
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi 
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Zlobina et al. BMC Bioinformatics          (2023) 24:166  
https://doi.org/10.1186/s12859-023-05295-z

BMC Bioinformatics

Robust classification of wound healing 
stages in both mice and humans for acute 
and burn wounds based on transcriptomic data
Ksenia Zlobina1*, Eric Malekos1, Han Chen1 and Marcella Gomez1 

Abstract 

Background: Wound healing involves careful coordination among various cell types 
carrying out unique or even multifaceted functions. The abstraction of this complex 
dynamic process into four primary wound stages is essential to the study of wound 
care for timing treatment and tracking wound progression. For example, a treatment 
that may promote healing in the inflammatory stage may prove detrimental in the pro-
liferative stage. Additionally, the time scale of individual responses varies widely across 
and within the same species. Therefore, a robust method to assess wound stages can 
help advance translational work from animals to humans.

Results: In this work, we present a data-driven model that robustly identifies the 
dominant wound healing stage using transcriptomic data from biopsies gathered from 
mouse and human wounds, both burn and surgical. A training dataset composed of 
publicly available transcriptomic arrays is used to derive 58 shared genes that are com-
monly differentially expressed. They are divided into 5 clusters based on temporal gene 
expression dynamics. The clusters represent a 5-dimensional parametric space contain-
ing the wound healing trajectory. We then create a mathematical classification algo-
rithm in the 5-dimensional space and demonstrate that it can distinguish between the 
four stages of wound healing: hemostasis, inflammation, proliferation, and remodeling.

Conclusions: In this work, we present an algorithm for wound stage detection based 
on gene expression. This work suggests that there are universal characteristics of gene 
expression in wound healing stages despite the seeming disparities across species and 
wounds. Our algorithm performs well for human and mouse wounds of both burn and 
surgical types. The algorithm has the potential to serve as a diagnostic tool that can 
advance precision wound care by providing a way of tracking wound healing progres-
sion with more accuracy and finer temporal resolution compared to visual indicators. 
This increases the potential for preventive action.
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Background
Wound healing is a dynamic process consisting of 4 stages—hemostasis, inflamma-
tion, proliferation, and remodeling [1, 2]. Diagnosing the wound stage is important for 
developing appropriate treatment and improving wound care [3–5]. In practice, doctors 
monitor the progression of wounds through visual cues and adjust treatment in corre-
spondence with an individual’s response. However, waiting for visual cues may result in 
missed windows of opportunity to affect change in the trajectory of the wound. Tran-
scriptomic data has the potential to provide more timely information.

Transcriptomics of wound tissues is widely used for research purposes to investi-
gate biological reactions [6–12]. Differentially expressed genes at specific wound heal-
ing stages have been identified in previous works [8, 9, 13–17], but the signatures vary 
among experiments. The discrepancy might result from differences in experimental 
conditions or differing bioinformatic approaches. Aiming to identify the sources of dis-
crepancies is complicated by the fact that different time points are captured in different 
published datasets. However, a systematic comparison of wound healing transcriptomics 
between different wounds has shown that transcriptomic changes during wound healing 
demonstrate similar traits in diverse tissues (skin, muscles, internal organs, and nervous 
system) and species [18]. This meta-analysis was performed using the most significant 
gene ontology terms corresponding to the lists of genes highly expressed at different 
stages of wounding. The analysis performed by [18] indicates that at least some genes 
should demonstrate conserved expression patterns in different wounds. These genes 
might become clinical indicators of wound stages.

There are many challenges in pursuing a rigorous approach to assess the state of a 
wound and predicted outcomes. Data-based predictive models for wound diagnostics 
have been presented previously [19, 20]. In [19], the authors present a model to pre-
dict delayed healing based on medical records gathered from many patients and which 
includes many parameters. In [20], the composition of pro and anti-inflammatory mac-
rophages is predicted based on gene expression signatures of wound tissue. The former 
approach requires big data availability, while the latter relies on a few genes, making it 
sensitive to missing a small number of genes. There are few publicly available wound 
transcriptomic datasets, and among them, time point measurements are inconsistent 
[16, 21–24]. To highlight this, Additional file  1: Table  S1 lists several existing wound 
transcriptomic datasets with corresponding information, such as time points of tran-
scriptomic biopsies. The alignment between datasets can be visualized in Additional 
file 1: Figure S1. Therefore, a transcriptomic-based approach to assess wound stage must 
work in the absence of big data and be robust to the timing of biopsies and to large varia-
tions in gene expression measurement.

