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Abstract 

Background: Pyroptosis is closely related to cancer prognosis. In this study, we tried 
to construct an individualized prognostic risk model for hepatocellular carcinoma 
(HCC) based on within-sample relative expression orderings (REOs) of pyroptosis-
related lncRNAs (PRlncRNAs).

Methods: RNA-seq data of 343 HCC samples derived from The Cancer Genome Atlas 
(TCGA) database were analyzed. PRlncRNAs were detected based on differentially 
expressed lncRNAs between sample groups clustered by 40 reported pyroptosis-
related genes (PRGs). Univariate Cox regression was used to screen out prognosis-
related PRlncRNA pairs. Then, based on REOs of prognosis-related PRlncRNA pairs, a risk 
model for HCC was constructed by combining LASSO and stepwise multivariate Cox 
regression analysis. Finally, a prognosis-related competing endogenous RNA (ceRNA) 
network was built based on information about lncRNA–miRNA–mRNA interactions 
derived from the miRNet and TargetScan databases.

Results: Hierarchical clustering of HCC patients according to the 40 PRGs identified 
two groups with a significant survival difference (Kaplan–Meier log-rank, p = 0.026). 
Between the two groups, 104 differentially expressed lncRNAs were identified 
(|log2(FC)|> 1 and FDR < 5%). Among them, 83 PRlncRNA pairs showed significant 
associations between their REOs within HCC samples and overall survival (Univariate 
Cox regression, p < 0.005). An optimal 11-PRlncRNA-pair prognostic risk model was con-
structed for HCC. The areas under the curves (AUCs) of time-dependent receiver oper-
ating characteristic (ROC) curves of the risk model for 1-, 3-, and 5-year survival were 
0.737, 0.705, and 0.797 in the validation set, respectively. Gene Set Enrichment Analysis 
showed that inflammation-related interleukin signaling pathways were upregulated 
in the predicted high-risk group (p < 0.05). Tumor immune infiltration analysis revealed 
a higher abundance of regulatory T cells (Tregs) and M2 macrophages and a lower 
abundance of CD8 + T cells in the high-risk group, indicating that excessive pyroptosis 
might occur in high-risk patients. Finally, eleven lncRNA–miRNA–mRNA regulatory axes 
associated with pyroptosis were established.

Conclusion: Our risk model allowed us to determine the robustness of the REO-based 
PRlncRNA prognostic biomarkers in the stratification of HCC patients at high and low 
risk. The model is also helpful for understanding the molecular mechanisms between 
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pyroptosis and HCC prognosis. High-risk patients may have excessive pyroptosis and 
thus be less sensitive to immune therapy.

Keywords: Hepatocellular carcinoma, Pyroptosis, Long noncoding RNA, Prognosis, 
Relative expression ordering

Background
Hepatocellular carcinoma (HCC) is one of the most common human malignancies, 
with over 800,000 new cases and nearly 700,000 deaths worldwide yearly [1]. HCC is 
highly heterogeneous and insidious; most patients are diagnosed at advanced stages 
with poor prognosis [2]. According to statistics, the overall median survival time of 
patients with advanced HCC is only 9 months, and the 5-year overall survival (OS) is 
solely 10% [3]. Therefore, exploring the molecular biomarkers associated with HCC 
prognosis has been a hot issue in HCC research [4].

Pyroptosis is a sort of programmed cell death related to inflammation, which is 
mediated by the intracellular inflammasome and gasdermins [5, 6]. Appropriate 
induction of pyroptosis could trigger a moderate inflammatory reaction that might 
enhance innate immunity and generate an antitumor immune response [7, 8]. In con-
trast, excessive pyroptosis might excite a hyperinflammatory response that disrupts 
immune homeostasis and promotes cancer progression [7, 8]. Consequently, some 
researchers attempt to improve the prognosis of tumor patients by regulating the 
activation of pyroptosis to produce antitumor immune responses [9]. For instance, 
migration and invasion of oral squamous cell carcinoma cells could be inhibited 
via pyroptosis activation by anthocyanidins [10]. High expression of gasdermin E 
induced by miltirone could be used to provoke pyroptosis in cancer cells [11]. NLRP3 
(NLR Family Pyrin Domain Containing 3) inflammasomes could be utilized to medi-
ate pyroptosis to suppress the growth and metastasis of HCC cells [12]. These suggest 
pyroptosis is closely associated with cancer prognosis.

