogens in near real-time to monitor emerging pandemics or
enabling milestones in the field of personalized medicine.

Materials and methods
Sampling and algorithms

We benchmarked six variant callers for CPU and GPU speed and cost. Herein, we defined
algorithms that are well optimized for GPUs as those that resulted in both time and cost
savings when run with GPUs compared with CPU-only runs. We conducted all bench-
marking on the individual ‘HG002’ from the Genome in a Bottle Consortium [21, 22]
hosted by the National Institute of Standards and Technology and made available as part
of the Precision FDA Truth Challenge V2 (https://​preci​sion.​fda.​gov/​chall​enges/​10). We
down-sampled the fastq files to 30 × coverage using Samtools v1.9 [23]. We used Grch38
as our reference genome downloaded from the GATK Reference Bundle. Our germline
variant calling pipeline evaluated two germline variant callers: HaplotypeCaller v4.2.0.0
[24, 25] and DeepVariant v.1.1.0 [24]. GPU benchmarking used Parabricks v. 3.7.0-1. For
germline callers we used ‘Germline Pipeline’ for GATK HaplotypeCaller, and for Deep-
Variant we used ‘DeepVariant Germline Pipeline`. Each of these pipelines take fastq files
as inputs and output unfiltered variant call format (VCF) files. CPU benchmarking was
conducted by writing custom workflows using Snakemake v.6.6.1 [26], following best
practices for each tool and exactly matching the workflows used by Parabricks (Data and
Materials). In short, our HaplotypeCaller pipeline mapped to reference using ‘bwa mem

https://precision.fda.gov/challenges/10

Page 12 of 15O’Connell et al. BMC Bioinformatics (2023) 24:221

v.0.7.15’ [27] with the ‘threads’ flag = $CPUs, sorted using Samtools [23], marked dupli-
cates and base quality score recalibration using GATK v.4.2.0.0, and then called variants
with HaplotypeCaller (-native-pair-hmm-threads = $CPUs). Likewise, our DeepVariant
pipeline mapped to reference with bwa mem, sorted with Samtools, marked duplicates
with GATK, then ran DeepVariant as a shell script (-num_shards = $CPUs).

Our somatic variant calling pipeline evaluated four somatic variant callers: Mutect2
[25], SomaticSniper [28], Muse [29], and LoFreq [30]. While our full workflows are
described in detail on our GitHub repository, we outline the general steps for each algo-
rithm here. Mutect2 v.4.2.0.0 was run with a single command (with –native-pair-hmm-
threads = $CPUs). SomaticSniper v.1.0.5.0 was run with ‘bam-somaticsniper’ command
with single threading, followed by filtering with the Perl scripts distributed with the
main program. LoFreq v.2.1 was run with a single command with threads = $CPUs, and
finally Muse v.2.0 was run with two steps, sump and call with single threading.

We generated synthetic somatic tumor data using SomatoSim v1.0.0 [31]. We added
198 single nucleotide polymorphisms (SNPs) at random variant allele frequencies rang-
ing from 0.001 to 0.4 (randomly generated using custom python scripts). Sites were
selected from the ICGC Data Portal ovarian cancer patient DO32536 (https://​dcc.​icgc.​
org/​donors/​DO325​36?​mutat​ions=%​7B%​22size%​22:​50,%​22from%​22:​151%​7D). We
used the BAM file from the HaplotypeCaller pipeline (i.e., MarkDuplicates, BaseRe-
calibration, and ApplyBQSR were run prior to the mutation process) as the input for
SomatoSim. For somatic variant callers, we used the Parabricks variant caller scripts
(‘mutectcaller’, ‘somaticsniper_workflow’, ‘muse’, ‘lofreq’) which take BAM files as input
and output VCF files. Each Parabricks tool was compared to a compatible CPU com-
mand as listed in the Parabricks 3.7 documentation. We used Snakemake scripts as
described for germline callers. For benchmarking of MuSE, we used version v2.0 and set
the number of threads to 1 to replicate MuSE v1.0 lack of parallel computing because of
version conflicts with MuSE v1 in our compute environment. We created a conda envi-
ronment before running each workflow because we found that using the ‘–with conda’
flag in Snakemake dramatically increased run times. After initial algorithmic exploration
we recorded the time of our final workflow run. We observed very minor variation in
run times for serially run GPU workflows. Complete workflows are described along with
all scripts necessary to repeat our analyses at https://​github.​com/​kyleo​conne​ll/​gpu-​accle​
rated-​genom​ics.

