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Abstract 

Background and objective: As a common chronic disease, diabetes is called the “sec-
ond killer” among modern diseases. Currently, there is no medical cure for diabetes. We 
can only rely on medication for auxiliary treatment. However, many diabetic patients 
still die each year. In addition, a considerable number of people do not pay attention 
to their physical health or opt out of treatment due to lack of money, which eventually 
leads to various complications. Therefore, diagnosing diabetes at an early stage and 
intervening early is necessary; thus, developing an early detection method for diabetes 
is essential.

Methods: In this study, a diabetes prediction model based on Boruta feature selec-
tion and ensemble learning is proposed. The model contains the use of Boruta 
feature selection, the extraction of salient features from datasets, the use of the 
K-Means++ algorithm for unsupervised clustering of data and stacking of an ensem-
ble learning method for classification. It has been validated on a diabetes dataset.

Results: The experiments were performed on the PIMA Indian diabetes dataset. The 
model was evaluated by accuracy, precision and F1 index. The obtained results show 
that the accuracy rate of the model reaches 98% and achieves good results.

Conclusion: Compared with other diabetes prediction models, this model achieved 
better results, and the obtained results indicate that this model is superior to other 
models in diabetes prediction and has better performance.

Keywords: Diabetes detection, Machine learning, Boruta feature selection, 
K-Means++, Ensemble learning

Introduction
With the rapid development of the social economy, people’s quality of life has constantly 
improved, and the diet structure has also significantly changed. Therefore, a variety of 
chronic diseases arise, and diabetes is one of the most common. Insulin is a hormone 
that regulates blood glucose homeostasis. When the pancreas does not produce enough 
insulin or the body does not use the produced insulin effectively, blood sugar rises, 
leading to hyperglycemia, which can lead to diabetes. With time, this can cause serious 
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damage to the human body and result in blindness, amputation, heart disease, stroke, 
and kidney failure. Diabetes incidence is second only to cancer, and it is known as the 
“second killer” among modern diseases [1]. In the 2019 Global Leading Cause of Death 
Survey, diabetes was included in the top 10 causes of death [2]. According to the Inter-
national Diabetes Federation, 700 million adults in the world will have diabetes by 2045. 
The cost of healthcare for diabetes is significant, at approximately $760 billion annually. 
The global growth curve of the number of people with diabetes is shown in Fig. 1 below 
(Image source: Statistics from the International Diabetes Federation) [3].

With the expansion of artificial intelligence applications, especially in disease diagno-
sis and medical image processing, it has become possible to use machine learning tech-
niques to extract valid information from medical data for predicting chronic diseases. 
If we can predict the diabetic population and nondiabetic population at an early stage, 
when doctors diagnose diabetes, they can tend to focus on people with a high proba-
bility of having diabetes, which greatly reduces the intervention of human factors and 
provides a general direction for doctors to diagnose and take timely measures related to 
prevention and interception. It will be of great benefit to reduce the incidence of diabe-
tes, improve people’s quality of life and the healthy life expectancy of the population, and 
will also effectively reduce the burden of diabetes treatment. This is the most fundamen-
tal motivation for us to carry out this work.

Ensemble learning is mainly a combination of several single classifiers in different ways 
and is used to improve the accuracy and robustness of classification. There are three 
main types: bagging, boosting and stacking. The bagging method subsamples from the 
training set to form the required subtraining set for each base model and combines the 
results predicted by all base models to produce the final prediction results. The boost-
ing method is trained in the order of the base models, and if the previous base model 
has incorrect classification results, then the next base model can be trained with a larger 

Fig. 1 Global diabetes growth curve
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weight assigned to correct the classification results, and the results predicted by all 
base models are linearly combined to produce the final prediction results. The stack-
ing method is mainly divided into a base model and a meta-model. By training the base 
model, the generated results are used as input to the meta-model, which is trained to 
produce the final classification results.

Research on combinatorial classifiers has been conducted in areas such as disease pre-
diction and bioinformatics. Leyi Wei et al. [4] proposed a PIHS algorithm based on selec-
tive integration learning, which combines the prediction results of each basic model by 
voting and uses a partitioning strategy to achieve a high level of performance on several 
biological informatics problems, showing high efficiency and robustness. Cheng Chen 
et al. [5] proposed a prediction framework called StackPPI, using XGBboost to reduce 
feature noise. An ensemble classifier using a combination of random forest, random tree 
and logistic regression algorithms is used as a classifier, and the method mainly works on 
protein and drug design with good classification performance. Jasmina Nali´c et al. [6] 
proposed a hybrid data mining model based on a combination of multiple feature selec-
tion and ensemble learning classification algorithms, which used a soft voting approach 
to synthesize classifiers into eight different ensemble models. Finally, GLM + DT’s model 
had the best hybrid performance, which was later tested on biological datasets and out-
performed other ensemble learning models and single classifiers. Rajesh Yakkundimath 
et al. [7] proposed a new classifier combination model for the classification of cervical 
cancer cells, which uses Artificial Neural Network(ANN), Random Forest (RF) and Sup-
port Vector Machine (SVM) as basic classifiers. It is more suitable for the classification 
of cervical cancer cells compared to the results achieved by a single basic classifier. Tien 
Thanh Nguyen et al. [8] proposed a combinatorial classifier based on a Bayesian infer-
ence framework, which estimates a multivariate Gaussian distribution for each class of 
data using a variational inference approach, which was tested on 18 datasets and a medi-
cal imaging database and compared with several well-known ensemble methods, result-
ing in a large advantage.

Combined classifiers perform better than single classifiers. When performing classifi-
cation, we always want to find a classification model with high robustness, high accuracy 
and balanced time complexity and space complexity. However, this is a relatively ideal 
state. When we perform classification, the classifier will be more or less influenced by 
the dataset, such as extremes, outliers and other noisy data, which can affect the clas-
sification results. Once noisy data are present, the performance of the single classifier 
will be greatly degraded. In contrast, with a combination classifier, different weights will 
be assigned according to the votes, and the misclassified data can be reclassified, and 
the combination classifier also has good adaptability to noisy data; thus, a combinato-
rial classifier was adopted in this study. Because diabetes is a common chronic disease, 
the classification of diabetic patients differs from other datasets. Alternatively, the clas-
sification of medical datasets differs from the classification of other datasets because the 
diagnosis of a particular disease is a rigorous, long-term process that involves people 
economically, physically and psychologically, especially for chronic diseases. If a disease 
is misdiagnosed, it can be fatal for the patient. Therefore, for the diagnosis of diseases, 
the choice of classifier has higher requirements, as aspects such as accuracy are very 
important. For the research direction proposed in this paper, for the classification of the 
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diabetic population, experiments on single and combined classifiers have shown that the 
combined classifier has better results.

In this paper, a diabetes prediction model based on Boruta feature selection and 
ensemble learning is proposed. The model uses the Boruta feature selection algorithm, 
K-Means++ unsupervised cluster learning algorithm and stacking ensemble learning 
method.

There are three main contributions in this paper.

(1) Feature Selection. In this thesis, the main focus is on the prediction of diabetes. For 
the diabetes dataset, it is necessary to determine the attributes that best match the 
diagnosis of diabetes, and we consider the attributes selected by a comprehensive 
comparison with Boruta’s algorithm through the selection methods for different 
features, such as Pearson’s correlation coefficient and PCA, as the most appropriate.

(2) A clustering algorithm was used on the data. To provide the correct number of 
clusters, we used the K-Means +  + algorithm, which is an improved version of 
K-Means. The K-Means +  + algorithm optimises some of the problems that exist in 
the K-Means algorithm [27].

(3) The most suitable base classifier and meta-classifier were selected, and the ensem-
ble learning stacking method was used and tested repeatedly to determine the most 
suitable parameter values for diabetes. Most of them use single models for classi-
fication, such as Support Vector Machine (SVM), Logistic Regression(LR) or Soft-
max, but single models are highly susceptible to noisy data if they are not sufficiently 
trained, resulting in poor prediction accuracy. Additionally, most of the research 
workers did not adjust the parameters of the model. Thus, are the parameters at this 
time in line with the optimal parameters for diabetes prediction? Based on this, we 
first selected the most suitable base classifier and original classifier for the stacking 
method of ensemble learning. Second, the values of the focal parameters of the met-
amodel and the base model were determined by repeated experiments.