Long noncoding RNA (lncRNA) is a transcription product of DNA with a length 
greater than 200 nucleotides, which can regulate gene expression by interacting with 
proteins, DNA, or other RNAs [13]. It has been reported that lncRNAs are critical 
regulators of pyroptosis [14]. For example, lncRNA HOTTIP could inhibit pyroptosis 
and promote ovarian cancer cell proliferation by targeting miR-148a-3p/AKT2 axis 
[15]. LncRNA MEG3 could inhibit the growth and metastasis of triple-negative breast 
cancer by activating pyroptosis via NLRP3/caspase-1/GSDMD pathway [16]. These 
studies demonstrate that aberrant alterations of pyroptosis-related lncRNAs (PRlncR-
NAs) also impact cancer prognosis.

Prognosis-associated PRlncRNA biomarkers have been identified for multi-
ple cancer types. For HCC, seven and five prognosis-associated PRlncRNAs have 
been reported [17, 18]. These PRlncRNA prognostic risk models have some effi-
cacy in training and testing datasets. However, their risk thresholds are summarized 
from the absolute expression levels of PRlncRNAs, which are often data-dependent 
and unstable, leading to difficulties when applied in clinical settings [19]. In recent 
years, researchers have found that the within-sample relative expression orderings 
(REOs) of genes were more robust than the absolute expression levels of genes across 
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samples. Furthermore, the REO-based molecular biomarkers can be easily applied to 
individual diagnosis, which is more suitable for clinics [20–22].

In this study, we tried identifying REO-based prognosis-associated PRlncRNA bio-
markers to construct an individualized prognostic risk model for HCC and explore 
the molecular mechanisms between pyroptosis and HCC prognosis.

Materials and methods
Data collection and preprocessing

The RNA expression data of the 371 HCC and 50 adjacent normal tissue samples ana-
lyzed in this study were downloaded from The Cancer Genome Atlas (TCGA) database. 
The data were obtained using Illumina HiSeq 2000 RNA Sequencing technology. A total 
of 60,483 RNAs were detected. The data were preprocessed by the following procedures. 
Firstly, remove the samples with a survival time of less than 30 days or missing survival 
time. Secondly, normalize expression values to Transcript Per Million (TPM). Thirdly, 
annotate each examined RNA in the GENCODE database. Finally, exclude mRNAs with 
count values less than 1 and lncRNAs with count values less than 0.5 in all samples.

For miRNA data downloaded from the TCGA database, sequencing was performed 
on an Illumina HiSeq miRNASeq platform. After deleting the miRNAs with a count 
value of 0 in more than 50% of the samples, 578 miRNAs were kept. The miRNA 
expression values were normalized to Reads Per Million (RPM).

Detection of prognosis‑related lncRNA pairs

Clustering HCC samples with the ward linkage algorithm were performed on 40 
pyroptosis-related genes (PRGs), which were derived from the pyroptosis pathway in 
the Molecular Signatures Database (MSigDB) (Additional file 1: Table S1). Then, dif-
ferentially expressed lncRNAs detected between the two HCC groups were defined 
as pyroptosis-related lncRNAs. Any two pyroptosis-related lncRNAs can form a 
lncRNA pair. For a lncRNA pair  (lncRNAi|lncRNAj), there are two REO status, 
 lncRNAi <  lncRNAj or  lncRNAi ≥  lncRNAj, in a sample. The prognosis-related lncRNA 
pairs were then identified by the following procedures.

