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Abstract 

Background: CRISPR‑Cas‑Docker is a web server for in silico docking experiments 
with CRISPR RNAs (crRNAs) and Cas proteins. This web server aims at providing experi‑
mentalists with the optimal crRNA‑Cas pair predicted computationally when prokary‑
otic genomes have multiple CRISPR arrays and Cas systems, as frequently observed in 
metagenomic data.

Results: CRISPR‑Cas‑Docker provides two methods to predict the optimal Cas protein 
given a particular crRNA sequence: a structure‑based method (in silico docking) and 
a sequence‑based method (machine learning classification). For the structure‑based 
method, users can either provide experimentally determined 3D structures of these 
macromolecules or use an integrated pipeline to generate 3D‑predicted structures for 
in silico docking experiments.

Conclusion: CRISPR‑Cas‑Docker addresses the need of the CRISPR‑Cas community to 
predict RNA–protein interactions in silico by optimizing multiple stages of computa‑
tion and evaluation, specifically for CRISPR‑Cas systems. CRISPR‑Cas‑Docker is available 
at www. crisp rcasd ocker. org as a web server, and at https:// github. com/ hshim lab/ 
CRISPR‑ Cas‑ Docker as an open‑source tool.
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tertiary structure, RNA secondary structure, Machine learning‑based classification, 
CRISPR direct repeat

Background
CRISPR-Cas is a prokaryotic adaptive immune system [1, 2] that consists of two genetic 
components: (1) CRISPR arrays with CRISPR RNAs (crRNAs) encompassing short pal-
indromic repeats and unique spacers from previous infections and (2) CRISPR-associ-
ated systems (Cas) which form a complex of proteins to cleave invading foreign genetic 
elements. CRISPR-Cas systems have been repurposed as genome-editing tools [3, 4] and 
antimicrobials [5, 6], with this biotechnological potential driving the scientific commu-
nity to discover novel types of CRISPR-Cas systems [7–9].
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CRISPR arrays are assumed to be associated with Cas systems when they are co-
located in prokaryotic genomes (usually within ± 10,000 base pairs). However, metagen-
omic data from diverse environments have revealed that prokaryotic genomes often 
have multiple CRISPR arrays and Cas systems. Such complexity in genomic architecture 
can lead to suboptimal RNA–protein interactions between the crRNA-Cas protein com-
plex in CRISPR-Cas-based genomic tools [10]. In a previous study, we predicted crRNAs 
that bind optimally to a particular Cas protein through in silico docking experiments, 
suggesting that such in silico experiments can be adopted as a preliminary approach to 
design stable CRISPR-based antimicrobials using the newly discovered Cas13 proteins 
[11].

Here, we present a web application named CRISPR-Cas-Docker that offers an opti-
mized and integrated pipeline to conduct in silico docking experiments between a 
crRNA and a Cas protein (Additional file 1: Fig. S1). By leveraging our expertise with 
RNA structure prediction, AlphaFold-based protein structure prediction, and in silico 
macromolecular docking, we aim at providing experimentalists with a practical and 
user-friendly bioinformatics tool that can suggest the most optimal crRNA-Cas protein 
pairs to be tested in vitro.

Implementation and results
Predicting the 3D structures of crRNAs and Cas proteins

In silico docking requires the availability of the 3D structures of biological macromole-
cules, which can be obtained through experimental techniques such as X-ray crystallog-
raphy, NMR, and cryoelectron microscopy [12]. If experimentally determined structures 
are not available, these 3D structures can be estimated rapidly and accurately through (1) 
deep learning-based protein structure prediction programs such as AlphaFold [13, 14] 
and (2) a combination of 2D and 3D RNA structure prediction programs [15, 16]. Using 
the experimentally determined structures of Cas proteins, we verified that AlphaFold is 
able to achieve an adequate level of prediction accuracy for large effector proteins such 
as Cas13 (Additional file 1: Table S1). We used AlphaFold to model four Cas13 proteins 
with and without a template. The average (standard deviation) of the TM-score, defined 
as the maximum structural similarity between two proteins, normalized by the length 
of the longer protein, was 0.992 (0.001) and 0.817 (0.012), with and without a template, 
respectively. CRISPR-Cas-Docker has an integrated option to generate a 3D-predicted 
RNA structure and an AlphaFold-predicted protein structure for a crRNA sequence 
and a Cas protein sequence, respectively (Fig. 1a, b). The running time of CRISPR-Cas-
Docker is affected by the length of a Cas protein sequence, as AlphaFold is the bottle-
neck of the computation process in the CRISPR-Cas-server (e.g. 2 h for 400 amino acids 
and 10 h for 1,400 amino acids).