The subsequent organization of this paper is as follows. An overview of the work con-
ducted by other researchers in diabetes prediction is presented in Section II. The model 
proposed in this paper and the methods used in the model are described in Section III, 
including Boruta feature selection, K-Means++, and ensemble learning. The experi-
mental procedure is described in detail in Section IV, including dataset description, 
steps, parameter settings, etc. Section V discusses the experimental results, including 
evaluation of the model, comparison with other models, and comparative experiments. 
Section VI summarizes the work and provides some suggestions for future work.

Literature survey
In this section, we review the work done by other researchers in diabetes prediction 
using machine learning and deep learning methods.

Machine learning

Chen et al. [9] analyzed the relationship between diabetes and the levels of several ele-
ments in hair/urine samples for the diagnosis of diabetes, and principal component 
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analysis was used to perform preliminary processing work on the data. Both ensemble 
learning and Support Vector Machine (SVM) algorithms were used as classifiers with 
an average accuracy, sensitivity and specificity of 99%, 100%, and 99% and 97%, 89%, and 
99% for hair and urine samples, respectively. Finally, it was shown by various model eval-
uation metrics that hair samples are superior to urine samples for the diagnosis and pre-
vention of diabetes and that they provide more valuable information for the prevention, 
diagnosis, treatment and research of diabetes.

Perveen et  al. [10] proposed an AdaBoost and bagging integration technique based 
on J48 (c4.5) using J48 (c4.5) as the base classifier and combining the standalone data 
mining technique J48 to classify diabetic patients. Tested on the Canadian primary care 
surveillance network dataset, the experimental results show that the AdaBoost integra-
tion method outperforms bagging and independent J48 decision trees. In addition, the 
researchers propose that Naive Bayesian (NB), Support Vector Machine (SVM), etc., can 
be used as the basic learning algorithms in the ensemble learning framework, and the 
method can be applied to other disease datasets such as hypertension, coronary heart 
disease, etc.

Wu, Yang et  al. [11] proposed a new model for predicting type 2 diabetes mellitus 
(T2DM) based on data mining techniques, which consists of a modified K-Means algo-
rithm and a logistic regression algorithm. The improved K-Means algorithm addresses 
the randomness of the seed values by inserting a procedure to record and sort the values 
called the “sum of squared errors within clusters” in ascending order; the smaller is the 
value, the better is the result. The model was evaluated on the PIMA Indian diabetes 
dataset as well as on two other diabetes datasets with good experimental results, and the 
prediction accuracy of the model was 3.04% higher than that of other researchers.

Zhu et al. [12] proposed an improved logistic regression model for diabetes prediction 
by integrating PCA and K-Means techniques, which provided adequate and efficient 
clustered datasets. The model consists of three components: principal component analy-
sis, K-Means and logistic regression algorithms, and data normalization. The experimen-
tal results showed that PCA enhanced the accuracy of the K-Means clustering algorithm 
and logistic regression classifier compared to other published findings, with K-Means 
outputting 25 correctly classified data points and logistic regression accuracy improving 
by 1.98%.

Lukmanto et  al. [13] used F-exponential feature selection and fuzzy Support Vector 
Machine for the detection and classification of diabetes. Feature selection was used to 
extract valuable features from the dataset. Then, the dataset was trained using SVM, 
fuzzy rules were generated, and finally, the output was classified using the fuzzy infer-
ence method. The method achieves an accuracy of 89.02% on the PIMA Indian Diabetes 
dataset. Moreover, the employed method provides an optimized fuzzy rule count while 
still maintaining sufficient accuracy.

Shankar G et al. [14] proposed a diabetes prediction model based on fuzzy logic with 
the gray wolf optimizer algorithm. The fuzzy rules are learned by the model and then 
optimized according to the GWO algorithm and validated on the dataset with an accu-
racy of 81%. The proposed model is based on the gray wolf optimization algorithm, 
which is able to globally optimize the features and gives higher accuracy than the ant 
colony algorithm.
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Beschi Raja et al. [15] proposed a predictive model for type 2 diabetes based on a data 
mining strategy consisting of particle swarm optimization (PSO) and fuzzy clustering 
(FCM). It was evaluated by conducting experiments on the PIMA Indian diabetes data-
set and using sensitivity, specificity and accuracy metrics. The obtained results showed 
that the accuracy of the model was improved by 8.26% compared to other methods, and 
the model had better performance compared to other methods.

Howsalya Devi et al. [16] proposed a diabetes diagnosis method combining a furthest-
first (FF) clustering algorithm and a sequence minimum optimization (SMO) classifier 
algorithm. The clustering algorithm divides the data into different sets of clusters at first, 
which reduces the size of the dataset and greatly shortens the computation time. Then, 
the clustering output is used as the input of SVM to complete the classification. The 
method achieved better results on the PIMA Indian Diabetes dataset. The experimental 
results show that the ensemble method has 99.4% accuracy in predicting diabetes. The 
experimental results prove that the hybrid approach of data mining methods can help 
doctors make better clinical diagnosis decisions for diabetic patients.

Saloni et  al. [17] proposed binary classification using an ensemble soft voting clas-
sifier and completed the classification using the ensemble of three machine learning 
algorithms (random forest, logistic regression and Naive Bayes). In this paper, the pro-
posed method is experimentally evaluated using the proposed method and basic clas-
sifiers (AdaBoost, Logistic, SVM, RF, Naive Bayes, Bagging, GradientBoost, XGBoost, 
CatBoost). The accuracy, precision, recall, and F1 index were used as evaluation crite-
ria. The values of accuracy, precision, recall, and F1 index for the PIMA Indian diabetes 
dataset were 79.04%, 73.48%, 71.45%, and 80.6%, respectively.

Jobeda Jamal Khanam et al. [18]used seven machine learning and neural network algo-
rithms to predict diabetes on the PIMA diabetes dataset. And neural network models 
with different hidden layers for different periods were built.The experimental results 
showed that the models using Logistic Regression (LR) and Support Vector Machine 
(SVM) were beneficial for diabetes prediction, and the accuracy of neural networks with 
two hidden layers is 88.6%.

Rajendra et  al. [19] compared logistic regression algorithms and ensemble learning 
techniques for diabetes prediction and conducted experiments on the PIMA diabetes 
dataset.The experimental results show that logistic regression is one of the effective algo-
rithms for building predictive models.This study also found that the use of data pre-pro-
cessing, feature selection and integration techniques could also improve the accuracy of 
the model.

Rawat et  al. [20] conducted comparative experiments on the PIMA diabetes dataset 
based on machine learning algorithms such as Naïve Bayesian (NB), Support Vector 
Machine (SVM), and Neural Network. The experimental results showed that the neural 
network was the best classifier with an accuracy of 98%.Therefore, the neural network 
approach is the best way to detect diabetic disease at an early stage.

Su et  al. [21] used XGBoost, LightGBM, Neural Network, Logistic Regression algo-
rithms for joint data modeling between different organizations. They conducted on 
PIMA diabetes dataset. The experimental results show that using federated learning 
models we can make better use of the patient data between different organizations and 
deliver a reliable and improved prediction of Diabetes Mellitus risks.
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Deep learning

Edla et  al. [22] proposed a deep neural network framework using stacked autoencod-
ers for the classification of diabetes data, using stacked autoencoders to extract fea-
tures from the dataset and using softmax to complete the classification. The method 
uses accuracy, recall and F1 index as evaluation metrics. The accuracy and recall for the 
PIMA Indian diabetes dataset were 90.66% and 87.92%, respectively.

Nguyen et al. [23] applied a broad deep learning model that combines the strengths of 
generalized linear models with various features and deep feedforward neural networks 
to improve prediction of the onset of type 2 diabetes mellitus (T2DM). Our final ensem-
ble model not using SMOTE obtained an accuracy of 84.28%, area under the receiver 
operating characteristic curve (AUC) of 84.13%, sensitivity of 31.17% and specificity of 
96.85%, further optimizing the prediction of diabetes onset.