(1) Combine the lncRNAs of interest two by two to form C2

k
 (k is the number of pyrop-

tosis-related lncRNAs) lncRNA pairs.
(2) The REO matrix, X, was constructed based on lncRNA pairs for the training set. 

Xij denoted the REO of the i-th lncRNA pair  (lncRNAi1|lncRNAi2) in the j-th sam-
ple, taking 1 or 0, with 1 representing  lncRNAi1 <  lncRNAi2 and 0 representing 
 lncRNAi1 ≥  lncRNAi2.

(3) Remove lncRNA pairs for which the percentage of REOs with 1 was less than 20% 
or greater than 80%. This criterion ensured that the apparent reversal of REOs of 
lncRNA pairs occurred in a certain amount of HCC samples to facilitate the iden-
tification of sample subgroups with different prognoses, as lncRNA pairs with the 
same score (0 or 1) in more than 80% of samples were considered uninformative 
[21].
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(4) For each remaining lncRNA pair, the correlation between its REO values and OS 
times was evaluated by univariate Cox regression. If the Wald test’s p value is less 
than 0.005, the lncRNA pair was considered as a prognosis-related lncRNA pair.

Construction and evaluation of prognostic lncRNA pair risk model

The LASSO regression and stepwise multivariate Cox regression algorithms were 
applied to select candidate PRlncRNA pairs as prognostic biomarkers. LASSO regres-
sion was adopted to choose the prognosis-related PRlncRNA pairs most predictive of 
OS. Lambda values corresponding to the smallest partial likelihood deviance were cho-
sen as the optimal parameters after tenfold cross-validation [23, 24]. Then, multivariate 
Cox regression analysis based on the Akaike information criterion (AIC) method was 
used to determine the optimal model. The model with the lowest AIC value was consid-
ered as the optimal prognostic risk model, with the corresponding PRlncRNA pairs as 
the eventual predictive risk biomarkers [25].

The time-dependent receiver operating characteristic (ROC) curves were applied to 
assess the performance, and the Youden index determined the risk threshold. Multivari-
ate Cox proportional hazards regression analysis was employed to evaluate independent 
prognostic factors associated with OS [26]. Covariates included risk scores for prognos-
tic PRlncRNA pairs, gender, age, tumor stage, and grade.

Enrichment analysis and estimation of immune cell infiltration

Functional enrichment analysis of differentially expressed genes between the high- and 
low-risk groups was completed by Gene Set Enrichment Analysis (GSEA) based on the 
Reactome database with annotation information from the MSigDB database (v7.5.1).

The estimation of the absolute abundance of tumor-infiltrating (immune cells in HCC 
samples was achieved by the CIBERSORT algorithm [27].

Construction of prognostic pyroptosis‑related competing endogenous RNA (ceRNA) 

network

The regulatory relationships of lncRNAs, miRNAs, and mRNAs were obtained from the 
miRNet database and the TargetScan database [28, 29]. The miRNet database was uti-
lized to predict target miRNAs for lncRNAs, and the TargetScan database was used to 
predict target miRNAs for PRGs.

Statistical analysis

All statistical analysis were completed with R 4.1.0 software. Cluster analysis was fin-
ished with the ward linkage algorithm. Differential expression analysis was implemented 
with the "limma"package. Survival analysis and corresponding plotting were based on 
the "survival", "glmnet", "MASS" and "survminer" packages. ROC analysis and the deter-
mination of risk threshold were completed based on the "survivalROC" package. GSEA 
was based on the "clusterProfiler" package. Tumor immune infiltration analysis was 
implemented by the "immunedeconv" package. The Benjamini–Hochberg (BH) method 
was applied to control the false discovery rate (FDR). Unless otherwise specified, the sta-
tistical significance level was set uniformly at 0.05.
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Results
Pyroptosis‑related lncRNAs

The workflow of this study is illustrated in Fig.  1. After data preprocessing, the 
TCGA HCC data set included expression measurements of 8477 lncRNAs and 
17,596 mRNAs from 343 HCC samples. Firstly, all samples were randomly catego-
rized into training (n = 240) and validation (n = 103) sets. No significant differences 
have been observed in the clinical features between the training and validation sets (p 
value < 0.05, Additional file 1: Table S2).