Wound healing stages follow a prescribed pattern; thus, it is reasonable to expect that 
a model based on gene expression profiles in wound healing can be constructed with 
widespread applicability. Moreover, we hypothesized that we could identify genes that 
are differentially expressed at specific stages universally across different wounds. Due 
to a lack of time points, most datasets do not cover all wound healing stages. A suit-
able method, then, is to resort to collecting several datasets in one analysis to achieve a 
finer temporal resolution. We develop a method that can leverage multiple distinct data-
sets at once and is guaranteed to provide optimal results with respect to the available 
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data independent of size. More specifically, we perform a comparative analysis of gene 
expression between several publicly available wound transcriptomic datasets from mice 
and humans. We search for genes that demonstrate similar expression dynamics in dif-
ferent wounds. Previous publications have represented time-dependent biological pro-
cesses as trajectories in a multidimensional space of gene expression [25–27]. In this 
paper, we consider wound healing as a trajectory in gene expression space and build a 
model for wound stage prediction.

We considered 10 publicly available wound transcriptomic datasets listed in Addi-
tional file 1: Table  S1. We note that the lack of longitudinal studies has presented the 
greatest challenge.

The criteria for dataset selection were:

the samples are from non-treated skin wounds
a sample from non-wounded skin exists (zero-point for reference)
at least three additional time points after wounding are included—presumably cover-
ing different stages of wound healing.

Only five datasets satisfy these requirements. The first three of these datasets are used 
for model training and the latter two for testing. These datasets include mouse surgical 
and burn wounds and human laceration and burn wounds.

This work aims to develop a tool to expand the use of transcriptomic data in the clini-
cal setting for translational work. The model presented in this paper is the first tran-
scriptomic-based tool proposed for distinguishing between the four traditional wound 
healing stages and can serve as a diagnostic tool in clinical settings. Real-time analy-
sis of the wound stage is necessary to achieve a timely and customized treatment. Fur-
thermore, this work can be leveraged to customize wound treatment by facilitating a 
sense-and-respond strategy for a feedback control systems approach to wound care 
[28]. It has been proposed that feedback control can be actively implemented as part 
of an automated healthcare system for precision medicine [29]. This complements cur-
rent work around the Internet of things (IoT) in Healthcare [30, 31]. In the future, the 
performance of the model may be improved as additional wound gene expression data 
becomes available.

Results
Wound stage detection algorithm outline

The outline of our approach to wound stage detection is shown in Fig. 1. We first reduced 
the gene space to only those genes that are highly differentially expressed at any given 
time point across the three training datasets, inclusive of mouse surgical wounds, mouse 
burn wounds, and human skin wounds. The genes were then clustered into groups based 
on their temporal gene expression dynamics. Thus, data dimensionality can be reduced. 
Instead of preserving individual gene expression as states, expression of dozens of genes 
with similar dynamics are grouped. The wound healing process can be described by the 
temporal evolution of the mean value gene expression over all genes within each cluster. 
This allows us to represent the wound stage at any given time by the relative expression 
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of the mean cluster values with respect to each other. Figure 1 presents a demonstrative 
example where temporal dynamics are grouped into three clusters.

The “mean cluster values” (C1, C2, C3,…) represent a space wherein the wound heal-
ing trajectory takes its course from wound onset to wound closure. Our task is to parti-
tion the n-dimensional space (where n is the number of clusters) into four regions that 
define each of the four wound healing stages (i.e., mathematically define the wound heal-
ing stages and trajectory). Our model should take as an input wound biopsy gene expres-
sion data, map the data to a point in this space, and, thereby, identify the wound healing 
stage that corresponds to our point of interest. To complete this task, we applied math-
ematical discrimination procedures to the space of “mean cluster values" as shown in 
Fig. 1. Two-dimensional projections are shown in Fig. 1, which aid in visualizing separa-
trices partitioning transcriptomic data from different wound stages.

Wound stages are not always defined in the description of the dataset analyzed; thus, 
we make careful assignments of the wound stage to each transcriptomic biopsy based on 
contextual information. In the figures that follow, all available data points across all time 
points are depicted in the projections of the cluster space. We train a machine learning 
(ML) classification model with a subset of the available data points and test with the 
remaining data points. We leverage an ML model known as a Support Vector Machine 
(SVM), which guarantees optimality and is suitable for relatively small datasets.