Rahman et al. [24] proposed a novel diabetes classification model based on convolu-
tional long short-term memory (CONV-LSTM). The method was tested on the PIMA 
Indian diabetes dataset and compared with three models: convolutional neural network 
(CNN), traditional LSTM (T-LSTM) and CNN-LSTM, and the obtained results showed 
an accuracy of up to 97.26%, outperforming the other three models and the state-of-the-
art model.

Bala et  al. [25] developed a deep neural network (DNN) classifier, an unsupervised 
learning approach, which is used for accurate prediction for the Pima Indian diabetes 
dataset, and a feature importance model that is bagged with extra trees and random for-
est is used for feature selection. The model achieved 98.16% accuracy with a random 
train-test split, and it was observed that the model obtained better performance than 
other state-of-art methods.

Garc´ıa-Ord´as et al. [26] proposed a method based on deep learning techniques for 
predicting diabetic patients. The method includes data enhancement using a variational 
autoencoder (VAE), feature enhancement using a sparse autoencoder (SAE) and a con-
volutional neural network for classification. Feature extraction was performed on the 
PIMA Indian diabetes dataset, considering information such as the number of pregnan-
cies, glucose levels, insulin levels, blood pressure, and age of the patients. The obtained 
results showed that the method achieved an accuracy of 92.31%, which was 3.17% more 
accurate than other methods.

Satish et al. [27] proposed a related technique for feature selection. The method applies 
AdaBoost to selected features for classification, and a novel stacking technique based on 
multilayer perceptron, Support Vector machine and logistic regression (MLP, SVM and 
LR) is designed and developed for the selected features. Its proposed stacking technique 
integrates intelligent models, improves model performance, and overcomes the deci-
sion residual problem that occurs with AdaBoost. The obtained results outperform other 
reported techniques based on the PIMA Indian diabetes dataset implementation.

Aghila et  al. [28] proposed a custom hybrid model of an artificial neural network 
(ANN) and genetic algorithm for an efficient prediction framework of diabetic diseases. 
The method correctly identifies the importance of the impact of each variable on the 
output, thus prioritizing the variables considered to be the most important. The model 
and its corresponding decision algorithm achieved a prediction accuracy of 80% on the 
PIMA India diabetes dataset.
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YalinWu et  al. [29] proposed a new and efficient binary logistic regression (BLR) to 
accurately predict the specific type of T2DM and make the model adaptive to multiple 
datasets. To improve the recognition rate of the database, a series of preprocessing steps 
was performed, including outlier removal, normalization and missing value process-
ing. The generated high-dimensional features were modeled using a BLR application. 
Experiments were conducted using XGBoost-BLR on the PIMA Indian diabetes dataset 
and early diabetes dataset with diabetes prediction identification rates of 94% and 98%, 
respectively.

Roobini et  al. [30]used the Convolutional Graph Long Short Term Memory (CGL-
STM) classifier for classification. The weights of this deep neural network were opti-
mised using the AdaGrad optimiser to improve the accuracy of the predictions. They 
conducted experiments on the PIMA diabetes dataset and compared them with existing 
methods to demonstrate the efficiency of the proposed system.

Rabhi et  al. [31] developed a generic deep-learning-based framework for modeling 
IMTS. This framework facilitated the comparative studies of sequential neural networks 
(transformers and long short-term memory) and irregular time representation tech-
niques. This study highlighted the significance of modeling time gaps between medical 
records to improve prediction performance and the utility of a generic framework for 
conducting extensive comparative studies.

Qi et al. [32] proposed an ensemble learning framework: KFPredict, which combines 
multi input models with key features and machine learning algorithms. They first pro-
pose a multi-input neural network model (KF_NN) that fuses key features. Then, they 
ensemble KF_NN with three machine learning algorithms (i.e., Support Vector Machine, 
Random Forest and K-Nearest Neighbors) for soft voting to form our predictive classi-
fier for diabetes prediction. Taking the PIMA diabetes dataset as the test data, the exper-
iment shows that the framework presents good prediction results.

Proposed methodology
This thesis proposes a diabetes prediction model based on Boruta feature selection and 
ensemble learning based on correlation work.

The model mainly uses the Boruta feature selection algorithm to select the features in 
the dataset, selecting the most relevant features for diabetes diagnosis and eliminating 
irrelevant features. In the unlabeled dataset, there are potentially K patterns in general; 
thus, we used the K-Means++ algorithm for unsupervised cluster learning on the data-
set and found that the K patterns present in the dataset can be clustered into different 
clusters. Finally, data classification is performed using the stacking method in ensemble 
learning. Stacking in this paper uses Naive Bayesian (NB), K-Nearest Neighbor (KNN) 
and Decision Tree (DT) as the base model and Support Vector Machine (SVM) as the 
meta model. The specific steps of the model are shown in Fig. 2 below. After the original 
dataset is input, the dataset is preprocessed, and the results of the preprocessing are put 
through a clustering algorithm to calculate the correctly clustered data. The correctly 
clustered data are input into the stacking algorithm for classification. The results of the 
base model classification are fed into the meta-model, yielding diabetic and nondiabetic 
patients. The algorithms used in the model proposed in this paper are described below.
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Boruta feature selection

Boruta is a feature selection algorithm based on a random forest classifier. Unlike the 
goal of a general feature selection algorithm, the goal of the Boruta feature selection 
algorithm is to select the set of features that are most relevant to the dependent vari-
able rather than to a particular model. Unlike the goal of a general feature selection 
algorithm, the goal of the Boruta feature selection algorithm is to select the set of fea-
tures that are most relevant to the dependent variable rather than to select the mini-
mum compact set of features for which a particular model is best suited. The specific 
steps of the Boruta feature selection algorithm are as follows [33].

(1) Create a new feature matrix. Each feature of the real feature matrix M is ran-
domly disordered to obtain the shadow feature matrix M_S. Then, we splice the 

Fig. 2 Model structure diagram
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shaded feature matrix M_S with the original feature matrix M to form a new 
feature matrix N, N = [M,M_S].

(2) Use the feature matrix N as input and train the model and output the Feature_
Importances model.

(3) Calculate the Z_Score metric for the true feature matrix M and the shadow feature 
matrix M_S. Find the Z_Score metric with the largest shadow feature, denoted as 
Zmax.

(4) Real features with Z_Score greater than Zmax are marked as”important” and real 
features with Z_Score less than Zmax are marked as insignificant” and removed 
from the feature set.

(5) Remove all shadow features.
(6) Repeat steps 1-5 until importance has been assigned to all features or the algorithm 

has reached the previously set number of random forest runs.

In this study, using the PIMA Indian diabetes dataset, the Boruta feature selec-
tion algorithm was used to select five features with high predictive relevance from 
eight features associated with diabetes prediction, namely, glucose, BMI, age, diabetes 
spectrum function, and insulin.

K‑means++ 

There are generally K potential patterns in the dataset. K-Means is a classical unsuper-
vised cluster learning algorithm that finds K patterns in a dataset and uses the Euclidean 
distance as a measure of similarity. Generally, the closer is the distance, the greater is 
the similarity, and the farther is the distance, the lower is the similarity. However, the 
convergence of the K-Means algorithm is heavily dependent on the initialization status 
of the cluster centers. If all (or most) cluster centers are unfortunately initialized to the 
same cluster during the initialization process, then the K-Means clustering algorithm 
will largely fail to converge to the global optimal solution in this case. To solve this 
problem, the K-Means++ algorithm improves K-Means: when initializing the K cluster 
centers, the more distant are the samples from other cluster centers, the more likely are 
they to be selected as the next cluster center, thus solving the defective problem in the 
K-Means algorithm [34].

For better cluster learning, in this study, we use a modified version of the 
K-Means++ algorithm for unsupervised clustering learning. The specific implementa-
tion steps are shown below.

(1) Create K points as the initial center-of-mass points (select the K data points with 
the greatest distance).

(2) For each data point, the distance between it and the center-of-mass point is cal-
culated, and the data point is assigned to the cluster with the closest distance, as 
shown in Eq. 1.

