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Abstract 

Background: Large-scale multi-ethnic DNA sequencing data is increasingly available 
owing to decreasing cost of modern sequencing technologies. Inference of the popu-
lation structure with such sequencing data is fundamentally important. However, the 
ultra-dimensionality and complicated linkage disequilibrium patterns across the whole 
genome make it challenging to infer population structure using traditional principal 
component analysis based methods and software.

Results: We present the ERStruct Python Package, which enables the inference of 
population structure using whole-genome sequencing data. By leveraging parallel 
computing and GPU acceleration, our package achieves significant improvements in 
the speed of matrix operations for large-scale data. Additionally, our package features 
adaptive data splitting capabilities to facilitate computation on GPUs with limited 
memory.

Conclusion: Our Python package ERStruct is an efficient and user-friendly tool for 
estimating the number of top informative principal components that capture popula-
tion structure from whole genome sequencing data.

Keywords: Population structure, Principal component, Random matrix theory, 
Sequencing data, Spectral analysis

Background
With the fast development and decreasing cost of next generation sequencing tech-
nology, whole genome sequencing (WGS) data are increasingly available and hold the 
promise of discovering the genetic architecture of human traits and diseases. One fun-
damental question is to infer population structure from the WGS data, which is critically 
important in population genetics and genetic association studies [1–3].

PCA (principal component analysis) based methods are prevalent in capturing the popu-
lation structure from array-based genotype data [4–6]. However, it has been challenging to 
determine the number of top PCs (principal components) that can sufficiently capture the 
population structure in practice. A popular traditional method [5] does not perform well on 
sequencing data for two reasons: ultra-dimensionality [7] and linkage disequilibrium [5]. To 
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resolve those two practical issues on sequencing data, a novel method ERStruct based on 
eigenvalue ratios has been proposed [8] for whole genome sequencing data and a MATLAB 
toolbox has been developed. Substantial improvements in accuracy and robustness  are 
found when applying the ERStruct toolbox both on the HapMap 3 project [9] array-based 
data and the 1000 Genomes Project [10] sequencing data. Despite the great potential, we 
found that two issues may restrict the use of the ERStruct algorithm: 

1 Although the ERStruct MATLAB toolbox provides a parallelization computing fea-
ture, its scalability is heavily restricted by the size of memory available in the working 
environment, slowing down the speed of data analysis.

2 The ERStruct algorithm was implemented as a MATLAB toolbox which is not freely 
available. In contrast, Python is open-sourced and free to use.

To improve the efficiency and accessibility of the ERStruct algorithm, we develop a new 
Python package implementing the same ERStruct algorithm. Our ERStruct Python 
implementation uses parallelization computing to accelerate simulations of GOE 
(Gaussian Orthogonal Ensemble) matrices used in the ERStruct algorithm. In addition, 
the package provides optional GPU acceleration to boost the speed of large-scale data 
matrix operations while maintaining feasible memory usage for GPUs with limited Video 
Random Access Memory (VRAM). We applied the ERStruct Python package to the 1000 
Genomes Project data to demonstrate the computationally efficient performance in the 
"Results" section. Compared with the original MATLAB version, we achieved a similar 
time spent using our Python implementation using only CPU (Central Processing Unit) 
acceleration and significantly reduced time consumption and memory usage with GPU 
acceleration.

Algorithm
For self-sufficiency of the article, in this section we briefly describe the ERStruct algo-
rithm from [8]. The algorithm starts from a n-by-p genotype data matrix C that con-
sists of p genetic markers from n individuals. Each of the entry C(i, j) takes a value from 
{0, 1, 2} , which represents the raw count of the minor alleles for the genetic marker j on 
the individual i. The ERStruct algorithm estimates the number of top informative PCs 
that capture the latent population structure. Suppose there are K different (latent) sub-
populations in total, and the ith individual   is the lth person in the kth subpopulation, 
then the ERStruct model for the genetic markers of this ith individual is given by

In this model, the p-dimensional vectors µk denote the kth subpopulation mean counts 
of minor alleles, and the vectors εk ,l denote the individual noise vectors, which are inde-
pendent and identically distributed with mean zeros and an arbitrary covariance matrix 
�.

We now summarize the key steps of the ERStruct algorithm. First, the data matrix C is 
normalized column by column into the new matrix M by

(1)C(i, ·) ≡ ck ,l = µk + εk ,l .

(2)M(i, ·) = D̂·(C(i, ·)− µ̂)
T
,
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where

Next, we calculate the matrix Sp = MM
T/p , compute its non-zero ordered sample 

eigenvalues ℓ1 � · · · � ℓn−1 > 0 , and obtain the corresponding sample eigenvalue ratios 
ri = ℓi+1/ℓi, i = 1, . . . , n− 2.