Selection of informative genes

We filtered the datasets as follows. Only genes with reliably repeating replicates were 
used for analysis. In addition, we required that the final set of predictive genes was pre-
sent in all three training datasets. Because we used both humans and mice, we required 

Fig. 1 The pipeline of wound healing stage detection by transcriptomic data. From a list of all measured 
genes ("Gene list"), only differentially expressed genes are selected and grouped into "clusters" according to 
expression dynamics. The average gene expression value within each cluster at any given time is referred to 
as a "mean cluster value.” In the schematic, there are three such clusters (C1, C2, C3), and wound healing is 
presented as a temporal trajectory in the "cluster space". Each colored circle represents a three-dimensional 
vector in the cluster space corresponding to a single time point from a transcriptomic times series. The 
regions of the cluster space can then be classified into stages. This analysis may include considering several 
projections of the three-dimensional cluster space on to a two-dimensional plane to find the best one for 
discriminating between wound stages
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that documented orthologous genes were expressed in both species (see "Methods, 
Filtering" for details). Only 1622 genes were present in all three training datasets after 
filtering.

Next, we identified highly differentially expressed genes. Only 58 genes qualified 
as candidates for wound healing stage indicators (see "Methods. Choosing the set of 
characteristic genes"). We note that the final set of differentially expressed genes was 
selected in a highly conservative fashion to ensure robustness.

The genes were divided into 5 clusters based on their expression dynamics during 
wound healing (see “Methods, Clustering” and Additional file 3: Table S3). The plots 
of gene expression dynamics of the resulting set of clustered genes are shown in Fig. 2.

We generally observe similar gene expression dynamics in each cluster. In contrast, 
the clusters exhibit distinct qualitative behavior, as can be seen by comparing images 
in the same row. Comparing images within the same column highlights the similari-
ties and differences in gene expression dynamics across species and wound types. The 
genes of the first cluster are downregulated from 0 to 72  h in all datasets, and the 
genes of the third cluster are mainly upregulated at the same interval. However, if we 
compare the last cluster of genes, we see early downregulation of genes in the surgical 

Fig. 2 Gene expression dynamics of common highly expressed genes in the three datasets. Each row 
represents the same dataset, and each column represents the same cluster of genes listed in the legend 
under each column. The bold blue line in each plot corresponds to the mean value of gene intensity within 
each cluster (calculated for each dataset separately). Vertical axis: log2(Intensity), horizontal axis—time in days
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wound that is not mirrored in either of the burn wounds. It is unknown whether the 
observed differences in this latter case are real or due to the low-resolution time steps 
masking the underlying gene expression dynamics. The lists of cluster genes and gene 
ontology analysis can be found in Additional file 3: Table S3.

To finalize the comparison of gene expression between the wounds, we normalized 
the mean cluster value (see "Methods. Clustering"). In Fig. 3, normalized mean cluster 
value dynamics from the three datasets are plotted. One can see that all five normal-
ized mean cluster gene expression values have very similar dynamics between wound 
datasets. Thus, the wound state at each time is represented by five numbers or by a point 
in 5-dimensional space. The wound follows a trajectory of healing in this 5-dimensional 
space.

After selecting the genes that will characterize the wound healing stage, we added two 
more wound gene expression datasets to the analysis: GSE28914 and GSE50425. Of the 
58 genes identified above, 48 genes were found in GSE28914 and 40 genes in GSE50425. 
Thus, each cluster is sufficiently represented in the added test datasets, allowing the 
application of the mean cluster dynamics approach.

Assignment of wound healing stages

In the datasets used for the model, wound healing stages are not rigorously defined, 
so there is some arbitrariness in assigning wound stages to specific time points in the 
data. Furthermore, wound healing stages are known to overlap. Therefore, we used gene 
expression intensity and timing to assign wound healing stages to the experimental data 
points.

The dataset GSE23006 contains the greatest number of time points, providing gene 
expression dynamics with the greatest detail. Many inflammatory genes in GSE23006 
are upregulated at 12 and 24 h, represented by clusters 2 and 3, respectively (Fig. 2). We 

Fig. 3 Normalized mean cluster value (J/J0) dynamics in three wound datasets. Clusters are indicated in Fig. 2
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assume that time points 12 h and 24 h coincide with the peak of inflammation. Unfortu-
nately, no other datasets under consideration contain these early time points and, simi-
larly, high upregulation of these genes. We mark these time points as the "inflammation" 
stage.

All data points before “inflammation” are considered to be the “hemostasis" stage. 
They are 6 h in GSE23006 and 2 h in GSE460.

To distinguish between late and very late wound healing stages, presumably corre-
sponding to proliferation and remodeling stages, we label the time points on days 3–7 as 
"proliferation" and those after day 7 as “remodeling”.

The complete map of assigned wound healing stages to data points is shown in Fig. 4. 
The assignments of wound healing stages to test datasets are required to assess the pre-
diction accuracy of the ML model in the following section.