(1)D(i,j) = argminj||X
(i) − µ(j)||

2
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where X(i) is the ith sample data point, µ(j) is the jth centroid, and D(i,j) is the mini-
mum distance between the sample data point and the centroid.

(3) Determine whether the clusters where the sample points are located before and 
after clustering are the same; if they are, the algorithm terminates. Otherwise, go to 
step 4.

(4) Calculate their respective centroids (Eq. 2) based on the sample points in each clus-
ter, use the result of the calculation as the new centroid for that cluster, and go to 
step 2. The algorithm ends when the sample points in each cluster are not changing, 
i.e., when the convergence state is reached is the jth centroid. The centroid count 
function counts the number of sample points that belong to the current centroid. 

where µ′
(j) is the jth cluster’s new center point, X(i) is the ith sample data point, 

and µ(j) In this study, unsupervised cluster learning is performed using the 
K-Means++ algorithm by preprocessing the dataset with operations such as 
removing extremes and outliers, filling in missing values, and normalizing the data. 
By comparison with the original dataset, the correctly clustered data account for 
approximately 74% of the total data. These diabetic data will be used as the input for 
the ensemble learning stacking method.

Ensemble learning

Stacking is an ensemble learning method that combines multiple classification models 
with a single meta-classifier. Stacking first obtains several base models based on different 
algorithms by parallel training, then combines the output of each base model by training 
a metamodel, and finally takes the output of the metamodel as the final output. Stacking 
in this paper uses NB, KNN and DT as the base model and SVM as the metamodel. The 
code of the stacking method is shown in Algorithm 1 below.

Where D is the dataset, xi is each sample data, and yi is the label correspond-
ing to each sample data, D′

test = Ptest, yi = P1i, P2i, P3i, . . . , Pni, yi
n

i=1
 , 

Ptest = (Pi1, Pi2, Pi3, . . . , Pin)
T is the output of the jth 

(

j = 1, 2, 3, . . . , t
)

 base model.

(2)µ
′
(j) =

∑m
i=1(X

(i) ∈ µ(j))

count
[
∑m

i=1(X
(i) ∈ µ(j))

]
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Grid search

In machine learning algorithms, the difference in parameters directly determines the effec-
tiveness of a model. If the manual trial parameter approach is adopted, it is true that the opti-
mal parameters can be obtained after a finite number of steps, but it will be labor-intensive 
and inefficient. To improve efficiency, reduce human error and be able to find the optimal 
parameters in the fastest way, grid search is used to select the optimal parameters in this study. 
The grid search method is an exhaustive search method for specifying parameter values. The 
method tries the possibility of each parameter by iterating through each parameter in a loop 
over the range of all parameter candidates and tests the model on the validation set. Finally, 
the parameter with the best model effect is the result of the final grid search and is the optimal 
parameter for the model within the range of parameter candidates. The grid search method 
ensures that the best model parameters are found within the candidate range of parameters.

Because the grid search method is an exhaustive approach that requires traversal of all 
possible parameter combinations, it can be time-consuming for large datasets and mod-
els with multiple parameters. The PIMA Indian diabetes dataset used in this study is a 
small dataset, and the model has relatively few parameters; thus, it is appropriate to use 
the grid search method to find the optimal parameters of the model.

Experiment
Dataset

This experiment used the PIMA Indian diabetes dataset, a common dataset for diabetes 
prediction.

Dataset description

The experiments used the PIMA Indian diabetes dataset from the UCI Machine Learn-
ing Repository, a common dataset for diabetes prediction. The dataset consisted of 768 
women with and without diabetes from Arizona, USA, who were all over 21 years of age 
and had type 2 diabetes. The dataset includes nine attributes, eight of which are related 
to diabetes diagnosis (pregnancy, body mass index, insulin levels, age, blood pressure, 
skin thickness, glucose and diabetes spectrum function) and one label attribute. The 
label attribute is used to distinguish between diabetic and nondiabetic populations. The 
dataset consisted of 268 test-positive examples and 500 test-negative examples. The 
attribute values are specifically described as shown in Table 1 below.

Table 1 Dataset description

NO Property name Property description Type of data Data range Missing value

1 Pregnancy Number of female pregnancies Integer 0–17 No

2 BMI BMI (kg/m2) Float 0–67.1 Yes

3 Insulin 2-h serum insulin Integer 0–846 Yes

4 Age Year Integer 21–81 No

5 Blood pressure Diastolic blood pressure 
(mmHg)

Integer 0–122 Yes

6 Skin thickness Triceps skinfold thickness (mm) Integer 0–99 Yes

7 Glucose 2-h blood glucose (mg/dl) Integer 0–199 Yes

8 Diabetes spectrum function Diabetes spectrum function Float 0.078–2.42 No

9 Outcome Diabetic population marker Integer 0.1 No
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The missing value, maximum value, minimum value, mean value, and standard devia-
tion of each attribute in the dataset were counted, and the statistical results are shown in 
Table 2.

Data preprocessing

This experiment uses the WEKA data analysis tool to preprocess the data. WEKA is known 
as Waika to Intelligent Analysis Environment, an open source machine learning and data 
mining software based on the JAVA environment [35].

Handling missing data

From the description of the dataset, it can be seen that there are five attributes with 
missing values in the dataset, namely, body mass index, insulin level, blood pressure, 
skin thickness and glucose. The average value can better reflect the overall situation of 
a set of data; thus, the average value of the five attributes is taken to replace the missing 
values separately.

Handling noisy data

In this experiment, outliers and extreme values were processed by quartile analysis. By 
analyzing the outliers and extreme values in the dataset, 71 data points, including 45 
outlier data points and 26 extreme value data points, were removed from the dataset, 
and 699 data samples were retained.

Boruta feature selection

In this experiment, we used the Boruta feature selection algorithm to select five features 
from the PIMA Indian diabetes dataset, namely, glucose, insulin level, body mass index, 
diabetes spectrum function and age. The data corresponding to the five features were 
saved and further processed.

Data standardization

In this experiment, we use the Z-Score method to standardize the data. Z-Score stand-
ardization is a data standardization based on the mean and standard deviation of the 
original data, and the standardized data are normally distributed, i.e., the distribution 

Table 2 Dataset statistics

NO Attributes Number 
of missing 
values

Average value Maximum Minimum Standard deviation

1 Pregnancy 0 3.845 17 0 3.37

2 BMI 11 32.457 67.1 18.2 6.925

3 Insulin 374 155.548 846 14 118.776

4 Age 0 33.241 81 21 11.76

5 Blood pressure 35 72.405 122 24 12.382

6 Skin thickness 227 29.153 99 7 10.477

7 Glucose 5 121.687 199 44 30.536

8 Diabetes spectrum 0 0.472 2.42 0.078 0.331
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with mean 0 and standard deviation 1. The formula for Z-Score standardization is shown 
in Eq. 3.

where x∗ represents the standardized data, x is the original data, µ represents the average 
value of data, and σ represents the standard deviation of data.

Experimental procedure

We preprocess the data, select the features of the dataset using the Boruta feature selec-
tion algorithm, and use the normalized processed data as input for the subsequent pro-
cessing. This experiment uses Python as the programming language, which has good 
portability, extensibility and interpretability. The computer parameters used in the 
experiments are as follows: CPU @1.90 GHZ, memory 16 GB, SSD 100 GB, etc.

K‑means++ algorithm

For certain K potential patterns present in the dataset, we use the K-Means++ algorithm 
to cluster the data into K different clusters. Only two types of populations exist in the 
PIMA Indian diabetes dataset used in this experiment, namely, the diabetic and nondia-
betic populations; thus, K is 2, i.e., divided into two different clusters. The unsupervised 
clustering learning of the data was performed using the K-Means++ algorithm and 
compared with the original dataset data, and finally, a total of 514 data were correctly 
clustered, including 332 nondiabetic population sample data and 182 diabetic popula-
tion sample data. The proportion of correctly clustered data was calculated using the fol-
lowing formula. The unsupervised clustering learning of the data was performed using 
the K-Means++ algorithm and compared with the original dataset data, and finally, a 
total of 514 data were correctly clustered, including 332 nondiabetic population sample 
data and 182 diabetic population sample data. Equation 4 is used to calculate the pro-
portion of correct data for clustering.

where p is the proportion of correct data, ε represents the number of correctly clustered 
sample data, and n represents the total number of sample data.