Hierarchical clustering was performed on the expression levels of the 40 PRGs in 
the training set. Samples were clustered into two groups, containing 35 and 205 sam-
ples, respectively (Fig. 2A). Kaplan–Meier survival analysis revealed a significant dif-
ference in survival between these two groups of patients (log-rank test, p value = 0.026 
(Fig. 2B)), which suggested that the expression pattern of PRGs was associated with 
the prognosis of HCC patients.

Using the R package "limma", 104 lncRNAs that were differentially expressed between 
the two groups were identified at |log2(FC)|> 1 and FDR < 5%. These 104 lncRNAs were 
considered as PRlncRNAs for the following analysis.

RNA-seq data
( 8477 lncRNA, 17596 mRNA from 343 
HCC samples and 50 adjacent normal 

samples)

40 PRGs Clustering
KM survival analysis

Validation set (n = 103)Training set (n = 240)

104 PRlncRNAs

REOs of PRlncRNA pairs
Univariate Cox regression

83 prognosis-related 
PRlncRNA pairs

11 prognosis-related 
PRlncRNA pair risk model

Validation

Survival 
analysis GSEA Immune characteristics and 

immunotherapy analysis
ceRNA
network

miRNA-seq data

miRNet
TargetScan

Fig. 1 Workflow of this study
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Fig. 3 Establishment of the prognostic lncRNA pair risk model. A The plot of partial likelihood deviance 
versus log(λ). A vertical dotted line marks the smallest partial likelihood deviance; B LASSO coefficient profiles 
of HCC OS-associated lncRNA pairs; C forest plot depicting associations between lncRNA pairs and risk values 
determined by multivariate Cox regression analysis. *p < 0.05; **p < 0.01; ***p < 0.001

Fig. 2 Hierarchical clustering and Kaplan–Meier survival analysis. A Hierarchical clustering for the 40 PRGs in 
the training set. B Kaplan–Meier survival curves for clusters derived from hierarchical clustering
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Prognosis‑related lncRNA pairs and risk model

The 104 PRlncRNAs were paired, and prognosis-related lncRNA pairs were iden-
tified based on the within-sample REOs in the training set (see Methods). The REOs 
of 83 PRlncRNA pairs were observed to be significantly associated with the OS time 
of HCC by univariate Cox regression analysis. To choose representative prognosis-
related lncRNA pairs, we performed the LASSO Cox regression analysis via ten-
fold cross-validation on these 83 PRlncRNA pairs, and 26 PRlncRNA pairs were 
selected at the smallest partial likelihood deviance (Fig.  3A, B). Then, the stepwise 
multivariate Cox regression analysis was performed on 26 PRlncRNA pairs to choose 
prognosis-related lncRNA pair biomarkers and construct the risk model. Finally, as 
shown in Fig.  3C, 11 PRlncRNA pairs involving 22 PRlncRNAs were selected at the 
smallest AIC value. The corresponding risk model is: risk score = 0.5447 × VIM-
AS1|AC005083.1 +  0.7797 ×  LINC01057|RP11-43F13.3 +  1.0279 ×  TNRC6C-
AS1|RP11-395G23.3 −  0.7839 ×  NRSN2-AS1|LINC01554 +  0.7766 ×  PCED1B-
AS1|AC079466.1 + 1.0191 × LINC00342|CASC9 − 0.7017 × RP1-239B22.5|RP11-
344B5.2 + 0.7464 × PSMB8-AS1|ANKRD10-IT1 + 0.6299 × KB-68A7.1|ZFPM2-
AS1 − 0.5646 × FOXD2-AS1|AC092580.4 − 1.3199 × LINC00942|RP11-109M17.2 
(Fig.  3C). The threshold for high- and low-risk groups was determined by the point 
with the largest Youden index on the 5-year ROC curve of the training set (Youden 
index = 0.739, risk score = 0.025), with 105 and 135 patients classified as high- and low-
risk samples, respectively. Among the 22 PRlncRNAs, 16 were differentially expressed 
between high- and low-risk patients. Comparing all HCC samples to adjacent normal 
samples, 14 of these 16 PRlncRNAs were differentially expressed.