Fig. 4 Map of wound healing stage assignment to publicly available datasets timepoints. Human dataset 
GSE8056 is represented by time intervals that are schematically shown with horizontal error bars

Fig. 5 Projections of clusters onto two-dimensional spaces with data points, where the color corresponds to 
assigned wound healing stages. Both training and test data points are shown
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Projections of cluster space

Five “mean cluster values” for each wound biopsy represent a five-dimensional space 
where the wound healing trajectory is defined. In Fig. 5, experimental data points cor-
responding to biopsies from five datasets are shown in projections to 2-d planes. Dif-
ferent projections help to identify subspaces that aid in distinguishing wound healing 
stages. This is apparent when clouds of same-colored points are clearly separable. Then, 
classifying the stages of wound healing reduces to finding optimal boundaries between 
the clouds of points corresponding to different stages in the space of clusters shown in 
Fig. 5.

Consider Fig.  5 in detail. In the plane (cluster3, cluster4), inflammation points (red) 
are easily distinguishable from all others. In (cluster1, cluster5) the hemostasis points 
(yellow) are grouped apart from both proliferation and remodeling (green & black). The 
plane (cluster2, cluster5) is suitable for separating proliferation and remodeling stages 
(green and black points); however, a nonlinear curve is needed.

A predictive model of wound healing stage detection

Despite the small number of time points available, we tested the possibility of creating 
a predictive ML model, specifically a multiclass classification model based on support 
vector machines (SVMs). Support vector machines classify data points by maximum-
margin hyperplane, i.e., the hyperplane that has the largest distance to the nearest 
training-data points [32]. Classification algorithms based on SVMs guarantee optimal 
solutions, are one of the most robust prediction methods and can be adapted to handle 
nonlinear classifications [33].

One replicate from each time point in GSE23006, GSE460, and GSE8056 datasets 
served as training data. Wound healing stages were assigned to each point in the train-
ing dataset, as shown in the first three lines of Fig. 4. The remaining two replicates from 
those datasets (32 samples), along with the datasets GSE28914 and GSE50425, served as 
test data. These datasets contain data from different patients, so at each time point, sev-
eral wounds are presented. There are 37 data points in the latter two datasets. The total 
number of sample points in the test dataset was 69.

The multiclass classification algorithm was organized as follows:

Step 1: Linear SVM classification in the gene cluster subspace {Cluster 3, Cluster 4, 
Cluster 5} is performed to separate inflammation data points.
Step 2: Polynomial SVM classification in {Cluster 1, Cluster 5} subspace is used to 
distinguish hemostasis data points from the rest (proliferation and remodeling).
Step 3: Polynomial SVM classification in the subspace {Cluster 2, Cluster 5} is used 
to distinguish proliferation versus remodeling data points.

The prediction results are shown in Fig. 6.
Figure 6 shows that the model incorrectly predicted two data points from day 7, which 

were predicted to correspond to proliferation instead of remodeling. This is likely due 
to the model’s inability to discriminate the exact transition from proliferation to remod-
eling, given the ambiguity due to the natural overlap of wound healing stages. A second 
incorrect prediction is from day 21, where hemostasis is predicted instead of remodeling. 
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This may be because the trajectory of wound healing is a loop that begins and ends in 
the same location of gene expression space—i.e., initial and end point transcriptomic 
profiles are highly similar.

Overall, in the described model setup, 66 of 69 data points are predicted as expected, 
in correspondence with manually assigned wound healing stages.

Sensitivity analysis

We present sensitivity analysis to demonstrate the robustness of the model to missing 
data and show that the model is not overfitting.

Sensitivity to the training set

As noted above, the datasets that have been used for training contain three replicates 
each, and only one replicate was selected for training, while the other two served as test 
data points. We varied the subset of data held for training and analyzed the performance 
of the model accordingly. Depending on which of the replicates is used for training, the 
performance of the predictive model varied, as shown in Fig. 7. However, for most of the 
test sets, there was no significant change in performance. The number of training points 
remained 16, while the number of test points was 69. In the worst-case scenario, the 
maximal number of wrong predictions was 11 points corresponding to a 16% error.