As seen above, the number of correctly clustered sample data accounts for approxi-
mately 74% of the total number of samples, and the 514 correctly clustered data are used 
as the input for stacking learning.

Ensemble learning stacking methods

We use stacking to perform ensemble learning classification on data that are correctly 
clustered. In this experiment, we use NB, KNN and DT as base models and SVM as a 
metamodel. The 514 data correctly clustered by the K-Means++ algorithm were fed into 
the stacking method for classification prediction, and the classification results were eval-
uated. The model parameters will be discussed in the next section.

(3)x∗ =
x − µ

σ

(4)p =
ε

n
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Parameter settings

In this experiment, we use grid search to select the parameters, specify the selection 
range of each parameter, evaluate the performance of the model by randomly combining 
various parameters by enumeration, and finally output the parameters when the model 
performance is optimal, and the corresponding parameters are also the optimal parame-
ters at this time. For the three methods in stacking, NB, KNN and DT all use grid search 
to find the optimal parameters, and the specific parameters are debugged as shown in 
the figure below.

KNN parameter

In this experiment, the optimization of KNN parameters mainly includes the selection 
of K values (the number of proximity points) and Weights.

For the K value, as shown in Fig. 3 below, it can be found that when the K value is 
5, the error value at this time is the smallest; thus, for the choice of K value, it is more 
appropriate to choose 5 in this experiment.

For Weights, as shown in Fig.  4 below, when Weights are selected as”uniform” 
and”distance”, the error values are the same. Taking this into account, “uniform” is cho-
sen as the value of Weights in this experiment.

As shown in Fig. 5, the marked part of the figure is the parameter value when the error 
is smallest; at this time, the value of K is 5, and the value of Weights is “uniform”.

In summary, the optimal parameters of KNN are taken as shown in Table 3.

Fig. 3 K value error plot
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Fig. 4 Weights value error plot

Fig. 5 KNN parameter value error plot

Table 3 KNN parameter values

Parameter Value

K 5

Weights Uniform
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DT parameter

In this experiment, the optimization of DT parameters includes the selection of the val-
ues of Max_Depth and Criterion.

Max_Depth (depth of the constructed tree) parameter value selection is shown in 
Fig. 6. When the value of Max_Depth is 18, the corresponding error value is the smallest; 
thus, it is more appropriate to choose the value of Max_Depth as 18 in this experiment.

For Criterion, there are two general values of Criterion, namely,”entropy” and”gini”. The 
error is calculated according to the two different values, and the results are shown in Fig. 7. 
It can be seen that the error is smaller when the value of the Criterion parameter is”entropy”. 
Therefore, the value of”entropy” for Criterion in this experiment is more appropriate.

Fig. 6 Max_Depth error plot

Fig. 7 Criterion error plot
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As shown in Fig. 8, the marked part of the figure is the parameter value when the error 
is smallest; at this time, the Max_Depth value is 18, and the Criterion value is “entropy”.

In summary, the optimal parameters of KNN are taken as shown in Table 4.

SVM parameter

In this experiment, the optimization of the SVM parameters mainly includes the values 
of Kernel and C (penalty coefficient).

For Kernel values, there are four general cases, namely, “linear”, “poly”, “rbf” and “sig-
moid”. We calculate the error value for each of the four cases of the Kernel, as shown 
in Fig. 9. When the value of the Kernel is “linear”, the corresponding error value is the 
smallest; thus, it is more appropriate when the value of the Kernel is “linear” in this 
experiment.

When the value of the Kernel is “linear”, the value of C (penalty coefficient) is dis-
cussed, and the error values corresponding to different values of C are shown in Fig. 10. 
When the value of C (penalty coefficient) is 3.7, the corresponding error value is the 
smallest; thus, the value of C (penalty coefficient) is 3.7 in this experiment, which is 
more appropriate.

In summary, the optimal parameters of KNN are taken as shown in Table 5.

Fig. 8 DT parameter value error plot

Table 4 DT parameter values

Parameter Value

Max_Depth 18

Criterion Entropy
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Fig. 9 Kernel value error plot

Fig. 10 C value error plot

Table 5 SVM parameter values

Parameter Value

C 3.7

Kernel Linear



Page 20 of 34Zhou et al. BMC Bioinformatics          (2023) 24:224 

Results and discussion
Evaluation indicator

In this study, we use six evaluation metrics to evaluate the model, including accuracy, recall, 
precision, F1 index, kappa coefficient and MCC coefficient. The details are shown below.

The confusion matrix is a matrix used to summarize the classification results of the 
classifier. It consists of true-positive TP, false-positive FP, false-negative FN and true-
negative TN. The evaluation metrics of the model are calculated by TP, FP, FN and TN, 
which enables the performance evaluation of the model.

Accuracy, recall, precision, F1 index, Kappa coefficient and MCC coefficient. The cal-
culation formula is shown in Eqs. 5–10.

where P0 represents the sum of the number of correctly classified samples in each cat-
egory divided by the total number of samples. Suppose the number of real samples in 
each category is x1, x2, x3, ......, xn , the number of samples in each category predicted by 
the model is y1, y2, y3, ......, yn , and the total number of samples is n. The formula for Pe is 
Pe = x1∗y1+x2∗y2+x3∗y3+......+xn∗yn

n∗n
.

In order to evaluate model performance in a balanced manner and to prevent specific 
data from influencing the results of performance evaluation, the following experiments 
were all conducted using 7–3 divided data (7–3) and tenfold cross−validation (10CV).

Performance evaluation

Comparison between the same studies

In this section, the model is evaluated using the abovementioned metrics and compared 
with other models. The dataset uses the PIMA Indian diabetes dataset. The comparison 
results are shown in Tables 6 and 7. In the comparison, data for indicators not given by 
other researchers are replaced by "–". In Tables 6–12 and 14–20, the bold text indicates 
the experimental results of the method with the best performance under the current 
experimental evaluation metric. 

(5)Accuracy =
TP + TN

TP + TN + FP + FN
∗ 100%

(6)Recall =
TP

TP + FN
∗ 100%

(7)Precision =
TP

TP + FP
∗ 100%

(8)F1 =
2 ∗ Recall ∗ Pr ecision
Recall + Pr ecision

∗ 100%

(9)MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

∗100%

(10)Kappa =
P0 − Pe

1− Pe
∗ 100%
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In Table 6, the proposed model has a 10–30% higher assessment metric than all other 
models. In Table 7, mean values were taken for comparison, with the proposed model 
having 0.3–23.1% higher accuracy, 0.4–28.4% higher recall, 1–26.5% higher F1 index, 
2–6.5% higher kappa index, 0.3–24.7% higher precision, and 2.2–6.6% higher MCC 
index. Therefore, the proposed model in this paper outperforms the existing prediction 
models in all evaluation metrics and has better performance.

Comparison with other combinatorial classifiers

Since the combinatorial classifier stacking is used in this experiment, in this section, the 
model proposed in this thesis is compared with the latest published combinatorial clas-
sifier and the well-known bagging and boosting classifiers (the combinatorial classifier 
has been implemented using the Python language). If the researchers mention the val-
ues of their experimental parameters, the same parameter values are used. If no specific 
parameter values are indicated, all default values will be taken for the implementation. 
The specific experimental results are shown in Tables 8 and 9, and the results are ana-
lyzed and discussed separately.

