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Abstract 

Background: Locomotion behaviors of Caenorhabditis elegans play an important role 
in drug activity screening, anti-aging research, and toxicological assessment. Previous 
studies have provided important insights into drug activity screening, anti-aging, and 
toxicological research by manually counting the number of body bends. However, 
manual counting is often low-throughput and takes a lot of time and manpower. And 
it is easy to cause artificial bias and error in counting results.

Results: In this paper, an algorithm is proposed for automatic counting and analysis 
of the body bending behavior of nematodes. First of all, the numerical coordinate 
regression method with convolutional neural network is used to obtain the head and 
tail coordinates. Next, curvature-based feature point extraction algorithm is used to 
calculate the feature points of the nematode centerline. Then the maximum distance 
between the peak point and the straight line between the pharynx and the tail is 
calculated. The number of body bends is counted according to the change in the 
maximum distance per frame.

Conclusion: Experiments are performed to prove the effectiveness of the proposed 
algorithm. The accuracy of head coordinate prediction is 0.993, and the accuracy of tail 
coordinate prediction is 0.990. The Pearson correlation coefficient between the results 
of the automatic count and manual count of the number of body bends is 0.998 and 
the mean absolute error is 1.931. Different strains of nematodes are selected to analyze 
differences in body bending behavior, demonstrating a relationship between nema-
tode vitality and lifespan. The code is freely available at https:// github. com/ hthana/ 
Body- Bend- Count.
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Background
Nematodes are diverse, with about 40 million species [1]. Caenorhabditis elegans (C. ele-
gans) is a small worm, one of the few free-living species of linear animals. Caenorhabdi-
tis elegans is a linear bacteria-eating animal with a body length of 1 mm and transparent 
body. It is a non-toxic hermaphrodite nematode that lives in soil and feeds on bacteria. 
Compared with other model organisms, C. elegans has the advantages of simple struc-
ture, clear genetic background, short life cycle, strong reproductive capacity, multiple 
sensitive detection indicators, and easy to be cultured in the laboratory [2–4]. Because 
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of these unique advantages, nematodes have become one of the most widely used model 
organisms in the field of life science research. Nematodes have been widely used in toxi-
cology research, drug screening, aging, and neuroscience [5–10].

Caenorhabditis elegans is the first multicellular eukaryote to be sequenced. Its genome 
has high homology with the human genome and is associated with many human dis-
eases. Therefore, it has unique advantages in drug activity screening and action mecha-
nism research. Its short life cycle is often used in anti-aging research. Anti-aging drugs 
can be screened and evaluated by observing physiological indicators such as nematode 
lifespan, head thrash frequency, body bend frequency, pharyngeal pump frequency, 
and antioxidant damage ability. In addition, since it is very sensitive to exogenous com-
pounds, it has great advantages in toxicological research and is mostly used for toxicity 
assessment of some metals and organic pollutants [11, 12].

In recent years, nematodes have become excellent animal models for aging, environ-
mental, and toxicological research. Nematodes contain 302 neurons, and their neuronal 
lineages have been thoroughly described. Locomotive behavior is a rapid indicator to 
evaluate whether the nervous system of nematodes is damaged [13]. In addition, nema-
todes are very sensitive to environmental poisons. In previous studies, head thrashing 
frequency, body bending frequency, and pharyngeal pumping frequency have often been 
selected to evaluate the locomotion capacity of nematodes [14, 15]. In toxicological stud-
ies, nematodes are exposed to toxins, and their locomotion ability is judged by record-
ing the frequency of head thrashing, body bending, and pharyngeal pumping, to further 
assess the intensity of toxicity. In some anti-aging research, the vitality of nematodes is 
often assessed by recording these locomotive behaviors. Therefore, these locomotive 
behavior indicators of nematodes play an important role in drug activity screening and 
environmental toxicology assessment.