In many real situations, experimental data may contain errors or gene expression 
measurements may be missing. Our model is based on the expression of 58 genes but 
can still be used when a subset of the genes is missing in the data. The only “technical” 

Fig. 6 Wound healing stage prediction results. For each sampling time, the number of data points predicted 
to correspond with each stage is shown. The total number of tested data points and the number of 
erroneous predictions are in the last two columns. Green-shaded cells correspond to correct predictions and 
orange-shaded cells correspond to wrong predictions. Test data consists of replicates 2 and 3 from GSE23006, 
GSE460, GSE8056, and the full set of data points from GSE28914 and GSE50425
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requirement is—each cluster must be represented by at least one gene. We expected that 
fewer genes in each cluster would reduce the accuracy of wound stage prediction. We 
performed a sensitivity analysis of the model with respect to the number of available 
genes (see “Methods. Sensitivity analysis”). For this, we trained the model with the same 
set of genes and set of data points as described above, but the prediction on the test 
dataset was performed with a reduced subset of the 58 predictive genes. All data points 
were used in this test; that is, we applied the analysis to all timepoints from GSE23006, 
GSE460, GSE8056, GSE28914, and GSE50425.

The result of the sensitivity analysis is shown in Fig. 8.

Complexity analysis

We did not encounter computational challenges, given that only 85 transcriptomic data 
points were available. However, we considered the applicability of our approach to a 
more extensive dataset. To estimate the training time of our algorithm in the case of 
larger datasets, we artificially created data points. New data points were generated by the 

Fig. 7 Model error dependence on the training set. One replicate from each of the datasets {GSE23006, 
GSE460, GSE8056} was used in training. The total number of training points remained 16, and the number of 
test points remained 69

Fig. 8 Model prediction sensitivity analysis with respect to missing genes. 20 random sets of N genes 
were selected from transcriptomic datasets (N = 8, 12, 16, 20, 24, 28). 85 wound biopsies were tested. The 
percentage of correctly predicted points was calculated for each set of genes. The resulting means and 
standard deviations are plotted. The magenta bar represents the original prediction percentage in 69 test 
points (shown in Fig. 6.) based on all available genes
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multiplication of existing datapoint cluster values by a random number from the interval 
[0.8 1.2], i.e., by varying existing points within 20% of their original value. Training the 
algorithm five times for each training set size, we measured training time and then cal-
culated mean time over five runs. The result is shown in Fig. 9. For datasets larger than 
110 points, the dependence of training time on training set size is linear with a slope of 
2.5 (log–log scale). Thus, for big datasets, the time complexity of our algorithms can be 
estimated as O(n2.5).

Discussion
Investigation of wound healing is important not only for understanding but for improv-
ing treatment strategies and developing new-generation smart bandages for wound care.

Like many other biological processes, wound healing can be represented as a dynamic 
system that follows some prescribed trajectory. Here we consider wound healing in 
the multidimensional space of gene expression. For this, genes with a high fold-change 
of expression shared across various datasets were divided into five clusters based on 
expression dynamics. The average gene expression value in each cluster was used to rep-
resent the state of the wound as a point in a five-dimensional space. We hypothesized 
that such a representation could be used to predict the wound stage from gene expres-
sion measurements. A model was trained and tested on a relatively small amount of data 
due to limited publicly available longitudinal studies of acute wound healing. However, it 
gave promising results. It was shown that the wound stage can be predicted based on the 
level of expression of several indicative genes. Furthermore, averaging the genes within 
each cluster made the model robust to missing genes and experimental error as shown 
in the sensitivity analysis (see Fig. 9).

To investigate whether the gene clusters present any biological interpretations, we 
performed a gene ontology (GO) analysis of each cluster, see Additional file 3: Table S3 
[34]. We note that the lists of genes were too short to reach statistical significance. How-
ever, the GO terms that emerged suggest that each cluster reasonably corresponds to a 

Fig. 9 Complexity analysis: computer time required for the model training depends on the number of points 
in the training set. The original dataset is small, and big training sets were obtained by data augmentation. 
The slope shown by a straight line is 2.5
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relevant biological process in wound healing from "inflammation" for cluster 3 to "cell 
development" for cluster 5. In the future, additional data can be used to map cluster 
dynamics to the biological processes of wound healing.

We note that our method utilizes non-injured skin biopsy for normalization. This 
means a single biopsy from a wound is insufficient for stage detection. The model 
requires the ratio of expression in the current wound state to non-injured skin. We can-
not say if this is a consequence of variations in experimental setup or heterogeneity in 
the initial state of the skin [2, 35, 36]. With standardized data collection, we expect gene 
expression intensity rather than its ratio to healthy skin expression can be used in future 
models.

Our work supports the assumption that universal features of wound healing may be 
found even in different wound transcriptomic datasets (Fig. 3). Despite ongoing debates 
in the scientific literature about the applicability of the mouse skin wound model to 
humans [37, 38], we show similarities in both mouse and human data. We next consider 
the generalizability of the model to non-skin wounds. Several works compare the analy-
sis of wounds in different tissues [14, 18, 39]. We tested our model on transcriptomic 
data from non-skin wounds. Our model cannot predict the wound healing stage in the 
rat cornea wound dataset GSE1001 or the mouse oral wound data from the GSE23006 
dataset (results not shown).