Table 6 Model evaluation(7–3)

Accuracy Recall F1 Index Kappa Precision MCC

LR 0.774 0.782 0.761 0.527 0.626 0.538

KNN 0.638 0.567 0.549 0.149 0.576 0.174

SVM 0.754 0.723 0.730 0.466 0.760 0.478

NB 0.767 0.724 0.734 0.474 0.761 0.488

DT 0.877 0.868 0.866 0.733 0.821 0.733

RF 0.754 0.648 0.649 0.354 0.730 0.460

My model 0.980 0.982 0.971 0.952 0.962 0.950

Table 7 Model evaluation(10CV)

Accuracy Recall F1 Index Kappa Precision MCC

LR 0.719 0.674 0.719 0.357 0.615 0.362

KNN 0.655 0.573 0.655 0.163 0.546 0.184

SVM 0.692 0.640 0.692 0.290 0.579 0.297

NB 0.659 0.614 0.659 0.232 0.524 0.237

DT 0.896 0.884 0.896 0.768 0.871 0.774

RF 0.577 0.505 0.577 0.017 0.386 0.022

PSO-FCM [15] 0.954 0.956 – – 0.955 0.908

PCA + K-Means + LR [12] 0.973 0.970 0.970 0.942 0.974 0.943

VAE + SAE With CNN [26] 0.923 – – – – –

K-Means + LR [11] 0.954 0.954 – 0.897 0.954 0.899

Conv-Lstm [24] 0.972 0.939 – – – –

SVC [17] 0.790 0.700 0.715 – 0.731 –

LE [19] 0.750 0.720 0.730 – 0.730 –

X-BLR [29] 0.940 0.940 0.930 – 0.920 –

CGLSTM [30] 0.978 0.896 0.856 – 0.914 –

KFPredict [32] 0.935 0.980 – – 0.850 –

My model 0.981 0.984 0.980 0.962 0.977 0.965
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In Table 8, it can be seen that the boosting classifier, with the exception of the preci-
sion metric, outperforms the proposed model in all other metrics, 0.2% higher accuracy, 
0.8% higher recall, 1.3% higher F1 index, 1.7% higher kappa index and 1.9% higher MCC 
index. Otherwise, the proposed models are better than the rest, with 0.6–10.3% higher 
accuracy, 0.7–13.3% higher recall, 5.5–10.7% higher F1 index, 0.6–22% higher kappa 
index, 1–8.7% higher precision, and MCC index 0.4–19.6% higher.

Table 9 shows that both REL and ARS classifier evaluation metrics are slightly better 
than the proposed model. These include 0.5% higher accuracy, 0.3–0.5% higher F1 index, 
0.5–0.8% higher kappa index, 2.3% higher precision, and 0.1–1.6% higher MCC index. 
Otherwise, the proposed models are better than the rest, with 5.7–9.8% higher accuracy, 
0.8–14.1% higher recall, 6.5–12.1% higher F1 index, 0.1–23.8% higher kappa index, and 
1–8.4% higher precision, and the MCC index is 0.3–21.8% higher.

Comparison in the original dataset

In this section, the PIMA Indian diabetes dataset used is not preprocessed and includes 
noisy data such as missing values and extreme values. I will use the original PIMA Indian 
Diabetes dataset to evaluate the model proposed in this paper and to compare it with the 
models proposed by other researchers. The specific experimental results are shown in 
Tables 10 and 11.

In Table 10, the original PIMA Indian diabetes dataset is processed using the 7–3 divi-
sion; the model proposed in this paper is superior to all other 11 models. The proposed 
model outperforms the rest of the models in terms of evaluation metrics, with 4.8–21.2% 

Table 8 Model evaluation(7–3)

Accuracy Recall F1 Index Kappa Precision MCC

XGBoost [5] 0.877 0.849 0.864 0.732 0.977 0.754

REL [27] 0.974 0.975 0.973 0.946 0.952 0.946

GD [6] 0.896 0.886 0.889 0.778 0.875 0.778

ARS [7] 0.967 0.941 0.909 0.972 1.000 0.913

Bagging 0.922 0.904 0.916 0.833 0.980 0.841

Boosting 0.982 0.990 0.984 0.969 0.958 0.969
My model 0.980 0.982 0.971 0.952 0.962 0.950

Table 9 Model evaluation(l0CV)

Accuracy Recall F1 Index Kappa Precision MCC

XGBoost 0.883 0.843 0.859 0.724 0.958 0.747

REL 0.986 0.978 0.983 0.967 1.000 0.969

GD 0.924 0.917 0.915 0.830 0.893 0.833

ARS 0.986 0.984 0.985 0.970 1.000 0.981
Bagging 0.908 0.888 0.897 0.796 0.937 0.803

Boosting 0.982 0.976 0.982 0.961 0.967 0.962

My model 0.981 0.984 0.980 0.962 0.977 0.965
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higher accuracy, 3.3–22.6% higher recall, 4.4–33.8% higher F1 index, 8.9–47.7% higher 
kappa index, and 1.7–30.4% higher precision, and 9.1–45.9% higher MCC index.

In Table 11, the performance of the KNN classifier is comparable to the performance 
of the proposed model in this paper, but the proposed model in this paper is more effec-
tive than the other models, where accuracy is 2.6–16.5% higher, recall is 0.3–14.6% 
higher, F1 index is 3.3–15.3% higher, kappa index is 7–30.1% higher, precision is 0.1–
22.4% higher, and MCC index is 7.3–30.4% higher.

Table 10 Model evaluation(7–3)

Accuracy Recall F1 Index Kappa Precision MCC

XGBoost 0.722 0.624 0.631 0.309 0.812 0.374

REL 0.645 0.507 0.403 0.007 0.500 0.028

GD 0.675 0.630 0.633 0.268 0.549 0.270

ARS 0.666 0.601 0.589 0.226 0.670 0.263

LR 0.571 0.534 0.533 0.067 0.383 0.067

KNN 0.683 0.645 0.647 0.296 0.552 0.296

SVM 0.735 0.700 0.697 0.395 0.579 0.396

NB 0.649 0.571 0.568 0.158 0.510 0.168

DT 0.632 0.592 0.592 0.184 0.462 0.184

RF 0.692 0.538 0.478 0.101 1.000 0.230

My model 0.783 0.733 0.741 0.484 0.687 0.487

Table 11 Model evaluation(10CV)

Accuracy Recall F1 Index Kappa Precision MCC

XGBoost 0.690 0.623 0.621 0.262 0.604 0.282

REL 0.551 0.530 0.520 0.052 0.381 0.055

GD 0.665 0.641 0.633 0.269 0.517 0.272

ARS 0.583 0.556 0.547 0.102 0.414 0.107

LR 0.567 0.547 0.536 0.082 0.397 0.087

KNN 0.718 0.673 0.673 0.352 0.613 0.359

SVM 0.654 0.634 0.626 0.257 0.504 0.260

NB 0.558 0.536 0.528 0.068 0.390 0.070

DT 0.673 0.647 0.640 0.283 0.528 0.286

RF 0.553 0.530 0.520 0.052 0.381 0.055

My model 0.716 0.676 0.673 0.353 0.605 0.359

Table 12 Standard deviation test

Accuracy Recall F1 Index Kappa Precision MCC

LR 0.05176 0.06968 0.07120 0.14293 0.36255 0.14600

KNN 0.07411 0.06519 0.07430 0.14713 0.19508 0.16640

SVM 0.05138 0.06302 0.06392 0.13108 0.15804 0.13834

NB 0.05985 0.06865 0.07093 0.13652 0.52460 0.13676

DT 0.03232 0.04472 0.03836 0.07525 0.09071 0.07240

RF 0.08375 0.08531 0.08912 0.17546 0.17179 0.18285

My model 0.01365 0.01757 0.01652 0.03303 0.02258 0.03287
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McNemar and standard deviation metrics

In this section, we will evaluate the model using McNemar and standard deviation. The 
McNemar test is based on a twofold continuous table of two model predictions, and the 
P value is the probability of observing this chi-squared value. The P value calculated by 
the test is lower than the given significance level, and the null hypothesis of equal perfor-
mance of the two models can be rejected with a significant difference. Conversely, if the 
P-value calculated by the test is greater than the given significance level, the hypothesis 
of equal performance of the two models is supported, and there is no significant differ-
ence. The standard deviation, on the other hand, reflects the distribution among a set 
of data. We will analyze six models of LR, KNN, SVM, NB, DT, and RF with tenfold 
CV, given the significance value of 0.08, and the specific analysis results are shown in 
Tables 12 and 13.