Previous research using artificial measurements of the number of body bends in 
nematodes have provided important insights into toxicology [14, 16]. However, manual 
counting is often low-throughput and takes a lot of time and manpower. And it is easy 
to cause artificial bias and error in counting results. In many investigations, due to the 
limitation of time and labor force, the number of experimental samples is often reduced, 
which is easy to cause certain errors in the final experimental results. In addition, during 
the manual counting process, some subtle changes are often overlooked by the human 
eye. These problems pose considerable challenges to the collection of experimental data. 
For example, in some drug screening experiments, the treatment of a potential drug 
molecule often results in small phenotypic changes [17]. Therefore, a large number of 
experimental results are required to obtain reproducible results, which is undoubtedly a 
great challenge for manual counting. There is no doubt that the use of high-throughput, 
automated, accurate algorithm counting to replace manual counting is the current trend. 
To meet these needs, some laboratories have developed worm trackers with high accu-
racy and high-throughput [18–21]. Swierczek et  al. propose a method to quantify the 
nematode body into sine and cosine functions to calculate the number of body bends, 
which correspond to the phase advance of π [20]. However, this method cannot accu-
rately count some bending behaviors such as Omega bending, which has certain limita-
tions. Cronin et al. quantify the body bending of nematodes by dividing the body into n 
segments and then calculating the bending angle of each segment to generate an angle 
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matrix [19]. This counting method counts every bend in the nematode body, which 
does not accord with the calculation standard of the number of body bends of nema-
tode described in [22]. Restif et al. proposed a method to calculate the number of body 
bends by calculating the curvature of each point on the nematode centerline to generate 
curvature heat maps. This method scores the number of stripes appearing in the heat 
map/time [18]. However, comparative experiments show that the counting result of this 
method is higher than that of standard counting according to reference [22].

Hence, a method is proposed for automatically counting and analyzing the body bend-
ing behavior. In the first place, the numerical coordinate regression method with con-
volutional neural network is used to obtain the head and tail coordinates of nematodes. 
Next, curvature-based feature point extraction algorithm is used to calculate the key 
points of the nematode centerline. Including the pharynx, inflection points, and peak 
points. The vertical distance between each peak point and the straight line between the 
pharynx and the tail is then calculated. The maximum distance is selected as a refer-
ence value for the body bend count and marked positive and negative according to the 
position of the peak point. Next, the number of body bends is counted according to the 
change in the maximum distance per frame. That is, when the sign of the maximum dis-
tance changes and the absolute value reaches the maximum, the count is pushed for-
ward. Nematode amplitude is also quantified by calculating the angle between the peak 
point and two adjacent inflection points. Finally, experiments are performed to prove 
the accuracy and effectiveness of the proposed algorithm. Different strains of nematodes 
are selected to analyze differences in body bending behavior, demonstrating a relation-
ship between nematodes’ vitality and lifespan.

Methods
In order to save time and manpower when counting the number of body bends of nem-
atodes. Hence, a method is proposed for automatically counting the number of body 
bends. In this section, the proposed method is described systematically. First of all, neu-
ral network-based head and tail recognition algorithm is applied to locate the head and 
tail coordinates of nematodes. Next, the feature points of the nematode body center-
line are extracted as reference points to calculate the number of body bends, including 
inflection points and peak points. Finally, a method based on the distance between the 
peak point of the nematode’s body and the line between the pharynx and the tail is used 
to calculate the number of body bends. The flow chart of the specific implementation 
process of the proposed algorithm is shown in Fig. 1.

Algorithm for head and tail localization

Firstly, the nematode video is segmented into frames to obtain the original gray 
image. The objective of the proposed algorithm is to input an image containing nema-
todes, and finally output the head and tail coordinates of nematodes through a series 
of processing. The realization process of head and tail localization algorithm is shown 
in Fig. 2. To be specific, the numerical coordinate regression method with convolu-
tional neural network proposed in [23] is used to obtain the head and tail coordi-
nates of nematodes. Predicting a fixed number of position coordinates corresponding 
to points of interest marked in the input image is the goal of coordinate regression. 
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Therefore, we first need to manually label the head and tail coordinate information 
of nematodes and then conduct model training. The proposed method can be spa-
tially generalized and trained end to end using labeled numeric coordinates. First of 
all, a convolutional network (VGG 19) [24] is used to generate heat maps of a head 
(Mh) and a tail (Mt) with a size of 5 × 5. The head and tail of nematodes are spatially 
represented as heat maps and have higher values. As Fig. 2 shows, in the process of 
head and tail recognition, all convolution layers are shared except the final convolu-
tion layer. This approach not only enables models to share common features but also 
learns unique features of the head and tail [25]. In addition, it can also save the time 
consumption of model training.

