
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Yang et al. BMC Bioinformatics (2023) 24:180
https://doi.org/10.1186/s12859-023-05305-0

BMC Bioinformatics

ERStruct: a fast Python package for inferring
the number of top principal components
from whole genome sequencing data
Jinghan Yang1†, Yuyang Xu1†, Minhao Yao1, Gao Wang2 and Zhonghua Liu3*

Abstract

Background: Large-scale multi-ethnic DNA sequencing data is increasingly available
owing to decreasing cost of modern sequencing technologies. Inference of the popu-
lation structure with such sequencing data is fundamentally important. However, the
ultra-dimensionality and complicated linkage disequilibrium patterns across the whole
genome make it challenging to infer population structure using traditional principal
component analysis based methods and software.

Results: We present the ERStruct Python Package, which enables the inference of
population structure using whole-genome sequencing data. By leveraging parallel
computing and GPU acceleration, our package achieves significant improvements in
the speed of matrix operations for large-scale data. Additionally, our package features
adaptive data splitting capabilities to facilitate computation on GPUs with limited
memory.

Conclusion: Our Python package ERStruct is an efficient and user-friendly tool for
estimating the number of top informative principal components that capture popula-
tion structure from whole genome sequencing data.

Keywords: Population structure, Principal component, Random matrix theory,
Sequencing data, Spectral analysis

Background
With the fast development and decreasing cost of next generation sequencing tech-
nology, whole genome sequencing (WGS) data are increasingly available and hold the
promise of discovering the genetic architecture of human traits and diseases. One fun-
damental question is to infer population structure from the WGS data, which is critically
important in population genetics and genetic association studies [1–3].

PCA (principal component analysis) based methods are prevalent in capturing the popu-
lation structure from array-based genotype data [4–6]. However, it has been challenging to
determine the number of top PCs (principal components) that can sufficiently capture the
population structure in practice. A popular traditional method [5] does not perform well on
sequencing data for two reasons: ultra-dimensionality [7] and linkage disequilibrium [5]. To

†Jinghan Yang and Yuyang Xu
contributed equally.

*Correspondence:
zl2509@cumc.columbia.edu

1 Department of Statistics
and Actuarial Science, The
University of Hong Kong,
Pokfulam, Hong Kong SAR, China
2 Department of Neurology,
Gertrude. H. Sergievsky Center,
Columbia University, New York,
NY, USA
3 Department of Biostatistics,
Columbia University, New York,
NY, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05305-0&domain=pdf

Page 2 of 9Yang et al. BMC Bioinformatics (2023) 24:180

resolve those two practical issues on sequencing data, a novel method ERStruct based on
eigenvalue ratios has been proposed [8] for whole genome sequencing data and a MATLAB
toolbox has been developed. Substantial improvements in accuracy and robustness are
found when applying the ERStruct toolbox both on the HapMap 3 project [9] array-based
data and the 1000 Genomes Project [10] sequencing data. Despite the great potential, we
found that two issues may restrict the use of the ERStruct algorithm:

1 Although the ERStruct MATLAB toolbox provides a parallelization computing fea-
ture, its scalability is heavily restricted by the size of memory available in the working
environment, slowing down the speed of data analysis.

2 The ERStruct algorithm was implemented as a MATLAB toolbox which is not freely
available. In contrast, Python is open-sourced and free to use.

To improve the efficiency and accessibility of the ERStruct algorithm, we develop a new
Python package implementing the same ERStruct algorithm. Our ERStruct Python
implementation uses parallelization computing to accelerate simulations of GOE
(Gaussian Orthogonal Ensemble) matrices used in the ERStruct algorithm. In addition,
the package provides optional GPU acceleration to boost the speed of large-scale data
matrix operations while maintaining feasible memory usage for GPUs with limited Video
Random Access Memory (VRAM). We applied the ERStruct Python package to the 1000
Genomes Project data to demonstrate the computationally efficient performance in the
"Results" section. Compared with the original MATLAB version, we achieved a similar
time spent using our Python implementation using only CPU (Central Processing Unit)
acceleration and significantly reduced time consumption and memory usage with GPU
acceleration.