According to the finite-rank perturbation theory [11, 12], under  the ERStruct model 1 
and the following two assumptions: 

(1) Ultra-high-dimensional asymptotic regime: n → ∞ and n/p → 0;
(2) mink  =k∗ �µk − µk∗� → ∞;

the sample eigenvalue ratios r1, . . . , rn−2 can be separated into two sets: the bulk and the 
spike. The bulk set contains the major part of eigenvalue ratios rK , . . . , rn−2 , which will form 
a compact set and go to 1 asymptotically. The spike set contains the remaining top K − 1 
sample eigenvalue ratios r1, . . . , rK−1 , which will converge (as n → ∞ ) to certain limits that 
are less than 1 and well-separated from the bulk set (see Fig. 1 for illustration).

The ERStruct algorithm estimates the number of top informative PCs K by estimating the 
number of spikes as follows,

That is, the first index k such that the kth and the K̂c subsequent eigenvalue ratios 
rk , . . . , rK̂c

 are respectively greater than their critical values ξα,k , . . . , ξα,K̂c
 , which are the 

lower α quantiles of the distributions of rk , . . . , rK̂c
 . Note that there are two user-speci-

fied parameters in Eq. 4: the significance level α and the coarse estimator K̂c . Based on 

(3)µ̂ =
1

n

n
∑

i=1

C(i, ·) = (µ̂1, . . . , µ̂p)
T, D̂ = diag

(

1
/√

Oµ j(1−Oµ j/2)
)

.

(4)K̂ER:=min
{

1 � k � K̂c such that rk � ξα,k , . . . , rK̂c
� ξ

α,K̂c

}

.
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Fig. 1 Illustration of a typical distribution of the eigenvalue ratios under the ERStruct model 1 ( K = 12 , 
n = 2500 , p = 8,000,000)
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the real data analysis results in [8], we recommend to use α = 0.001 , and set the coarse 
estimate K̂c = ⌊n/10⌋ by default. Note that the coarse estimate should be generally larger 
than the true number of top PCs K, so as to avoid under-estimation of the original eigen-
value ratio based estimator proposed in [13].

To determine the critical value ξα,k for rk , the null distribution of rk is needed and can 
be approximated by the distribution of the bulk eigenvalue ratio rK  when the sample 
size is n− k + 1 according to [12] (denotes as r(k)K  ). Applying the random matrix theory 
introduced in [14–16], the distribution of r(k)K  can be further approximated by

where the symbol ∼̇ denotes the left and right sides asymptotically follow the same dis-
tribution, and

w1 , w2 are the top two eigenvalues of a n-by-n GOE matrix (i.e., a square matrix with 
independent entries, where each diagonal entry follows N(0,  2) and each off-diagonal 
entry follows N(0, 1)).

Equations 5 and 6 link the distribution of (w1,w2) together to our target distribution 
of r(k)K  , and thus the distribution of rk . In the ERStruct algorithm, Monte Carlo simula-
tion is used to find out the empirical distribution of (w1,w2) . Denote all the simulated 
replications as (w(m)

1 ,w
(m)
2 ) , m = 1, . . . , rep , where rep is the number of replications. 

Then the empirical approximated distribution of rk can be calculated by substituting 
(w1,w2) as (w(m)

1 ,w
(m)
2 ) in Eq. 5, and sorting the results in ascending order (denotes as 

r
(1)
k � r

(2)
k � · · · � r

(rep)
k  ). Finally, the critical value can be calculated by

and the ERStruct estimator K̂ER can be obtained by Eq. 4.
Note that to ensure validity, the number of replications rep should be in general greater 

than 1/α , the reciprocal of the input significance level. We recommend users to choose 
between 2/α to 5/α for the argument rep.

Implementation
For a given genotype data matrix as input, the ERStruct Python package estimates the 
number of top informative PCs that capture the latent population structure in three 
parts: GOE matrices simulation, calculating the eigenvalue ratios of the given data 
matrix, and estimating the number of top PCs. These parts correspond to GOE.py, 
Eigens.py and TopPCs.py files shown in Fig.  2, respectively. To boost the overall 
performance of the ERStruct algorithm, instead of the frequently used NumPy array 
processing framework, we choose to build up our ERStruct algorithm using PyTorch 
tensor and PyTorch functions. According to our experiments, PyTorch functions (e.g., 
torch.nanmean, torch.nansum, and torch.linalg.eigvalsh) are much 

(5)r
(k)
K ∼̇

w2·

√

b̂
(k)
p /p+ â

(k)
p

w1·

√

b̂
(k)
p /p+ â

(k)
p

,

(6)â(k)p =
1

n− k

n−1
∑

i=k

ℓi, b̂(k)p =
p

(n− k)2

n−1
∑

i=k

(ℓi − â(k)p )2,

(7)ξα,k = r
(α·rep)
k ,
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faster than their NumPy equivalences (i.e., numpy.nanmean, numpy.nansum, and 
numpy.linalg.eigvalsh) for data processing in the ERStruct algorithm.