Fig. 1 The implementation process of the proposed algorithm

Fig. 2 The realization process of head and tail localization algorithm
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Since the input of Differential Spatial to Numerical Transform (DSNT) is a single 
channel normalized heat map [23]. Therefore, the heat maps of the head and tail need 
to be normalized. That is, all elements of the heat map have to be non-negative and add 
up to 1. Normalization is accomplished by applying the softmax function on the heat 
map. The use of the normalized heat map ensures that the predicted coordinates are 
always within the spatial range of the heat map itself. Finally, the probability of head or 
tail coordinate positions is given in the normalized heat map. The normalized heat map 
of the head can be represented as

The normalized heat map of the tail can be represented as

DSNT [23] is then used to obtain numerical coordinates of the head and tail from the 
heat map. Inputs to the DSNT layer are the normalized heat map and the coordinate 
matrices X and Y. Each entry of the coordinate matrix X and Y contains its own horizon-
tal or vertical coordinates, and the scaled image coordinates range between (− 1, 1). A 
more specific description can be obtained from [23]. The Frobenius inner product oper-
ation is used to predict head and tail coordinates. That is, element-wise multiplication of 
M′

h and M′
t with the normalized coordinate matrix, and then the average of the resulting 

matrix is taken. The head coordinate of nematode is predicted as follows:

The tail coordinate of nematode is predicted as follows:

where the prediction μ is the mean of the discrete bivariate random vector. Subscript 
h represents the head, and subscript t represents the tail. �· , ·�F is the Frobenius inner 
product operation.

Since the output of DSNT layer is normalized coordinate, we chose the mean square 
error between the predicted coordinate and the ground truth coordinate as the loss 
[25]. Specifically, the core term of the loss function is formulated by calculating the two-
dimensional Euclidean distance between the prediction μ and the ground truth p. The 
Euclidean loss function is defined as

In order to control the propagation of predictive heat maps, regularization is incorpo-
rated into the DSNT loss function, denoted as

where λ is the regularization coefficient, which is used to set the strength of the regu-
larizer Lreg. M′ is a single-channel normalized heat map. Finally, Jensen-Shannon diver-
gence is selected as the optimal regularization term, as described in [25].
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To improve efficiency and reduce complexity, the convolutional neural network-based 
algorithm is used to locate the head and tail coordinates in the first frame. In each subse-
quent frame, the centerline of the nematode is first obtained by distance-based resample 
of the dorsal and ventral point sets, and then the coordinates of the two endpoints of the 
centerline are obtained. The head and tail of the nematode are then located based on 
the distance between head and head and between tail and tail between two consecutive 
frames. Among the four head and tail distance components of the nematode coordinates 
between two consecutive frames, the corresponding head to head and tail to tail dis-
tances are the smallest as described in [26].

Algorithm for feature points extraction

The head and tail coordinates of nematodes are obtained by the convolutional neural 
network based head and tail recognition algorithm. As shown in Fig.  3a, the red dot 
marks the head and the green dot marks the tail. Before feature point extraction, image 
preprocessing algorithm is used to obtain a clean binary image. To be specific, for images 
with shadows around nematodes, we first remove the shadows by traversing the pixel 
values. For an image with a textured pattern as its background, it needs to be first sub-
tracted from the background image to remove unnecessary features. Next, an adaptive 
local threshold algorithm using a 5 × 5 moving window is used to obtain binary images 
[26, 27]. The morphological closing operator (binary dilation followed by erosion) [28] 
is then used to remove small spots in the nematode’s body. The sequential algorithm 
for component labeling is used to remove small objects in the image [29], resulting in a 
clean image of nematode, as shown in Fig. 3b.

After binarization, the contour of nematode is extracted. According to the head and 
tail coordinates of nematode, the contour points of nematode body are divided into ven-
tral and dorsal sides, as shown in Fig. 3c. As Fig. 3c shows, the red side is the dorsal side 
of the nematode, and the blue side is the ventral side of the nematode. Linear interpola-
tion of a sample size of n is used to further resample the two point sets by distance [30]. 

Fig. 3 The general process of feature point extraction algorithm. a The original grayscale image whose head 
and tail coordinates have been marked. b Clean binary image of nematode. c The contour point division of 
the nematode body. The red side is the dorsal side of the nematode, and the blue side is the ventral side of 
the nematode. d The centerline of nematode. e The pharynx of nematode, is marked with a purple dot. f The 
inflection points of the centerline of the nematode’s body is marked by blue dots. g The peak points of the 
centerline of the nematode body, are marked by yellow dots. The red line is the line between the pharynx 
and the tail of the nematode. The vertical distance di from the peak point to the line is indicated by a dotted 
green line. h The angle αi between each peak point and two adjacent inflection points
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Finally, dorsal points Dj and ventral points Vi (i = 1, …, n) can be obtained. Then, the cen-
terline points Ci of the nematode body are calculated and can be defined as

where

where k is the index increment, r is the parameter that limits the search area and set 
r = 10. The calculated nematode centerline is shown in Fig. 3d. After defining the center-
line points, the nematode length L is calculated as

In the experiment, we set n = 120 to ensure the accurate measurement of nematode 
length, as described in [30].