Algorithm
For self-sufficiency of the article, in this section we briefly describe the ERStruct algo-
rithm from [8]. The algorithm starts from a n-by-p genotype data matrix C that con-
sists of p genetic markers from n individuals. Each of the entry C(i, j) takes a value from
{0, 1, 2} , which represents the raw count of the minor alleles for the genetic marker j on
the individual i. The ERStruct algorithm estimates the number of top informative PCs
that capture the latent population structure. Suppose there are K different (latent) sub-
populations in total, and the ith individual is the lth person in the kth subpopulation,
then the ERStruct model for the genetic markers of this ith individual is given by

In this model, the p-dimensional vectors µk denote the kth subpopulation mean counts
of minor alleles, and the vectors εk ,l denote the individual noise vectors, which are inde-
pendent and identically distributed with mean zeros and an arbitrary covariance matrix
�.

We now summarize the key steps of the ERStruct algorithm. First, the data matrix C is
normalized column by column into the new matrix M by

(1)C(i, ·) ≡ ck ,l = µk + εk ,l .

(2)M(i, ·) = D̂·(C(i, ·)− µ̂)
T
,

Page 3 of 9Yang et al. BMC Bioinformatics (2023) 24:180

where

Next, we calculate the matrix Sp = MM
T/p , compute its non-zero ordered sample

eigenvalues ℓ1 � · · · � ℓn−1 > 0 , and obtain the corresponding sample eigenvalue ratios
ri = ℓi+1/ℓi, i = 1, . . . , n− 2.

According to the finite-rank perturbation theory [11, 12], under the ERStruct model 1
and the following two assumptions:

(1) Ultra-high-dimensional asymptotic regime: n → ∞ and n/p → 0;
(2) mink =k∗ �µk − µk∗� → ∞;

the sample eigenvalue ratios r1, . . . , rn−2 can be separated into two sets: the bulk and the
spike. The bulk set contains the major part of eigenvalue ratios rK , . . . , rn−2 , which will form
a compact set and go to 1 asymptotically. The spike set contains the remaining top K − 1
sample eigenvalue ratios r1, . . . , rK−1 , which will converge (as n → ∞) to certain limits that
are less than 1 and well-separated from the bulk set (see Fig. 1 for illustration).

The ERStruct algorithm estimates the number of top informative PCs K by estimating the
number of spikes as follows,

That is, the first index k such that the kth and the K̂c subsequent eigenvalue ratios
rk , . . . , rK̂c

 are respectively greater than their critical values ξα,k , . . . , ξα,K̂c
 , which are the

lower α quantiles of the distributions of rk , . . . , rK̂c
 . Note that there are two user-speci-

fied parameters in Eq. 4: the significance level α and the coarse estimator K̂c . Based on

(3)µ̂ =
1

n

n
∑

i=1

C(i, ·) = (µ̂1, . . . , µ̂p)
T, D̂ = diag

(

1
/√

Oµ j(1−Oµ j/2)
)

.

(4)K̂ER:=min
{

1 � k � K̂c such that rk � ξα,k , . . . , rK̂c
� ξ

α,K̂c

}

.

0.45 0.9 0.9994 0.9996 0.9998 1
Eigenalue Ratios

0

5

10

15

20

25

30

35

40

D
en

si
ty

Spiked eigenvalue ratio
Bulk eigenvalue ratio

Fig. 1 Illustration of a typical distribution of the eigenvalue ratios under the ERStruct model 1 (K = 12 ,
n = 2500 , p = 8,000,000)

Page 4 of 9Yang et al. BMC Bioinformatics (2023) 24:180

the real data analysis results in [8], we recommend to use α = 0.001 , and set the coarse
estimate K̂c = ⌊n/10⌋ by default. Note that the coarse estimate should be generally larger
than the true number of top PCs K, so as to avoid under-estimation of the original eigen-
value ratio based estimator proposed in [13].