In silico docking of crRNAs and Cas proteins

In earlier work, we determined the best program to conduct in silico experiments between 
crRNAs and Cas proteins to be HDOCK [17], leading to the most accurate RNA–pro-
tein docking and binding affinity results using an experimentally validated dataset [11]. 
CRISPR-Cas-Docker uses the template-free docking approach of HDOCK to generate the 
top-10 docking models for a given crRNA-Cas protein pair, with the docking score of each 
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model calculated by statistical mechanics-based energy scoring functions [18]. Previously, 
we verified that a docking score is a strong indicator of the binding affinity between crRNA-
Cas protein complexes [11]. We compared the docking scores between all combinations 
of experimentally determined and computationally predicted crRNAs and Cas proteins 
(Additional file 1: Fig. S2). According to this performance study, AlphaFold-predicted pro-
teins docked equally well or even better with the experimental crRNA and the 3D-predicted 
crRNA (Fig. 1c, d). From these results, we conclude that the effectiveness of docking is not 
affected by the use of predicted structures instead of experimental structures. The final 

Fig. 1 CRISPR‑Cas‑Docker. a Workflow used by CRISPR‑Cas‑Docker. b Results page generated by 
CRISPR‑Cas‑Docker, showing the downloadable PDB files of an AlphaFold‑predicted Cas protein structure, a 
3D‑predicted crRNA structure, and the top‑10 docking models. c Performance of CRISPR‑Cas‑Docker, using 
individual boxplots to show the docking scores obtained for different Cas13 proteins. d Performance of 
CRISPR‑Cas‑Docker, showing the distribution of docking scores obtained for different types of Cas proteins 
with GTP and PP combined. According to the HDOCK server, a lower docking score indicates a better docking 
model. (GTP: Ground Truth Cas Protein; GTR: Ground Truth crRNA; PP: Predicted Cas Protein (AlphaFold); PR: 
Predicted crRNA (RoseTTAFold))
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step of CRISPR-Cas-Docker requires human expertise to identify the best in silico docking 
model from the generated top-10 docking models, using biological information such as the 
location of binding sites and the orientation of bound crRNA.

Machine learning‑based classification of crRNAs

CRISPR-Cas-Docker includes support for machine learning-based classification of an input 
crRNA sequence into its associated Cas system type [7–9]. This feature is a sequence-based 
prediction of the optimal Cas protein for a particular crRNA sequence, which is an alterna-
tive method to the structure-based prediction of optimal crRNA-Cas pairs. To learn the 
associations between CRISPR arrays and Cas systems, we first created a dataset of CRISPR 
arrays labeled with their co-localized Cas system type (Additional file 1: Fig. S3-S7). To that 
end, we extracted the CRISPR-Cas systems from the CRISPRCasdb [19] and labeled the 
CRISPR arrays co-localized within ± 10,000 base pairs with their corresponding Cas sys-
tem (Additional file 1: Table S2). Next, we trained a K-Nearest Neighbors (KNN) algorithm 
on the curated dataset for supervised machine learning-based classification of crRNAs. 
Although KNN is one of the simplest classifiers in the area of machine learning, it has been 
used widely in the fields of gene and protein prediction, thanks to its interpretability, even 
when making use of complex data [20–23]. The classification analysis shows an overall pre-
diction accuracy of 92.3%, confirming the ability of KNN to act as an accurate and efficient 
classifier of crRNAs into their associated Cas system type. Upon assessing the performance 
of individual classes, the major classes with over 1,000 data points demonstrated F1 scores 
above 0.89. For the classes with a lower number of data points, a substantial performance 
gap was observed (Additional file 1: Table S3, Figure S8).

Conclusion
Designed for experimental biologists, CRISPR-Cas-Docker addresses the need to predict 
optimal crRNA-Cas protein pairs in silico before conducting expensive and time-consum-
ing experiments. As metagenomic data become widely available, this bioinformatics tool 
enables performing a rapid preliminary study to disentangle the complex associations 
between multiple CRISPR arrays and Cas systems in prokaryotic genomes. Currently, 
CRISPR-Cas-Docker produces 3D-predicted structures of crRNAs and Cas proteins, top-
10 docking models, and interactive graphs to visualize the machine learning-based clas-
sification of an input crRNA into its Cas system type. CRISPR-Cas-Docker is available as 
an easy-to-use and fully-integrated webserver with the aim of accelerating research in the 
CRISPR-Cas community by optimizing several computational tools and by providing a new 
evaluation method for CRISPR-Cas interactions. As future prospects, we aim at integrating 
AlphaFold-Multimer as a protein prediction program, making it possible to have Cas pro-
teins with multi-unit effectors as an input to CRISPR-Cas-Docker.

Availability and requirements
Project name: CRISPR-Cas-Docker. Project home page: http:// www. crisp rcasd ocker. 
org/. Operating system(s): Platform independent. Programming language: Python 
3.8.13. Other requirements: Web browser and internet access. License: GNU General 
Public License v3.0. Any restrictions to use by non-academics: None.

http://www.crisprcasdocker.org/
http://www.crisprcasdocker.org/
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Abbreviations
3D  Three‑dimensional
2D  Two‑dimensional
CRISPR  Clustered regularly interspaced short palindromic repeats
Cas  CRISPR‑associated system
crRNA  CRISPR RNA
KNN  K‑nearest neighbors
TM‑score  Template modelling score
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