The nematode is about 1 mm long [31], and the pharynx of nematode is about 100 μm 
long [32]. Therefore, we select one-tenth of the length of the nematode centerline as the 
pharynx point of nematode. As can be seen from Fig. 3e, the purple dot is the pharynx 
position of nematode. Next, the curvature κ of each point on the centerline is calculated 
and marked positive and negative according to the bump and bump of the body [33]. 
The inflection point Ia of the centerline is given according to the sign change of curva-
ture κ. The inflection point Ia can be defined as

when

The calculated inflection points are shown in Fig. 3f. Next, the maximum value of the 
absolute value of curvature between two consecutive inflection points is found, called 
the peak point. As shown in Fig. 3g, the yellow points are the peak points of the nema-
tode body.

In addition, we add an error checking mechanism to check all the calculated feature 
points. For example, in the calculated characteristic points, the number of inflection 
points does not correspond to the peak points, and the number of inflection points or 
peak points is too large. If it is directly used to calculate the number of body bending, it 
will cause certain deviation. Therefore, we add error checking mechanism to remove the 
redundant feature points.

Count the number of body bends

According to the definition in the WormBook [22], every time the part of the nematode 
just behind the pharynx reaches a maximum bend in the opposite direction from the 
bend last counted, push the count forward once [22]. First of all, the pharynx and tail 
of the nematode are connected in a straight line, as shown in Fig. 3g. Next, the vertical 
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distance from each inflection point to the line between the pharynx and the tail is calcu-
lated. To facilitate the subsequent calculation, the vertical distance from the peak point 
to the straight line between the pharynx and the tail is marked with a plus or minus 
sign. That is, starting from the head of nematode, the peak point in the counterclockwise 
direction is marked negative. A schematic diagram of the calculated vertical distance is 
shown in Fig. 3g.

Subsequently, the maximum or minimum value (when the distance is positive, 
the maximum value is selected; when the distance is negative, the minimum value is 
selected) of the vertical distance between the peak point and the pharynx and tail in 
each frame of the image is selected as the reference value for the calculation of the num-
ber of body bends. The maximum distance of each frame is shown in Fig. 4. The red part 
represents the maximum distance in the counterclockwise direction of the head, and the 
blue part represents the maximum distance in the clockwise direction of the head. As 
Fig. 4 shows, point a, c, and e corresponding to the locomotion state of the nematode 
are shown in Fig.  4a, c and e, respectively. At this point, the maximum peak point is 
in the counterclockwise direction of the nematode head, and the height of the graph is 
determined by the vertical distance from the peak point to the straight line. The points 
b, d, and f correspond to the locomotion state of the nematode shown in Fig. 4b, d and 
f, respectively. Here, the maximum peak point is in the clockwise direction of the nema-
tode head.

The count is pushed forward when the back part of the nematode’s pharynx reaches 
its maximum bend in the opposite direction from the previous count. For example, in 
Fig. 4, it can be seen that in a certain period, the nematode body reaches its maximum 
bend at point a, and then in the opposite direction at point b, the number of body bends 
of nematode is increased by one. At the same time, the count can continue to advance 
when the nematode reaches its maximum bend in the opposite direction to point b. In 
addition, to reduce the error in the counting process, we will ensure that at least three 

Fig. 4 Maximum distance from peak point to the straight line between pharynx and tail. The horizontal axis 
represents time in seconds. The vertical axis represents the maximum distance. The red part represents the 
maximum distance in the counterclockwise direction of the head, represented by a plus sign; the blue part 
represents the maximum distance in the clockwise direction of the head, indicated by a minus sign. The 
point a, b, c, d, e and f correspond to the locomotion state of the nematode shown in Fig. 4a, b, c, d, e and f 
respectively
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frames near the maximum bending point are in the same direction as the current peak 
point.

Results
In the previous section, the implementation process of automatic counting method for 
nematode body bends is introduced in detail. In this section, experimental results are 
presented to prove the robustness of the proposed algorithm. In the first place, the accu-
racy of the head and tail localization algorithm based on convolutional neural network 
(VGG 19) on the test dataset is verified to prove the superiority of the proposed algo-
rithm. Then, the results of manual counting and automatic counting are compared to 
verify the accuracy of the proposed counting algorithm. Finally, nematodes of different 
strains and lifespans are selected to count the number of body bends. The relationship 
between vitality and longevity of nematodes is explored by comparing and analyzing the 
experimental results.