GCP configuration

Benchmarking on GCP leveraged virtual machines that were launched programmatically
for CPU machines, or manually for GPU machines. On GCP, a vCPU is implemented as
a single hardware hyper-thread. By default, GCP physical hardware cores use simultane-
ous multithreading such that two vCPUs are assigned to each core. Our CPU workflows
used the ‘n2-standard-32’ machine type with Intel Xeon Cascade Lake processors with
32 vCPUs and 128 GB of memory. We assigned 1 TB of EBS storage to our instance. We
launched these machines using a startup script that installed the conda environment,
then ran the Snakemake workflows. All data was already loaded on a machine image, and
runtimes were concatenated from each Snakemake rule using a custom script available

https://dcc.icgc.org/donors/DO32536?mutations=%7B%22size%22:50,%22from%22:151%7D
https://dcc.icgc.org/donors/DO32536?mutations=%7B%22size%22:50,%22from%22:151%7D
https://github.com/kyleoconnell/gpu-acclerated-genomics
https://github.com/kyleoconnell/gpu-acclerated-genomics

Page 13 of 15O’Connell et al. BMC Bioinformatics (2023) 24:221 	

in our GitHub repository. We also benchmarked the older generation E2 family of pro-
cessors but found the run times to be much slower and thus only present the results for
N2 processors here.

GPU benchmarking on GCP used the accelerator-optimized a2-highgpu machine
types with two A100 GPUs, 24 vCPUs (Intel Xeon Cascade Lake processors) and 170 GB
RAM, four A100 GPUs with 48 vCPUs and 340 GB RAM, and eight A100 GPUs with 96
vCPUs and 680 GB RAM. One virtual machine was utilized with 4 TB of elastic block
storage, which we stopped and resized between runs.

AWS configuration

Benchmarking on AWS also used multiple virtual machines for CPU and GPU bench-
marking. Similar to GCP, AWS assigns two vCPUs to each physical core to enable multi-
threading. CPU benchmarking used the C6i.8xlarge machine type, which has a 3rd
generation Intel Xeon Scalable processor (Ice Lake 8375 C) with 32 vCPUs and 64 GiB
RAM. We assigned 800 GB of EBS storage to our instance. We did some preliminary
testing with the new ARM-based processors (C7g family) but had issues with installing
several of the dependencies (particularly with mamba/conda), suggesting that a migra-
tion to ARM-based processors may prove problematic for bioinformatics in the cloud.

We benchmarked two GPU machine families. First, we benchmarked the p4 machine
family which is similar to GCP a2-highgpu machines utilizing the latest NVIDIA A100
Tensor Core GPUs with 8 GPUs with 96 vCPUs (Intel Xeon Cascade Lake P-8275CL)
and 1152 GiB RAM. AWS currently only has one machine type with A100 GPUs, the
p4d.24xlarge, which only runs with 8 GPUs. To ensure consistency with GCP, we ran the
8 GPU machine, but specified the number of GPUs to use in our Parabricks commands
for the smaller numbers of GPU runs. As this machine type was not compatible with the
marketplace image (see below) we installed Parabricks manually using scripts provided
by NVIDIA. When possible (–cpu flag available) we limited the number of CPUs avail-
able with the p4 machine, but most analysis did not allow us to control the number of
CPUs. For example, we ran HaplotypeCaller with 2 GPUs, but 96 CPUs, compared with
on GCP where the machine had 2 GPUs and 24 CPUs.

To compare GPU and CPU configurations directly with GCP, we further benchmarked
the p3 machine family using the ‘NVIDIA Clara Parabricks Pipelines’ AWS Market-
place image. At the time of writing the image supported V100 GPUs (but not A100
GPUs), which are an older model of Tensor Core GPU, on machine types p3.8xlarge
with 4 GPUs, and 32 Intel Broadwell E5-2686 v4 CPUs. We also benchmarked on the
p3dn.24xlarge with 8 GPUs and 96 Intel Skylake 8175 CPUs. The Marketplace image
also had Parabricks preinstalled at a cost of $0.30/h (NVIDIA has since made Parabricks
free). This configuration allowed us to directly compare 4 and 8 GPU machines with
equal CPU numbers between AWS and GCP.