Scalable simulation of GOE matrices

In GOE.py, Monte Carlo method is used in the ERStruct algorithm to obtain the null 
distribution of our proposed ERStruct test statistic, which starts by generating multi-
ple replications of high-dimensional GOE matrices. A significant amount of computing 
resources is needed in this step, especially when the sample size of the experiment data 

Fig. 2 A flowchart that demonstrates the three parts of the ERStruct Python package for the whole genome 
sequencing data analysis. As an example we use the 1000 Genomes Project sequencing data set [10] in 
which genetic markers with MAF less than 5% are removed. The input real data are processed as in Eigens.
py and then transmitted to TopPCs.py to obtain the sample eigenvalue ratios ri (as plotted in the lower 
left panel). While in GOE.py, GOE matrices simulation is carried out and then transmitted to TopPCs.py 
to calculate the critical values ξα,1, . . . , ξα,K̂c . Finally, these critical values are used to infer the number of top 
principal components following Eq. 4 (as plotted in the lower right panel)
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is large. To efficiently simulate the high-dimensional GOE matrices, we have empirically 
tested different packages for parallelization computing on different scale GOE matrices, 
including Joblib, Multiprocessing, and Ray. Joblib is shown to have the most efficient and 
stable performance on our algorithm to apply parallelization computing for multicore. 
Without parallelization, the GOE matrices simulation takes 80.68 mins on the function 
GOE_L12_sim with sample size n = 2504 and the number of Monte Carlo replica-
tions rep = 5000 , while using parallelization by Joblib on 15 cores CPUs, it takes only 
6.46 mins to finish the same job. Compared with the non-parallelization MATLAB ver-
sion, we successfully decreased the computing time by 12.5 times.

Calculate the eigenvalue ratios of a given matrix

In Eigens.py, we start from loading genotype data matrices Ci from NPY files as the 
input, where each row of matrix Ci represents the genetic markers of an individual. Mul-
tiple files input are allowed in this step because all of these large-scale data files are often 
too large to fit in the memory at the same time. In this case, users need to ensure that 
each data file alone can fit in the memory, and all of these data contain the same individ-
uals in the same order. Also note that by default, our package will impute all the missing 
data by 0. To achieve a better performance potentially, users may perform other types of 
imputations beforehand.

The data matrix is then normalized according to Eqs. 2 and 3. In the next a few steps, 
sample covariance matrix Sp = MM

T/p , non-zero ordered eigenvalues ℓ1, . . . , ℓn−1 and 
eigenvalue ratio ri = ℓi+1/ℓi (as shown in the lower left panel in Fig.  2) are calculated 
accordingly. Although the above matrix operations involve only basic calculations, the data 
of interest are often massive, occupying a space of hundreds of gigabytes on disk, which 
may be expensive to process. In our ERStruct Python implementation, we accelerate the 
above computing steps by converting the CPU Tensor to a CUDA Tensor whenever GPU 
is available, taking advantage of fast matrix operations in GPU. Limited VRAM capacity 
on many GPUs makes it difficult to process massive data matrices. However, our approach 
demonstrates the flexibility of data splitting as a solution to this challenge when working 
with large data sets on resource-constrained hardware. Our package automatically splits 
the input data into multiple sub-arrays using a CPU before transmitting it to the GPU. The 
size of the sub-arrays is determined based on the available VRAM capacity in the working 
environment. By adopting this approach, users can accelerate computations on large-scale 
sequencing data, even with a small VRAM GPU, while simultaneously reducing over-
all memory usage. Our approach highlights the potential of data splitting as an effective 
method for handling large data sets on hardware with limited resources. Users may use 
other popular genotype data formats like VCF (variant call format) and bgen files. A tuto-
rial to convert VCF or bgen files to NPY files can be found in the ERStruct code repository.

Estimation of the number of top informative PCs

Finally, the sample eigenvalues ℓ1, . . . , ℓn−1 from Eigens.py and the top two eigenval-

ues of simulated GOE matrices (w(1)
1 ,w

(1)
2 ), . . . , (w

(rep)
1 ,w

(rep)
2 ) from GOE.py are trans-

mitted together into TopPCs.py. Following Eqs.  4–7 in the ERStruct algorithm, the 
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program output the estimation of the number of top informative PCs K̂ER in the end (as 
shown in the lower right panel in Fig. 2).

Note that if the target estimator K̂ER can not be found through Eq. 4, an error message 
will appear. This may happen if the data exhibit serious multicollinearity. To resolve this 
potential issue, users may need to pre-process the genetic data to remove highly corre-
lated genetic markers.