Validation of prognostic lncRNA pair risk model

According to the risk threshold, the patients in the validation set were divided into a 
high-risk group (risk score ≥ 0.025) and a low-risk group (risk score < 0.025), respec-
tively. Kaplan–Meier survival analysis showed that OS rates were significantly different 
between the high- and low-risk groups in both the training and validation sets (log-
rank test: p value < 2 ×  10–16 and p value = 1.219 ×  10–5, Fig. 4A, B). The AUCs of time-
dependent ROC curves showed the prediction accuracies of 1-, 3- and 5-year survival 
were 0.855, 0.891, and 0.902 for the training set, and 0.737, 0.705, and 0.797 for the vali-
dation set, respectively (Fig. 4C, D). In addition, the results of multivariate Cox regres-
sion indicated that the risk model was an independent prognostic factor for patients with 
HCC (p value < 0.001, Fig. 4E, F). These results suggest that the risk score model based 
on lncRNA pairs can be an efficient tool for predicting the prognostic risk of HCC.

Analysis of immune‑related characteristics of high‑ and low‑risk groups

Among the 40 PRGs, 27 were differentially expressed between high- and low-risk 
groups in the training set at FDR < 5%. Notably, 25 PRGs were significantly upregulated 
in the high-risk group. GSEA showed the inflammation-related interleukin-mediated 
signaling pathways, including the interleukin 4 and interleukin 13 signaling path-
ways (q-value = 0.021), and signaling by interleukins pathway (q-value = 0.030), were 
also found to be significantly upregulated in the high-risk group [8]. Furthermore, as 
shown in Fig. 5, the abundance of regulatory T cells (Tregs) and M2 macrophages was 
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significantly higher in the high-risk group. In comparison, the abundance of CD8 + T 
cells was significantly lower in the high-risk group. These results suggested that the 
immune system might have overreacted in the high-risk group due to the upregulation 

Fig. 4 Validation of the prognostic lncRNA pair risk model. A, B Kaplan–Meier survival curves for high- and 
low-risk groups in the training and validation sets; C, D ROC curves based on the predictive efficacy of the 
lncRNA pair risk model for the training and validation sets; E, F Multivariate Cox regression analysis showed 
the independence of the risk model for the prediction for the training and validation sets
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of PRGs expression, disrupting the immune homeostasis and making the prognosis 
worse.

Establishment of prognostic pyroptosis‑related ceRNA network

The target miRNAs of the 22 lncRNAs involved in the 11 PRlncRNA pair biomarkers in 
the risk score model were predicted by the miRNet database. Finally, 140 target miRNAs 
of 10 lncRNAs were obtained. The TargetScan database showed that 112 of the 140 miR-
NAs targeted 39 PRGs. By univariate Cox regression, three of the 112 target miRNAs 
and eight of the 39 target PRGs were significantly associated with the prognosis of HCC 
in our data. Moreover, five of the eight PRGs were targets of the three miRNAs. These 
prognosis-related lncRNAs, miRNAs, and PRGs formed eleven lncRNA–miRNA–
mRNA regulatory axes (Fig. 6), involving four lncRNAs, three miRNAs, and five PRGs.