To determine the critical value ξα,k for rk , the null distribution of rk is needed and can
be approximated by the distribution of the bulk eigenvalue ratio rK when the sample
size is n− k + 1 according to [12] (denotes as r(k)K). Applying the random matrix theory
introduced in [14–16], the distribution of r(k)K can be further approximated by

where the symbol ∼̇ denotes the left and right sides asymptotically follow the same dis-
tribution, and

w1 , w2 are the top two eigenvalues of a n-by-n GOE matrix (i.e., a square matrix with
independent entries, where each diagonal entry follows N(0, 2) and each off-diagonal
entry follows N(0, 1)).

Equations 5 and 6 link the distribution of (w1,w2) together to our target distribution
of r(k)K , and thus the distribution of rk . In the ERStruct algorithm, Monte Carlo simula-
tion is used to find out the empirical distribution of (w1,w2) . Denote all the simulated
replications as (w(m)

1 ,w
(m)
2) , m = 1, . . . , rep , where rep is the number of replications.

Then the empirical approximated distribution of rk can be calculated by substituting
(w1,w2) as (w(m)

1 ,w
(m)
2) in Eq. 5, and sorting the results in ascending order (denotes as

r
(1)
k � r

(2)
k � · · · � r

(rep)
k). Finally, the critical value can be calculated by

and the ERStruct estimator K̂ER can be obtained by Eq. 4.
Note that to ensure validity, the number of replications rep should be in general greater

than 1/α , the reciprocal of the input significance level. We recommend users to choose
between 2/α to 5/α for the argument rep.

Implementation
For a given genotype data matrix as input, the ERStruct Python package estimates the
number of top informative PCs that capture the latent population structure in three
parts: GOE matrices simulation, calculating the eigenvalue ratios of the given data
matrix, and estimating the number of top PCs. These parts correspond to GOE.py,
Eigens.py and TopPCs.py files shown in Fig. 2, respectively. To boost the overall
performance of the ERStruct algorithm, instead of the frequently used NumPy array
processing framework, we choose to build up our ERStruct algorithm using PyTorch
tensor and PyTorch functions. According to our experiments, PyTorch functions (e.g.,
torch.nanmean, torch.nansum, and torch.linalg.eigvalsh) are much

(5)r
(k)
K ∼̇

w2·

√

b̂
(k)
p /p+ â

(k)
p

w1·

√

b̂
(k)
p /p+ â

(k)
p

,

(6)â(k)p =
1

n− k

n−1
∑

i=k

ℓi, b̂(k)p =
p

(n− k)2

n−1
∑

i=k

(ℓi − â(k)p)2,

(7)ξα,k = r
(α·rep)
k ,

Page 5 of 9Yang et al. BMC Bioinformatics (2023) 24:180

faster than their NumPy equivalences (i.e., numpy.nanmean, numpy.nansum, and
numpy.linalg.eigvalsh) for data processing in the ERStruct algorithm.

Scalable simulation of GOE matrices

In GOE.py, Monte Carlo method is used in the ERStruct algorithm to obtain the null
distribution of our proposed ERStruct test statistic, which starts by generating multi-
ple replications of high-dimensional GOE matrices. A significant amount of computing
resources is needed in this step, especially when the sample size of the experiment data

Fig. 2 A flowchart that demonstrates the three parts of the ERStruct Python package for the whole genome
sequencing data analysis. As an example we use the 1000 Genomes Project sequencing data set [10] in
which genetic markers with MAF less than 5% are removed. The input real data are processed as in Eigens.
py and then transmitted to TopPCs.py to obtain the sample eigenvalue ratios ri (as plotted in the lower
left panel). While in GOE.py, GOE matrices simulation is carried out and then transmitted to TopPCs.py
to calculate the critical values ξα,1, . . . , ξα,K̂c . Finally, these critical values are used to infer the number of top
principal components following Eq. 4 (as plotted in the lower right panel)