Results
In this section, we compare the speed, maximum memory usage, and accuracy of the 
original MATLAB [8] and our Python implementations of the ERStruct algorithm. We 
use the function tic in MATLAB and time.time in Python to record running time. 
To record memory usage, we use the Linux shell command /proc/<pid>/status | 
grep VmSize to check memory usage in MATLAB and use the Python module mem-
ory-profiler for checking in Python. Python (version 3.8.8) is used with NumPy (ver-
sion 1.20.1), PyTorch (version 1.11.0) and Joblib (version 1.0.1). All results are obtained 
from a server running x86-64 Linux with 15 Intel(R) Xeon(R) E7-8891 v4 CPU cores and 
12 GB Tesla K80 GPU.

We apply our ERStruct Python implementation to the publicly available 1000 Genomes 
Project [10] data to estimate the number of top informative PCs. The 1000 Genomes 
Project is a whole genome sequencing data set with 2504 individuals from 26 subpopula-
tions. Following the same procedure in [8], the raw sequencing data file is first filtered 
out markers with MAF (Minor Allele Frequency) less than 0.05, 0.01, 0.005, and 0.001 
using the PLINK software. The remaining number of markers are p0.05 = 7,921,8816, 
p0.01 = 13,650,478, p0.005 =17,307,567 and p0.001 = 28,793,505, respectively. Each pre-
processed data is stored as NPY files and tested using our ERStruct Python package and 
the original MATLAB toolbox by [8]. The testing parameters are fixed as: number of 
replications rep = 5000 , significance level α = 10

−3.
The results are shown in Table  1. The GPU-based Python implementation runs 

much faster than the CPU-based Python (2.02 times faster when MAF is greater than 
0.001) and MATLAB (3.78 times faster when MAF is greater than 0.001) implementa-
tions. In terms of the maximum memory usage, the GPU-based Python implementa-
tion used only 0.27 of the CPU-based Python implementation and 0.31 of the MATLAB 

Table 1 Running time (in minutes) and maximum memory usage (in GB) comparisons of the 
ERStruct algorithm, using MATLAB, Python CPU, and Python GPU implementations on the 1000 
Genomes Project data with different MAF filtering thresholds

MAF filtering thresholds 0.05 0.01 0.005 0.001

Running Time

MATLAB 30.08 42.30 50.05 73.41

Python CPU 34.89 66.54 84.97 137.54

Python GPU 17.60 21.91 28.96 36.42

Maximum Memory Usage

MATLAB 51.55 62.22 69.54 92.50

Python CPU 28.00 48.80 62.10 104.71

Python GPU 10.08 15.07 18.33 28.67
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implementation (when MAF is greater than 0.001) due to the data splitting procedure. 
Noting that our function Eigens automatically splits large-scale data sets so that our 
algorithm can be run on a GPU with limited VRAM, so using GPU acceleration can be 
slower than using CPU only when the current available VRAM is too small. In our test-
ing environment, this only happens when the available VRAM is less than 0.17 GB. It 
is only possible when another process in the working environment has taken up a large 
part of the available VRAM. In this case, we suggest releasing the VRAM first. In the 
package, we set the default VRAM value to 0.2 GB to ensure better performance.

To evaluate the accuracy of our ERStruct algorithm implemented in both the Python 
package and MATLAB toolbox, we conducted 30 identical experiments on CPU and 
GPU, respectively. We used the 1000 Genomes data set with MAF greater than 0.001, 
and set the number of replications to rep = 5000 and the significance level to α = 10−3 . 
In all 30 experiments, the output consistently estimated K̂ER = 25 . These results indicate 
that the ERStruct algorithm implemented in both versions are identical and produce the 
same output.

Conclusion
In this paper, we developed a Python package that employs the ERStruct algorithm 
to determine the optimal number of top informative PCs in WGS data. By leveraging 
parallel computing on CPUs and GPU acceleration, our package demonstrates excep-
tional efficiency in performing matrix operations on large-scale sequencing data  sets. 
To enhance the usability of our Python package across various environments, it fea-
tures adaptive data splitting capabilities for GPU computation with limited VRAM. We 
conducted experiments that compared the computation speed of our ERStruct Python 
package to the ERStruct MATLAB toolbox in [8]. Our results demonstrate a significant 
improvement in computation speed with the ERStruct Python package.

Availability and requirements

Project name: ERStruct.
Project home page: https:// github. com/ eciel yang/ ERStr uct.
Programming language: Python.
Other requirements: Python 3.7−3.9, PyTorch 1.10 or higher, NumPy, Joblib.
License: MIT License.

Abbreviations
ERStruct  Eigenvalue-Ratio-based estimator to infer latent population Structure
PCA  Principal Component Analysis
PC  Principal Component
CPU  Central Processing Unit
GPU  Graphics Processing Unit
WGS  Whole Genome Sequencing
GOE  Gaussian Orthogonal Ensemble
VRAM  Video Random Access Memory
MAF  Minor Allele Frequency
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