Regarding the PIMA Indian diabetes dataset, the standard deviation corresponding to 
each indicator of the model proposed in this paper is minimal, implying that the distri-
bution among the data is relatively stable. At the same time, most of the data in Table 13 
are smaller than the given significance threshold of 0.08, indicating a significant differ-
ence from the model presented in this thesis.

Performance on other datasets

To further evaluate the performance of the present model and to demonstrate the reli-
ability and applicability of the model, we tested it using a different dataset of diabetic 
patients, which was obtained from a direct questionnaire from patients of Sylhet Diabe-
tes Hospital, Sylhet, Bangladesh.

Dataset description

The early diabetes risk prediction dataset was used in this experiment, which was 
obtained from a direct questionnaire from patients of Sylhet Diabetes Hospital, Sylhet, 
Bangladesh. Seventeen attributes were included in this dataset, 16 of which were related 
to diabetes diagnosis and 1 to a labeled attribute. The relevant attributes included age, 
gender, polydipsia, irritability, and weakness, and the labeled attributes were used to dif-
ferentiate the diabetic population from the nondiabetic population. A total of 520 sam-
ples were included in the dataset, including 320 sample examples of diabetic patients 
and 200 sample examples of nondiabetic patients. The operations on the dataset are 
shown below.

Data collection prevention and experiment

Preprocessing of the dataset. Labeling of discrete data using 0/1 to facilitate later data 
processing. Quartile analysis was used to remove noise data such as extreme values and 
outliers. Feature selection was performed using Boruta’s algorithm to select the six most 
relevant features for diabetes prediction, namely, age, sex, polydipsia, irritability, sud-
den weight loss, and partial limb paralysis. The data were normalized using the Z-Score 
method. The preprocessed data were input to the K-Means++ unsupervised clustering 
algorithm for learning, and the clustering results were compared with the original data 
to count the number of correctly clustered data. Afterward, classification is performed 
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using the ensemble learning stacking method, and the optimal parameters are found 
using a grid search.

Comparison between the same studies

In this section a comparison with traditional machine learning models is made. The 
comparison results are shown in Tables 14 and 15.

In Table  14, the proposed model outperformed the rest of the models in terms of 
evaluation metrics, with accuracy 3.2–17% higher, recall 3.1–16.2% higher, F1 index 
3.1–16.9% higher, kappa index 6.2–33.8% higher, precision 1.8–13.3% higher, and MCC 
index 6.3–34% higher.

In Table 15, the proposed model outperforms the rest of the models in terms of evalu-
ation metrics, including 1.2–35.6% higher accuracy, 1.6–36.7% higher recall, 1.5–35.6% 
higher F1 index, 2.6–19.8% higher kappa index, 2.4–34.2% higher precision, and 2.7–
18.4% higher MCC index.

Table 14 Model evaluation(7–3)

Accuracy Recall F1 Index Kappa Precision MCC

LR 0.816 0.824 0.816 0.632 0.895 0.630

KNN 0.923 0.909 0.919 0.839 0.883 0.850

SVM 0.877 0.871 0.868 0.737 0.914 0.737

NB 0.946 0.932 0.942 0.885 0.918 0.891

DT 0.954 0.955 0.954 0.908 0.970 0.908

RF 0.900 0.891 0.900 0.796 0.855 0.808

My model 0.986 0.986 0.985 0.970 0.988 0.971

Table 15 Model evaluation(10CV)

Accuracy Recall F1 Index Kappa Precision MCC

LR 0.708 0.706 0.708 0.404 0.744 0.407

KNN 0.628 0.608 0.602 0.219 0.640 0.229

SVM 0.713 0.708 0.704 0.411 0.747 0.413

NB 0.853 0.836 0.842 0.689 0.809 0.708

DT 0.933 0.931 0.930 0.861 0.948 0.865

RF 0.589 0.580 0.589 0.157 0.630 0.161

My model 0.945 0.947 0.945 0.887 0.972 0.892

Table 16 Model evaluation(7–3)

Accuracy Recall F1 Index Kappa Precision MCC

XGBoost 0.954 0.952 0.953 0.907 0.944 0.908

REL 0.969 0.971 0.968 0.937 0.986 0.938

GD 0.931 0.948 0.925 0.852 1.000 0.861

ARS 0.786 0.774 0.778 0.559 0.771 0.566

Bagging 0.961 0.961 0.959 0.919 0.975 0.919

Boosting 0.984 0.983 0.984 0.969 0.972 0.969

My model 0.986 0.986 0.985 0.970 0.988 0.971
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Comparison between combined classifiers

As above, the models in this thesis are compared with different combinatorial classifiers. 
The comparison results are shown in Tables 16 and 17.

In Table 16, the proposed model outperforms the rest of the models in terms of evalu-
ation metrics, including 0.2–20% higher accuracy, 0.3–21.2% higher recall, 0.1–20.7% 
higher F1 index, 0.1–41.1% higher kappa index, 0.2–21.7% higher precision, and MCC 
index 0.2–40.5% higher.

As seen from Table 17, the XGBoost classifier is slightly better than the model in this 
thesis in all aspects, including 3.2% higher accuracy, 2.7% higher recall, 3% higher F1 
index, 6.4% higher kappa index, 0.9% higher precision and 6.1% higher MCC index. In 
addition, the model in this thesis outperforms the other combinatorial classifiers, which 
includes 1–28.3% higher accuracy, 1.4–29% higher recall, 1.3–29.2% higher F1 index, 
2.1–57.8% higher kappa index, 2.7–27.6% higher precision and 2.3–58.1% higher MCC 
index.

Comparison on the original dataset

As above, we also compared the performance of the different models on the original 
early diabetes risk prediction dataset. The comparison results are shown in Tables 18 and 
19. In the comparison, data for indicators not given by other researchers are replaced by 
"–".

Table 18 shows that the proposed model achieves better results than the rest of the 
models. In particular, the accuracy is 1.2–32.6% higher, the recall is 2.6–34.7% higher, 
the F1 index is 1.5–35.5% higher, and the kappa index is 3.2–37.4% higher, the accuracy 
is 4.7–31.9% higher, and the index is 2–29.3% higher MCC.

Table 19 shows that the proposed model outperforms the rest of the models in terms 
of all assessment indicators. The accuracy rate is 1.6–23.9% higher, the recall rate is 1.4–
21.1% higher, the F1 index is 1.8–24.6% higher, the kappa index is 3.4–34.6% higher, the 
precision is 1.9–16.9%, and the MCC index is 2.7–35.1% higher.

Table 17 Model evaluation(10CV)

Accuracy Recall F1 Index Kappa Precision MCC

XGBoost 0.977 0.974 0.975 0.951 0.963 0.953
REL 0.662 0.657 0.653 0.309 0.696 0.311

GD 0.922 0.920 0.918 0.837 0.940 0.840

ARS 0.497 0.492 0.489 -0.010 0.557 -0.010

Bagging 0.915 0.918 0.911 0.825 0.981 0.835

Boosting 0.935 0.933 0.932 0.866 0.945 0.869

My Model 0.945 0.947 0.945 0.887 0.972 0.892
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McNemar and standard deviation metrics

As above, the model was also evaluated using McNemar and standard deviation. The 
comparison results are shown in Tables 20 and 21.

On the early diabetes risk prediction dataset, DT has the smallest standard deviation, 
implying that the distribution among the data are relatively stable. However, it does not 
imply a better performance than the model in this thesis. Most of the data in Table 21 
are smaller than the given significance threshold of 0.08, indicating a significant differ-
ence from the model presented in this thesis.