DGX configuration

We also conducted GPU benchmarking on an NVIDIA DGX Cluster (DGX SuperPOD),
which is a computing cluster with six DGX A100s, each of which contains eight NVIDIA
A100 GPUs and 64 core AMD Rome CPUs with 1 TB RAM. Although the DGX clus-
ter is composed of four DGX A100 components, resulting in a total of 48 A100 GPUs

Page 14 of 15O’Connell et al. BMC Bioinformatics (2023) 24:221

available, Parabricks is only able to run on a single DGX A100 system, thus limiting any
Parabricks analyses to 8 GPUs. Jobs were launched using a Kubernetes-based scheduler,
allocating a max memory of 300 GB, and matching the GPU and CPU configurations of
the GCP/AWS runs, except GATK HaplotypeCaller. For this workflow, we benchmarked
times for 8 GPUs using 24, 48, 96, and 124 CPUs to test the effect of the number of CPUs
on execution time. For all other algorithms, we ran at least three iterations of each run to
ensure consistency of results, and present the time of the final run.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​023-​05292-2.

Additional file 1. Additional results of benchmarking on AWS. Table S1 shows NVIDIA A100 GPU machine bench-
marking results, and figures show benchmarking the NVIDIA V100 GPU machine.

Acknowledgements
We thank G. Barnett and J Fenwick for help troubleshooting Parabricks install and analyses, and the Deloitte Center for AI
computing for help getting onboarded to the DGX cluster.

Author contributions
KAO, CJL, TBC, DM, VRB, and JAK conceived the study. KAO, ZBY, RAC, and CJL designed the study. KAO, ZBY, RAC, and CJL
ran cloud-based analyses. KAO and JJC ran DGX analyses. KAO, ZBY and HTE wrote the manuscript, and all authors read
and approved of the text.

Funding
Deloitte Consulting LLP funded all aspects of this work.

Availability of data and materials
The datasets supporting the conclusions of this article are available in the GitHub repository accessible at https://​github.​
com/​kyleo​conne​ll/​gpu-​accle​rated-​genom​ics.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Deloitte Consulting LLP is an alliance partner with NVIDIA, Amazon Web Services and Google.

Received: 20 July 2022 Accepted: 15 April 2023

References
	1.	 Langmead B, Nellore A. Cloud computing for genomic data analysis and collaboration. Nat Rev Genet.

2018;19(4):208–19.
	2.	 Nwadiugwu MC, Monteiro N. Applied genomics for identification of virulent biothreats and for disease outbreak

surveillance. Postgrad Med J; 2022.
	3.	 Zhao S, Agafonov O, Azab A, Stokowy T, Hovig E. Accuracy and efficiency of germline variant calling pipelines for

human genome data. Sci Rep. 2020;10(1):1–12.
	4.	 Liu B, et al. Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses. J

Biomed Inform. 2014;49:119–33.
	5.	 Cole BS, Moore JH. Eleven quick tips for architecting biomedical informatics workflows with cloud computing. PLoS

Comput Biol. 2018;14(3): e1005994.
	6.	 Franke KR, Crowgey EL. Accelerating next generation sequencing data analysis: an evaluation of optimized best

practices for Genome Analysis Toolkit algorithms. Genom Inform. 2020;18(1):e10.
	7.	 Tanjo T, Kawai Y, Tokunaga K, Ogasawara O, Nagasaki M. Practical guide for managing large-scale human genome

data in research. J Hum Genet. 2021;66(1):39–52.
	8.	 Augustyn DR, Wyciślik Ł, Mrozek D. Perspectives of using Cloud computing in integrative analysis of multi-omics

data. Brief Funct Genom. 2021;20(4):198–206.
	9.	 Grossman RL. Data lakes, clouds, and commons: a review of platforms for analyzing and sharing genomic data.

Trends Genet. 2019;35(3):223–34.

https://doi.org/10.1186/s12859-023-05292-2
https://github.com/kyleoconnell/gpu-acclerated-genomics
https://github.com/kyleoconnell/gpu-acclerated-genomics

Page 15 of 15O’Connell et al. BMC Bioinformatics (2023) 24:221 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	10.	 Grzesik P, Augustyn DR, Wyciślik Ł, Mrozek D. Serverless computing in omics data analysis and integration. Brief
Bioinform. 2022;23(1):bbab349.

	11.	 Koppad S, Gkoutos GV, Acharjee A. Cloud computing enabled big multi-omics data analytics. Bioinform Biol
Insights. 2021;15:11779322211035920.