Discussion
In this study, we have constructed a prognostic risk model for HCC by survival anal-
ysis of PRlncRNA pairs based on the within-sample REOs of PRlncRNAs. The risk 
model has good predictive performance at classifying the HCC patients into high- 
and low-risk groups in the validation set. Given the use of within-sample REOs of 
PRlncRNA pairs, our prognostic risk model has potential implications for clinical 
translation and application. Our model is independent of systematic bias and suitable 

Fig. 5 Immune infiltration analysis between high- and low-risk groups

Fig. 6 Pyroptosis-associated prognostic ceRNA network
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for the individualized clinic and may help to stratify HCC patients at high risk of poor 
prognosis.

The 240 training samples were clustered by 40 PRGs into two groups of samples with 
significantly different prognoses, containing 35 cases with relatively poor survival and 
205 cases with relatively good survival, respectively. Moreover, these 240 samples were 
divided by our prognostic prediction model into 105 high-risk cases and 135 low-risk 
cases. They were significantly overlapped (p = 3.45 ×  10–4, hypergeometric test): the 35 
poor prognosis samples overlapped with the 105 high-risk samples by 25 and the 205 
good prognosis samples overlapped with the 135 low-risk samples by 125. The dis-
crepancy may be due to the different purposes of stratifying samples. The clustering of 
samples using PRGs was intended to identify differential lncRNAs as PRlncRNAs. The 
two groups clustered by them may reflect more the similarity of expression patterns of 
the samples across all PRGs. The high- and low-risk groups were stratified by the con-
structed prognostic model. They should be more associated with the prognosis of HCC.

We found that more PRGs were upregulated in the high-risk group compared with 
the low-risk group, indicating more inflammation responses in the high-risk group. Fur-
ther evidence was provided by the pathway enrichment and immune infiltration anal-
ysis results. GSEA showed that interleukin-mediated inflammation-related signaling 
pathways were upregulated in the high-risk group. CIBERSORT-based analysis showed 
higher abundance of Tregs and M2 macrophages and a lower abundance of CD8 + T 
cells in the high-risk group. It has been reported that interleukin 4 and interleukin 13 
signaling could induce type 2 inflammatory processes [30]. If the type 2 inflammatory 
responses were out of control, M2 polarization of macrophages could be promoted, 
effectively suppressing the cytotoxicity of CD8 + T cells and NK cells [30, 31]. Except for 
M2 macrophages, Tregs, which function could be enhanced by chronic inflammation, 
could also efficiently inhibit the function of CD8 + T cells [8, 32]. Relative low abun-
dance of CD8 + T cells has been reported to indirectly induce weaker cytotoxicity, while 
lower cytotoxicity might induce more insensitivity to immunotherapy [33]. Therefore, 
we additionally analyzed the cytotoxic-related genes (GZMA, GZMB, GZMK, PRF1) 
[34] and observed downregulation of these genes in the high-risk group compared to 
low-risk group (Wilcoxon rank-sum test: p value < 0.05; p value < 0.05; p value < 0.05; p 
value < 0.001). We then applied the Immune Cell Abundance Identifier (ImmuCellAI) 
database to predict the immunotherapeutic responses. We found that patients in the 
high-risk group were likely to have lower scores and be less sensitive to immune check-
point blockade therapy (Wilcoxon rank-sum test: p value = 0.010) [35]. Therefore, we 
inferred that excessive pyroptosis might have arisen in high-risk patients, reducing the 
amount and activity of tumor-infiltrating lymphocytes and worsening tumor prognosis 
[36].