The generation of new wound healing transcriptomics data may reveal that clusters 
suggested here can be improved to work on a broader range of wound conditions. Given 
the promising results of our technique across datasets, species, and wound types, we 
predict that our framework could serve as a basis for future models in different tissues. 
Even with the limited data available, we demonstrate that wound transcriptomic data 
can be utilized for future applications in medical diagnostics. Fine-tuning of gene clus-
ters and additional control experiments will help to refine the robust wound stage pre-
diction algorithm.

To our knowledge, this is the first attempt to create a clinically useful method for 
wound healing stage detection based on transcriptomic data. Of course, the develop-
ment of a similar method for distinguishing chronic vs. acute wounds is of high practi-
cal interest [40]. In practice, wounds are defined as chronic based on the time passed 
without healing. However, if we can track wound healing trajectories, we may be able to 
identify early indicators of chronicity.

Collecting more wound transcriptomic data in the future will allow researchers to 
develop more accurate models for determining the stage of the wound. The success of 
our model on a relatively small gene set leads us to estimate that a minimal laboratory 
chip that measures only about 60 genes would be sufficient for high-accuracy wound-
stage detection.

Conclusions
Wound healing stage detection is of interest, as it can help to make decisions on treat-
ment applications at the appropriate stage, and more than that, it can enhance the devel-
opment of smart bandages for precision medicine.

In this work, a method for wound healing stage detection based on gene expression is 
presented. The algorithm is universal for human and mouse wounds of burn and surgical 
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types. This approach can be applied in clinical settings. Further development of the algo-
rithm is needed to facilitate clinical applicability and may bring about a new diagnostic 
tool that will help to improve precision wound care.

Methods
Data selection

We initially considered 10 publicly available wound transcriptomic datasets listed in 
Additional file 1: Table S1.

The criteria for dataset selection were:

• The samples are from non-treated skin wounds
• A sample from non-wounded skin exists (zero-point for reference)
• At least three additional time points after wounding are included, presumably 

covering different stages of wound healing.

Only 5 datasets satisfy these requirements: GSE23006, GSE460, GSE8056, 
GSE50425 and GSE28914.

The mouse wound transcriptomic dataset GSE23006 was originally created for skin 
and oral mucosa wound comparison [14]. In this work we are using GSE23006-skin 
data. The timepoints represented in the dataset are 0 h, 6 h, 12 h, 24 h, 3d, 5d, 7d, and 
10 days after injury. The timepoints of the mouse burn wound dataset GSE460 are 0 h, 
2 h, 3d, and 14 days after injury. Human burn wound dataset GSE8056 [15] is formed 
of time intervals instead of points,0d, 1-3d, 4-7d, and > 7 days. We used these three 
transcriptomic datasets for creating and training the machine learning (ML)-model 
for wound stage detection.

Our training dataset consists of 16 biopsies from the above three wound datasets—
one replicate from each. We tested the model on the remaining replicates from the 
same datasets (32 sample points) and on two human skin wound datasets GSE28914 
[11] (timepoints: 0 h before and after injury,  3rd and  7th day) and GSE50425 (0 h, 14d 
and 21 days after injury). Several patients’ biopsies are presented at each time point. 
We considered each individual patient biopsy as a test point, thus having 37 individ-
ual biopsies from two test datasets. Thus, the test dataset consists of 69 data points.

Data filtering

Orthologous genes between mouse and human

To compare particular genes between human and mouse, we found orthologs—
homologous genes between species. All orthologous genes in mouse and human were 
matched by gene symbol to their homologene ID in the Human and Mouse Homology 
Class report. (Source: http:// www. infor matics. jax. org/ homol ogy. shtml).

The genes are considered for further analysis only if orthologs are found in all data-
sets under consideration.

http://www.informatics.jax.org/homology.shtml
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Filtering data of multiple genes in the same row

Although most probes in microarray transcriptomics exhibit a one-to-one mapping 
of probe-to-transcript, this is not always the case. Similarities between the nucleo-
tide sequences of different genes can result in non-unique mappings, witnessed in the 
form "gene1//gene2//gene3" in the datasets. To avoid faulty comparisons, we simply 
removed these rows from analysis.