	12.	 Leonard C, et al. Running genomic analyses in the cloud. Stud Health Technol Inf. 2019;266:149–55.
	13.	 Krissaane I, et al. Scalability and cost-effectiveness analysis of whole genome-wide association studies on Google

Cloud Platform and Amazon Web Services. J Am Med Inform Assoc. 2020;27(9):1425–30.
	14.	 Ray U et al. Hummingbird: efficient performance prediction for executing genomics applications in the cloud. In:

Presented at the computational approaches for cancer workshop; 2018.
	15.	 Rosati S. Comparison of CPU and Parabricks GPU enabled bioinformatics software for high throughput clinical

genomic applications; 2020.
	16.	 Benchmarking NVIDIA Clara Parabricks somatic variant calling pipeline on AWS | AWS HPC Blog. https://​aws.​amazon.​

com/​blogs/​hpc/​bench​marki​ng-​nvidia-​clara-​parab​ricks-​somat​ic-​varia​nt-​calli​ng-​pipel​ine-​on-​aws/. Accessed 28 July
2022.

	17.	 Benchmarking the NVIDIA Clara Parabricks germline pipeline on AWS | AWS HPC Blog. https://​aws.​amazon.​com/​
blogs/​hpc/​bench​marki​ng-​the-​nvidia-​clara-​parab​ricks-​germl​ine-​pipel​ine-​on-​aws/. Accessed 28 July 2022.

	18.	 Zhang Q, Liu H, Bu F. High performance of a GPU-accelerated variant calling tool in genome data analysis. bioRxiv;
2021.

	19.	 Crowgey EL, et al. Enhanced processing of genomic sequencing data for pediatric cancers: GPUs and machine
learning techniques for variant detection. Cancer Res. 2021;81(13_supplement):165–165.

	20.	 Gardy JL, Loman NJ. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat Rev Genet.
2018;19(1):9–20.

	21.	 Krusche P, et al. Best practices for benchmarking germline small-variant calls in human genomes. Nat Biotechnol.
2019;37(5):555–60.

	22.	 Zook JM, et al. Extensive sequencing of seven human genomes to characterize benchmark reference materials. Sci
Data. 2016;3(1):1–26.

	23.	 Li H, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
	24.	 Poplin R, et al. A universal SNP and small-indel variant caller using deep neural networks. Nat Biotechnol.

2018;36(10):983–7.
	25.	 Van der Auwera GA, O’Connor BD. Genomics in the cloud: using Docker, GATK, and WDL in Terra. O’Reilly Media;

2020.
	26.	 Mölder F. Sustainable data analysis with Snakemake. F1000Research 10; 2021.
	27.	 Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv Prepr. ArXiv13033997;

2013.
	28.	 Larson DE, et al. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioin-

formatics. 2012;28(3):311–7.
	29.	 Fan Y, et al. MuSE: accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and

specificity in mutation calling from sequencing data. Genome Biol. 2016;17(1):1–11.
	30.	 Wilm A, et al. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population hetero-

geneity from high-throughput sequencing datasets. Nucleic Acids Res. 2012;40(22):11189–201.
	31.	 Hawari MA, Hong CS, Biesecker LG. SomatoSim: precision simulation of somatic single nucleotide variants. BMC

Bioinform. 2021;22(1):1–13.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://aws.amazon.com/blogs/hpc/benchmarking-nvidia-clara-parabricks-somatic-variant-calling-pipeline-on-aws/
https://aws.amazon.com/blogs/hpc/benchmarking-nvidia-clara-parabricks-somatic-variant-calling-pipeline-on-aws/
https://aws.amazon.com/blogs/hpc/benchmarking-the-nvidia-clara-parabricks-germline-pipeline-on-aws/
https://aws.amazon.com/blogs/hpc/benchmarking-the-nvidia-clara-parabricks-germline-pipeline-on-aws/

	Accelerating genomic workflows using NVIDIA Parabricks
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Results
	CPU baseline across cloud platforms
	GPU performance across cloud platforms
	GPU performance on the DGX

	Discussion
	Cloud platform considerations
	CPU-only runs
	GPU considerations on the cloud
	On-premises computing clusters

	Conclusions
	Materials and methods
	Sampling and algorithms
	GCP configuration
	AWS configuration
	DGX configuration

	Anchor 22
	Acknowledgements
	References