Page 6 of 9Yang et al. BMC Bioinformatics (2023) 24:180

is large. To efficiently simulate the high-dimensional GOE matrices, we have empirically
tested different packages for parallelization computing on different scale GOE matrices,
including Joblib, Multiprocessing, and Ray. Joblib is shown to have the most efficient and
stable performance on our algorithm to apply parallelization computing for multicore.
Without parallelization, the GOE matrices simulation takes 80.68 mins on the function
GOE_L12_sim with sample size n = 2504 and the number of Monte Carlo replica-
tions rep = 5000 , while using parallelization by Joblib on 15 cores CPUs, it takes only
6.46 mins to finish the same job. Compared with the non-parallelization MATLAB ver-
sion, we successfully decreased the computing time by 12.5 times.

Calculate the eigenvalue ratios of a given matrix

In Eigens.py, we start from loading genotype data matrices Ci from NPY files as the
input, where each row of matrix Ci represents the genetic markers of an individual. Mul-
tiple files input are allowed in this step because all of these large-scale data files are often
too large to fit in the memory at the same time. In this case, users need to ensure that
each data file alone can fit in the memory, and all of these data contain the same individ-
uals in the same order. Also note that by default, our package will impute all the missing
data by 0. To achieve a better performance potentially, users may perform other types of
imputations beforehand.

The data matrix is then normalized according to Eqs. 2 and 3. In the next a few steps,
sample covariance matrix Sp = MM

T/p , non-zero ordered eigenvalues ℓ1, . . . , ℓn−1 and
eigenvalue ratio ri = ℓi+1/ℓi (as shown in the lower left panel in Fig. 2) are calculated
accordingly. Although the above matrix operations involve only basic calculations, the data
of interest are often massive, occupying a space of hundreds of gigabytes on disk, which
may be expensive to process. In our ERStruct Python implementation, we accelerate the
above computing steps by converting the CPU Tensor to a CUDA Tensor whenever GPU
is available, taking advantage of fast matrix operations in GPU. Limited VRAM capacity
on many GPUs makes it difficult to process massive data matrices. However, our approach
demonstrates the flexibility of data splitting as a solution to this challenge when working
with large data sets on resource-constrained hardware. Our package automatically splits
the input data into multiple sub-arrays using a CPU before transmitting it to the GPU. The
size of the sub-arrays is determined based on the available VRAM capacity in the working
environment. By adopting this approach, users can accelerate computations on large-scale
sequencing data, even with a small VRAM GPU, while simultaneously reducing over-
all memory usage. Our approach highlights the potential of data splitting as an effective
method for handling large data sets on hardware with limited resources. Users may use
other popular genotype data formats like VCF (variant call format) and bgen files. A tuto-
rial to convert VCF or bgen files to NPY files can be found in the ERStruct code repository.

Estimation of the number of top informative PCs

Finally, the sample eigenvalues ℓ1, . . . , ℓn−1 from Eigens.py and the top two eigenval-

ues of simulated GOE matrices (w(1)
1 ,w

(1)
2), . . . , (w

(rep)
1 ,w

(rep)
2) from GOE.py are trans-

mitted together into TopPCs.py. Following Eqs. 4–7 in the ERStruct algorithm, the

Page 7 of 9Yang et al. BMC Bioinformatics (2023) 24:180

program output the estimation of the number of top informative PCs K̂ER in the end (as
shown in the lower right panel in Fig. 2).

Note that if the target estimator K̂ER can not be found through Eq. 4, an error message
will appear. This may happen if the data exhibit serious multicollinearity. To resolve this
potential issue, users may need to pre-process the genetic data to remove highly corre-
lated genetic markers.

Results
In this section, we compare the speed, maximum memory usage, and accuracy of the
original MATLAB [8] and our Python implementations of the ERStruct algorithm. We
use the function tic in MATLAB and time.time in Python to record running time.
To record memory usage, we use the Linux shell command /proc/<pid>/status |
grep VmSize to check memory usage in MATLAB and use the Python module mem-
ory-profiler for checking in Python. Python (version 3.8.8) is used with NumPy (ver-
sion 1.20.1), PyTorch (version 1.11.0) and Joblib (version 1.0.1). All results are obtained
from a server running x86-64 Linux with 15 Intel(R) Xeon(R) E7-8891 v4 CPU cores and
12 GB Tesla K80 GPU.