In clinical practice, due to the simplicity and non-invasiveness, serum markers such 
as AFP, DCP, and AFP-L3 are often used to diagnose HCC and predict prognosis. Many 
scoring models have used the three markers for the diagnosis or prognosis of HCC. 
The GALAD, consisting of age, sex, and the three markers, has been reported to have 
high predictive accuracy for early HCC in patients with nonalcoholic steatohepati-
tis (AUC = 0.96) [37] and also accurately classified patients with HCC in stage 0/A of 
Barcelona Clinic Liver Cancer (AUC = 0.9242) [38]. Studies have found that another 
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scoring model, BALAD-2, consisting of these three markers combined with serum bili-
rubin and albumin, could stratify the HCC patients into distinct prognostic groups [39]. 
Furthermore, in 2008, the combined biomarker Japan Integrated Staging was proposed 
to provide better survival predictions for HCC patients [40]. These studies illustrated 
the potential of these three markers in the diagnosis and prognosis prediction of HCC. 
However, in the TCGA data we used, only the serum levels of AFP and DCP were pro-
vided. Therefore, we could not directly compare the predictive efficacy of our model 
with BALAD-2. We compared the AFP and DCP levels between the high- and low-risk 
groups predicted by our model. Results showed that these two proteins were not sig-
nificantly differentially expressed between the training set’s high- and low-risk groups 
(Wilcoxon–Mann–Whitney test: p = 0.486 and p = 0.771, respectively,). Elevated serum 
levels of AFP, AFP-L3, and DCP at baseline had been reported to be associated with 
a worse prognosis after resection of HCC [41]. We thus compared the corresponding 
mRNAs in the HCC patients, which showed that the mRNAs of the two markers were 
significantly up-regulated in the high-risk HCC samples compared to the normal con-
trols (Wilcoxon–Mann–Whitney test: p < 0.05).

To further validate the predictive value of our prognostic PRlncRNA risk model, we 
compared its performance with three different prognostic models previously reported, 
which were also constructed based on PRlncRNAs using the same TCGA RNA sequenc-
ing data. Zhang et  al. constructed a risk-scoring model of 5 PRlncRNAs, with 5-year 
AUCs of 0.688 for the training and 0.714 for the validation set, respectively [42]. Liu 
et  al. built a prognostic risk-scoring model using 5 PRlncRNAs, with 5-year AUCs of 
0.707 for the training set and 0.642 for the validation set, respectively [18]. The 5-year 
AUCs for the 9-PRlncRNA model built by Zhang et al. were 0.812 for the training set, 
and 0.722 for the validation set, respectively [43]. The predictive performance of our 
PRlncRNA prognostic model was higher than the three published models, with 5-year 
AUCs of 0.902 for the training set and 0.797 for the validation set, respectively.

The prognostic risk model in our study was constructed based on the REOs of PRlncR-
NAs. Although it is technically simpler to detect serum levels of protein markers such 
as the commonly used AFP, analysis at the RNA level may provide additional informa-
tion for understanding cancer mechanistically. Most lncRNAs involved in the lncRNA–
miRNA-PRG regulatory axes have been reported to be prognostically relevant in various 
cancers, including HCC. For example, LINC01554-mediated glucose metabolism repro-
gramming could suppress the tumorigenicity of HCC through the downregulation of 
PKM2 expression and inhibition of the Akt/mTOR signaling pathway [44]. NRSN2-AS1 
could promote ovarian carcinogenesis through the miR-744-5p/PRKX axis [45]. Upreg-
ulation of lncRNA FOXD2-AS1 expression could promote the progression of HCC by 
causing epigenetic silencing of DKK1 and activating the Wnt/β-catenin signaling path-
way [46]. Thus, these eleven lncRNA–miRNA-PRG regulatory axes could be helpful for 
further understanding the relationship between lncRNAs and PRGs and deserve further 
investigation.
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Conclusion
In summary, we propose an 11-PRlncRNA-pair personalized prognostic risk model 
for HCC, which let us see the robustness of the REO-based PRlncRNA prognostic bio-
markers in the stratification of HCC patients at high and low risk. And the model is also 
helpful for understanding the molecular mechanisms between pyroptosis and HCC 
prognosis. High-risk patients may have excessive pyroptosis and thus be less sensitive to 
immune therapy.
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TCGA   The Cancer Genome Atlas
TPM  Transcript per million
Treg  Regulatory T cell
t-ROC  Time-dependent receiver operating characteristics
Wnt  Wingless/integrated
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