Filtering data based on consistency of replicates

In all considered datasets each of n genes is presented as three replicates in m time-
points. We first denoted the timepoints by tj such that j = 0, . . . ,m− 1 , where the 
unwounded state is associated with j = 0 . Let Gk be an  Rnxm matrix composed of m time 
series gene intensity measurements for  kth replicate of each of n genes. Let the average 
gene intensity across the three replicates be given by

where the division operator is applied component wise. Then the percent relative error 
for each replicate is given by

with component wise operation in the division. Next, we want to find the average rela-
tive error for each time point across all genes and its standard deviation. This gives a 
sense of how much each replicate deviates from the average across the replicates inde-
pendent of the gene. Let the matrix

be a matrix composed of the matrices Sk . Then we averaged across the columns such 
that we arrived at a row vector where each entry i contains the average value across all 
elements in column i of matrix S . We denoted this vector by −→r AVG ∈ R1×8 . Similarly, 
we computed the standard deviation across the columns of S and denoted this vector by 
−→r STD ∈ R1×8.

Then we computed the threshold for the maximum relative error, which determined 
which data was kept and which was discarded based on an acceptable value for the rela-
tive error. The threshold for each time point was chosen to be as follows

where we took four standard deviations above the mean, inclusive of 99.98% percent of 
data assuming a normal distribution (Note that three standard deviations is inclusive 
of 99.72%). We found the maximum relative error across the three samples, where the 
new matrix Smax = max S1, S2, S3 ∈ Rn×m . The maximum was taken element-wise 
across the three matrices, that is Smax

(
i, j
)
= max(S1(i, j), S2(i, j), S3(i, j) ) and made an 

element-wise comparison across each row

G =

∑3
k=1G

k

3
∈ Rn×m

Sk =

∣∣Gk − G
∣∣

G
∗ 100 ∈ Rn×m,

S =

[
S1S2S3

]
∈ R3n×8

−→r Thres =
−→r AVG + 4

−→r STD
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for i = 1 : n and any time-series containing an extreme outlier in any of the replicates at 
any time point was removed from the dataset and, hence, the row removed from matrix 
G contained the average intensity across the replicates. Note that we treated each time-
point individually since there may be different degrees of variability through the differ-
ent wound healing stages. We denoted the new matrix Ĝ , which contains a subset of the 
rows of G , after discarding rows with high variability across replicates.

Filtration of repeated measurements of the same gene in each dataset

Some genes are mentioned in the dataset several times (several repetitions or several 
transcripts). In addition, for some genes the repeated rows contain too different expres-
sion dynamics. To leave "one gene – one row" we filtered based on the correlation 
between repeated gene rows.

Denote the ith row of the matrix Ĝ as −→g i ∈ R1×m . It contains time point mean inten-
sity measurements of gene i such that: −→g i = [gi(t0), gi(t1), · · · , gi(tm)] . Suppose that 
there are k vectors corresponding to one and the same gene:

First, we found Pearson correlation coefficients between each pair of repeated gene 
intensities: Cnm = corr

(−→
g n,

−→
g m

)
, n �= m , we obtain k2 − k correlation coefficients. The 

gene is kept for further analysis if at least two repetitions are highly correlated:

In this work we used the threshold C = 0.9 . If the condition (*) was satisfied, we took 
one of the highly correlated gene intensity rows −→g n , 

−→
g m (we can take the mean between 

the intensities of two highly correlated genes). If the condition (*) was not satisfied, the 
gene was not included in further analysis.

Smax,(i,:) >
−→r Thres

−→
g i1

, ldots,
−→
g ik

(*)(Cnm) ≥ C

Table 1 Numbers of genes in each dataset after each filtering step (described in Methods)

Dataset GSE23006
mouse skin 
wound

GSE460
mouse burn skin 
wound

GSE8056
human 
skin 
wound

Initial number of genes 45,101 7275 54,675

After filtering multiple genes in same row 29,309 6130 31,762

After filtering based on consistency of replicates 26,519 5760 30,242

Unique gene names in filtered subset 13,626 4980 13,777

After filtering of repeated measurements of same gene 
in each dataset

8005 4449 9254

After filtering several genes corresponding to the same 
homologene number

7937 4441 9249
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Several genes corresponding to the same homologene number

For some genes the same homologene identifier corresponded to two genes. For exam-
ple, homologene identifier corresponding to gene X in mouse corresponded to genes X1 
and X2 in human. In this case we checked if there was high correlation between genes 
X1 and X2 ( corr

(−→
g X1

,
−→
g X2

)
> C ) and took one of them. Otherwise, these genes are not 

included in further analysis.
The number of genes left in each dataset at each filtering step is presented in 

Table 1. We emphasize that while we tried to come up with a standardized approach, 
other approaches can be considered.