We apply our ERStruct Python implementation to the publicly available 1000 Genomes
Project [10] data to estimate the number of top informative PCs. The 1000 Genomes
Project is a whole genome sequencing data set with 2504 individuals from 26 subpopula-
tions. Following the same procedure in [8], the raw sequencing data file is first filtered
out markers with MAF (Minor Allele Frequency) less than 0.05, 0.01, 0.005, and 0.001
using the PLINK software. The remaining number of markers are p0.05 = 7,921,8816,
p0.01 = 13,650,478, p0.005 =17,307,567 and p0.001 = 28,793,505, respectively. Each pre-
processed data is stored as NPY files and tested using our ERStruct Python package and
the original MATLAB toolbox by [8]. The testing parameters are fixed as: number of
replications rep = 5000 , significance level α = 10

−3.
The results are shown in Table 1. The GPU-based Python implementation runs

much faster than the CPU-based Python (2.02 times faster when MAF is greater than
0.001) and MATLAB (3.78 times faster when MAF is greater than 0.001) implementa-
tions. In terms of the maximum memory usage, the GPU-based Python implementa-
tion used only 0.27 of the CPU-based Python implementation and 0.31 of the MATLAB

Table 1 Running time (in minutes) and maximum memory usage (in GB) comparisons of the
ERStruct algorithm, using MATLAB, Python CPU, and Python GPU implementations on the 1000
Genomes Project data with different MAF filtering thresholds

MAF filtering thresholds 0.05 0.01 0.005 0.001

Running Time

MATLAB 30.08 42.30 50.05 73.41

Python CPU 34.89 66.54 84.97 137.54

Python GPU 17.60 21.91 28.96 36.42

Maximum Memory Usage

MATLAB 51.55 62.22 69.54 92.50

Python CPU 28.00 48.80 62.10 104.71

Python GPU 10.08 15.07 18.33 28.67

Page 8 of 9Yang et al. BMC Bioinformatics (2023) 24:180

implementation (when MAF is greater than 0.001) due to the data splitting procedure.
Noting that our function Eigens automatically splits large-scale data sets so that our
algorithm can be run on a GPU with limited VRAM, so using GPU acceleration can be
slower than using CPU only when the current available VRAM is too small. In our test-
ing environment, this only happens when the available VRAM is less than 0.17 GB. It
is only possible when another process in the working environment has taken up a large
part of the available VRAM. In this case, we suggest releasing the VRAM first. In the
package, we set the default VRAM value to 0.2 GB to ensure better performance.

To evaluate the accuracy of our ERStruct algorithm implemented in both the Python
package and MATLAB toolbox, we conducted 30 identical experiments on CPU and
GPU, respectively. We used the 1000 Genomes data set with MAF greater than 0.001,
and set the number of replications to rep = 5000 and the significance level to α = 10−3 .
In all 30 experiments, the output consistently estimated K̂ER = 25 . These results indicate
that the ERStruct algorithm implemented in both versions are identical and produce the
same output.

Conclusion
In this paper, we developed a Python package that employs the ERStruct algorithm
to determine the optimal number of top informative PCs in WGS data. By leveraging
parallel computing on CPUs and GPU acceleration, our package demonstrates excep-
tional efficiency in performing matrix operations on large-scale sequencing data sets.
To enhance the usability of our Python package across various environments, it fea-
tures adaptive data splitting capabilities for GPU computation with limited VRAM. We
conducted experiments that compared the computation speed of our ERStruct Python
package to the ERStruct MATLAB toolbox in [8]. Our results demonstrate a significant
improvement in computation speed with the ERStruct Python package.

Availability and requirements

Project name: ERStruct.
Project home page: https:// github. com/ eciel yang/ ERStr uct.
Programming language: Python.
Other requirements: Python 3.7−3.9, PyTorch 1.10 or higher, NumPy, Joblib.
License: MIT License.