Table 18 Model evaluation(7–3)

Accuracy Recall F1 Index Kappa Precision MCC

XGBoost 0.846 0.837 0.839 0.678 0.863 0.679

REL 0.846 0.830 0.837 0.678 0.807 0.694

GD 0.801 0.796 0.788 0.576 0.872 0.579

ARS 0.564 0.516 0.499 0.034 0.600 0.038

LR 0.602 0.534 0.533 0.073 0.675 0.074

KNN 0.532 0.521 0.517 0.042 0.647 0.042

SVM 0.634 0.589 0.590 0.184 0.694 0.186

NB 0.724 0.647 0.641 0.336 0.696 0.421

DT 0.794 0.783 0.783 0.566 0.833 0.566

RF 0.673 0.567 0.525 0.161 0.662 0.254

My model 0.858 0.863 0.854 0.710 0.919 0.714

Table 19 Model evaluation(10CV)

Accuracy Recall F1 Index Kappa Precision MCC

XGBoost 0.794 0.696 0.642 0.335 0.726 0.386

REL 0.615 0.650 0.503 – 0.615 0.0

GD 0.801 0.700 0.654 0.346 0.747 0.386

ARS 0.615 0.650 0.503 – 0.613 0.0

LR 0.615 0.650 0.503 – 0.615 0.0

KNN 0.586 0.510 0.437 0.057 0.631 0.081

SVM 0.615 0.650 0.503 – 0.615 0.0

NB 0.615 0.650 0.503 – 0.615 0.0

DT 0.809 0.707 0.665 0.369 0.763 0.405

RF 0.615 0.650 0.503 – 0.615 –

My model 0.825 0.721 0.683 0.403 0.782 0.432

Table 20 Standard deviation test

Accuracy Recall F1 Index Kappa Precision MCC

LR 0.06284 0.06673 0.06321 0.12658 0.08191 0.12877

KNN 0.07060 0.06287 0.06292 0.12460 0.10125 0.13311

SVM 0.05091 0.05672 0.05214 0.10452 0.07093 0.10687

NB 0.05719 0.05612 0.05876 0.11560 0.06858 0.11265

DT 0.03185 0.03485 0.03385 0.06773 0.04322 0.06832
RF 0.07624 0.07751 0.07754 0.15251 0.09912 0.15300

My Model 0.04418 0.05473 0.04875 0.09707 0.06765 0.09527
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Computational complexity analysis

In this section, I will analyze the feature selection algorithm, clustering algorithm, data 
processing and computational complexity of stacking used in the paper. The compu-
tational complexity is divided into two main parts: time complexity (time occupied by 
CPU) and space complexity (memory occupied space), and the results of the analysis are 
as follows.

Data processing

Data processing mainly includes the processing of noisy data such as missing values, 
extreme values, and outliers. This part uses the WEKA data analysis tool, which first 
cleans the data and later normalizes the cleaned data so that the data fall within a spe-
cific range of values.

Feature selection

The computational complexity of feature selection is shown in Table 22 below.

Clustering

The computational complexity of clustering is shown in Table 23 below.

Stacking

The computational complexity of stacking is shown in Tables 24 and 25.

Table 22 Computational complexity analysis of feature selection

Time complexity (s) Space 
complexity 
(MIB)

PIMA Dataset 6.250 4.30

Early Diabetes Risk Prediction Dataset 7.901 4.40

Table 23 Computational complexity analysis of clustering

Time complexity (s) Space 
complexity 
(MIB)

PIMA Dataset 0.258 4.30

Early Diabetes Risk Prediction Dataset 0.169 4.30

Table 24 Computational complexity analysis of stacking (7–3)

Train (s) Test (s) Total Time (s) Total 
space 
(MIB)

PIMA Dataset 0.153 0.014 0.168 4.30

Early Diabetes Risk Prediction 
Dataset

1.049 0.137 1.187 4.30
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Analysis of model advantages and disadvantages

Advantages

Compared with other models, the reasons for the better performance of the diabetes 
prediction model based on Boruta feature selection and ensemble learning proposed in 
this paper are as follows:

(1) In this paper, a suitable feature selection algorithm is used. In the field of diabetes 
prediction, we believe that the use of feature selection algorithms is not only to reduce 
the feature dimensionality, but more importantly to select features that are useful for 
diabetes diagnosis. If characteristics are selected simply in pursuit of better index results, 
but they will not be used in the physician’s diagnosis of diabetes, then we consider them 
to be meaningless and not applicable to the actual diagnosis. If the features selected are 
those used in the diagnosis of diabetes, even if the proposed method predicts poor index 
results, we can improve the results by tuning the parameters or changing to a differ-
ent algorithm. This is because these are the characteristics that can really help doctors 
make a diagnosis of diabetes. Therefore, the Boruta feature selection algorithm is finally 
selected by conducting comparative experiments in this paper.

(2) The unsupervised clustering algorithm is used. The unsupervised clustering algo-
rithm can divide the data into different sets of data clusters. Using correctly segmented 
data can improve the accuracy, precision and other metrics of diabetes data classifica-
tion, as well as reduce the model training time.

(3) This model uses ensemble learning and tunes the parameters of the model. In other 
research works, they mostly use single classifier models. However, the results of single 
classifier prediction are highly susceptible to the influence of data. In addition, most of 
the researchers did not adjust the parameters of their models.

Based on the above three points, this method was compared with other methods in 
experiments on two datasets. The experimental results show that although the results of 
certain experimental metrics are lower than other methods, the difference is minimal. 
And most of the experimental metrics are superior to other methods. This is fully illus-
trated by the detailed data comparison in the experimental part of this paper as well.

Disadvantages

(1) From the description of the two datasets, it can be seen that both datasets used in 
this paper have the problem of imbalance of data sample points. However, we do not 
address the data imbalance problem in the data preprocessing stage in this paper, which 
may result in a "majority class" preference in the trained model.

Table 25 Computational complexity analysis of stacking (10 CV)

Train (s) Test (s) Total Time (s) Total 
space 
(MIB)

PIMA Dataset 25.063 0.423 25.486 4.30

Early Diabetes Risk Prediction 
Dataset

15.685 0.465 16.150 4.30
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(2) The amount of data used for model training in this paper is insufficient. The PIMA 
diabetes dataset has 768 data and the early diabetes risk prediction dataset has 520 data. 
This may lead to inadequate training of the model. Therefore, future work will focus on 
finding a large and realistic diabetes dataset.

In this section, we focus on evaluating the performance of the model. First, it was 
evaluated on the commonly used diabetes dataset, PIMA, including the use of accu-
racy, precision, recall, F1 index, kappa coefficient and other metrics evaluated, and good 
performance was achieved. Second, using the early diabetes risk prediction dataset, the 
same good performance was achieved, verifying the reliability and applicability of the 
model. Finally, the computational complexity of the feature selection, clustering, and 
stacking methods and the advantages and disadvantages of the models are analyzed on 
two datasets.

In summary, the model has good performance, indicating that the results of this study 
are promising. Its research results are mainly applied to clinical screening and early 
warning of early diabetes. In the future, it may be involved in the preliminary diagnosis 
of other diseases and will be widely used in the field of bioinformatics.

Summary and future work
The difficulty of artificial intelligence technology in predicting whether a person is a dia-
betic population is how to improve the accuracy of the prediction results. In this paper, 
we propose a new method for predicting diabetes based on Boruta feature selection and 
ensemble learning, which mainly consists of extracting relevant features of the dataset 
using the Boruta feature selection algorithm, discovering some potential K patterns in 
the data using the K-Means++ algorithm, supervising the classification of the data using 
stacking, and optimizing the parameters using grid search to find the optimal values of 
the parameters. We used the PIMA Indian diabetes dataset for our experiments and 
achieved 98% accuracy using tenfold cross validation. In addition, comparing this model 
with other models, this model performs better. To validate the performance of the model 
on other datasets, we evaluated the model using the early diabetes risk prediction data-
set, all with good results. Therefore, the model has strong applicability and reliability. It 
is successful in the early prediction of diabetic disease.

Although the model works better, there are two aspects of the two datasets used in this 
experiment. On the one hand, the sample size of the dataset is small, and the attribute 
values and noise in the data are lower than in the real data. On the other hand, there 
is an imbalance in the sample size ratio between diabetic and nondiabetic populations 
in the dataset. When the model is trained, it will be biased to the category with a high 
sample size, so that the category with a low sample size is not adequately trained, result-
ing in lower model performance. For future work, first, it is necessary to cooperate with 
hospitals and use the hospital data as training data, while the ratio of diabetic population 
and nondiabetic population data samples should be kept equal. Second, the number of 
datasets will be expanded to ensure sufficient training and testing. We will also work on 
other chronic diseases, such as heart disease and kidney disease.
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