The 3 datasets contain 7937 (GSE23006), 4441 (GSE460) and 9249 (GSE8056) genes 
after filtering. The intersections contain even less genes, see Table 2.

Choosing the set of characteristic genes

Let g(t) be intensity of gene expression at time t. Each transcriptomic microarray 
dataset contains gene expression in several timepoints: t1, t2, . . . . For each gene in 
each dataset minimal and maximal expression may be defined as:

The maximum observed fold change is defined as:

For each dataset under consideration (GSE23006, GSE460, and GSE8056), the 
first 300 genes with the highest �G were selected. The comparative analysis of gene 
fold-change of the same genes in different datasets is provided in Additional file  2: 
Table S2. We selected the first 300 genes with the greatest fold-change in each of the 
three datasets. The intersection of these three subsets was 58 genes. Thus, 58 genes 
demonstrated high fold-change in all three datasets.

We note that many methods are considered in the literature to identify highly dif-
ferentially expressed genes [41–46]. Those methods are well suited for identifying 
significant genes, associated pathways, and underlying biological processes. In this 
work, we are concerned with finding the largest set of genes consistently identified as 
differentially expressed across datasets. Our selection of the first 300 genes with the 

Imax = max(g(ti))

Imin = min(g(ti))

�G =
Imax − Imin

Imin

Table 2 Number of genes in the intersections of each pair of datasets after filtration

Intersection of all 3 datasets consists of 1622 genes

Dataset 1 Dataset 2 N of 
common 
genes

GSE23006 mouse surg (7937) GSE460 mouse burn (4441) 2441

GSE23006 mouse surg (7937) GSE8056 human (9249) 5278

GSE460 mouse burn (4441) GSE8056 human (9249) 2855
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highest �G from each dataset provides a large set of genes to start with, but a small 
enough number to ensure confidence that genes are indeed differentially expressed.

Comparison of �G values between datasets and additional analysis are presented in 
Additional file 2: Table S2.

Clustering

The set of selected 58 genes was divided into 5 clusters (see Fig. 2) based on the peak 
time in GSE23006 mouse surgical data, where peak time refers to the time window 
in which gene expression intensity is maximized. Cluster1 includes genes with peak 
time in mouse surgical wounds equal to 0–12 h, Cluster2–24 h, Cluster3–72 h, Clus-
ter4–120 h, and Cluster5 > 120 h.

Next, the plots of the same genes in other datasets were divided into the same 
cluster as GSE23006 mouse surgical, independently of their expression dynamics in 
other datasets (Fig. 2).

To finalize the comparison of gene expression between the wounds, we normalized 
the mean cluster value by dividing by its initial value (t = 0, non-injured tissue):

where the summation is over all genes within the cluster and N is the number of genes in 
the cluster (see Fig. 3).

Sensitivity analysis

The model was trained with 16 data points from GSE23006, GSE460, and GSE8056, 
with mean cluster values calculated with 58 genes (Additional file 1: Table S3). The 
first replicate from each dataset was used for the model training. After that, the sen-
sitivity of model predictiveness to the number of genes was performed.

For this, 20 random subsets of gene shortlists were selected. Each subset contained 
at least one gene from each cluster. Of all 58 genes used in our model, GSE28914 
contains only 48 genes, and GSE50425 contained only 40 genes (see Additional file 2: 
Table S2 data table). The number of genes available in each of the five datasets is 32. 
The number of genes in the shortlists N was: 8 <  = N <  = 32.

All data points were used, including each replicate and each timepoint of five con-
sidered datasets (GSE23006, GSE460, GSE8056, GSE28914, and GSE50425)—85 data 
points.

The mean cluster value was calculated for each cluster based on the diminished 
number of cluster genes. The percent of timepoints for which the predicted wound 
stage coincided with the assigned wound healing stage was recorded for each ran-
dom set of N genes. Mean value and standard deviation (STD) over 20 random 
choices were calculated and plotted in Fig.  7. For N < 32, all random subsets were 

Normalized mean cluster value =
Ji

J0

Ji =
1

N

∑N

k
gk(ti)
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different. For N = 32 only one subset exists (all genes existing in all five datasets), 
that’s why STD = 0, Fig. 7).

The bar corresponding to the initial testing model is shown in magenta: with 
69 timepoints, and using all available genes are shown: replicates 2 and 3 from 
GSE23006/GSE460/GSSE8056 (58 genes), GSE28914 (48 genes) and GSE50425 (40 
genes).

Software and online tools used for this work

Matlab 2020a, DAVID bioinformatics resources: https:// david. ncifc rf. gov, Venny 2.1: 
https:// bioin fogp. cnb. csic. es/ tools/ venny/.
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