Abbreviations
ERStruct Eigenvalue-Ratio-based estimator to infer latent population Structure
PCA Principal Component Analysis
PC Principal Component
CPU Central Processing Unit
GPU Graphics Processing Unit
WGS Whole Genome Sequencing
GOE Gaussian Orthogonal Ensemble
VRAM Video Random Access Memory
MAF Minor Allele Frequency

Acknowledgments
The authors thank The University of Hong Kong for providing the computing resources.

https://github.com/ecielyang/ERStruct

Page 9 of 9Yang et al. BMC Bioinformatics (2023) 24:180

Author contributions
JY implemented the package, experiments and drafted the manuscript. YX conceived the ideas and drafted the manu-
script. ZL conceived the ideas, supervised the manuscript writing and edited the manuscript. MY tested the package on
GPU. GW helped with the manuscript revision. All authors read and approved the final manuscript.

Funding
Dr. Gao Wang is supported by grant R01 AG076901.

Availability of data and materials
The data sets generated and/or analyzed during the current study are available in the: https:// www. inter natio nalge
nome. org/ data.

Declarations

 Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 7 November 2022 Accepted: 25 April 2023

References
 1. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for

stratification in genome-wide association studies. Nat Genet. 2006;38(8):904.
 2. Mathieson I, McVean G. Differential confounding of rare and common variants in spatially structured populations.

Nat Genet. 2012;44(3):243–6.
 3. Wang C, Zhan X, Bragg-Gresham J, Kang HM, Stambolian D, Chew EY, et al. Ancestry estimation and control of

population stratification for sequence-based association studies. Nat Genet. 2014;46(4):409–15.
 4. Menozzi P, Piazza A, Cavalli-Sforza L. Synthetic maps of human gene frequencies in Europeans. Science.

1978;201:786–92.
 5. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2: e190.
 6. Reich D, Price AL, Patterson N. Principal component analysis of genetic data. Nat Genet. 2008;40:491–2.
 7. Johnstone IM. On the distribution of the largest eigenvalue in principal components analysis. Ann Stat.

2001;29(2):295–327.
 8. Xu Y, Liu Z, Yao J. An eigenvalue ratio approach to inferring population structure from whole genome sequencing

data. Biometrics. 2022. https:// doi. org/ 10. 1111/ biom. 13691.
 9. The International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human popula-

tions. Nature. 2010;467:52–8.
 10. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature.

2015;526(7571):68–74.
 11. Benaych-Georges F, Nadakuditi RR. The eigenvalues and eigenvectors of finite, low rank perturbations of large

random matrices. Adv Math. 2011;227(1):494–521.
 12. Benaych-Georges F, Guionnet A, Maida M. Fluctuations of the extreme eigenvalues of finite rank deformations of

random matrices. Electron J Probab. 2011;16(60):1621–62.
 13. Li Z, Wang Q, Yao J. Identifying the number of factors from singular values of a large sample auto-covariance matrix.

Ann Stat. 2017;45(1):257–88.
 14. Wigner EP. On the distribution of the roots of certain symmetric matrices. Ann Math. 1958;67(2):325–7.
 15. Arnold L. On Wigner’s semicircle law for the eigenvalues of random matrices. Probab Theory Relat Fields.

1971;19(3):191–8.
 16. Wang L, Paul D. Limiting spectral distribution of renormalized separable sample covariance matrices when p/n→ 0. J

Multivar Anal. 2014;126:25–52.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.internationalgenome.org/data
https://www.internationalgenome.org/data
https://doi.org/10.1111/biom.13691

	ERStruct: a fast Python package for inferring the number of top principal components from whole genome sequencing data
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Algorithm
	Implementation
	Scalable simulation of GOE matrices
	Calculate the eigenvalue ratios of a given matrix
	Estimation of the number of top informative PCs

	Results
	Conclusion
	Availability and requirements
	Acknowledgments
	References