C. elegans datasets

In this paper, nematodes in different states are selected from two databases for experi-
ments. First of all, wild type N2(Schafer Lab N2), egl-30(ep271), odr-3(n2150), daf-
7(m62), daf-5(e1386), daf-3(e1376) and jnk-1(gk7) of C. elegans are selected from the 
C. elegans behavioral phenotypes database [34]. A total of 305 C. elegans strains are 
included in the database, which consists of 9203 short videos. To be more specific, the 
collection of nematode videos in the database has been maintained under strictly con-
trolled conditions. Camera magnification is set between 3.5 and 4.5 microns/pixel (at 
640 × 480 resolution, the corresponding FOV is about 2.5 × 2 mm) [34]. The nematodes 
photographed are young-adult hermaphrodites that spontaneously behaving on food. 
At least 20 nematodes are photographed for at least 15 min for each strain. Each video 
in the database has a frame rate of 20–30 frames per second [34]. Another dataset is 
for nematodes in the ‘escape response’ condition. Specific filming conditions and cul-
tivation methods are described in [35]. To put it simply, nematodes were recorded in 
temperature-controlled chambers (22.5 ± 1 °C). Applying a 100 ms, 75 mA infrared laser 
pulse from a diode laser (λ = 1440  nm) to the worm’s head increases the temperature 
within the FWHM-radius of 220 m by about 0.5 °C [35]. Each video has a frame rate of 
20 frames per second.

Verification of head and tail location algorithm

In order to evaluate the effectiveness and accuracy of the head and tail localization 
algorithm, 1400 grayscale images of nematodes are selected from C. elegans behavio-
ral phenotypes database [34]. These images include seven nematodes of different strains 
in different states. First, we manually tagged the head and tail of the nematode. In the 
experiment, 70% (980) of the images are used as the training dataset and 30% (420) as 
the validation dataset. In addition, the learning rate is set to 5e-4, and Adam is selected 
as the optimizer [25]. The model is trained with 350 epochs and a batch size of 64.

In order to better evaluate the performance of the head and tail localization algorithm, 
the probability of correct key point accuracy [25] is selected as the judgment standard 
of the prediction accuracy of the head and tail coordinates. The probability of correct 
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key point accuracy is defined as the percentage of predicted coordinates located within 
n pixels of the ground truth label. In this paper, we set n = 8. In the previous calcula-
tions, the width of the nematode head and tail is about 5–7 pixels. This value is smaller 
than the body width of the nematode, so the predicted coordinates do not affect sub-
sequent calculations. In addition, the mean square error (MSE) between the predicted 
coordinates and the ground truth coordinates is selected as the loss. The accuracy of 
the algorithm is evaluated on the validation dataset. The accuracy curve of head and 
tail coordinate prediction is shown in Fig. 5a. The training and validation loss curves for 
every epoch are shown in Fig. 5b. The accuracy of head coordinate prediction is 0.993, 
and the accuracy of tail coordinate prediction is 0.991. Experimental results show that 
the proposed head and tail localization algorithm is robust.

The proposed algorithm verification by manual counting

To assess the accuracy of the proposed algorithm, trained human observers are 
selected to manual count the number of body bends. The results of manual count-
ing and automatic counting are compared. In the first place, 259 one-minute video 
clips are selected from two nematode databases [34, 35]. Among them, all of the 
videos are selected for the experiment in the ‘escape response’ database [35]. There 
are ninety-eight 30 s of videos in this database, which are combined into forty-nine 
1  min nematode videos for convenience of counting. In addition, N2 strains in this 
database are referred to as ‘N2(Broekmans OD)’ for better differentiation. Next, wild 
type N2(Schafer Lab N2), egl-30(ep271), odr-3(n2150), daf-7(m62), daf-5(e1386), daf-
3(e1376) and jnk-1(gk7) of C. elegans are selected from the C. elegans behavioral phe-
notypes database [34]. Due to a large number of videos in the database, 30 one-minute 
video clips are randomly selected for each type of strain to count. Next, all videos 
are counted manually and automatically. The number of body bends in one minute 
is counted manually and automatically, as shown in Fig. 6. Specific data information 
can be found in the Additional file 1. As Fig. 6 shows, points with different colors and 
shapes respectively represent the results of manual counting and automatic counting 
of different strains. Eventually, the results of all manual and automatic counting con-
verge around a line that passes through the origin. The Pearson correlation coefficient 
between the results of the automatic count and manual count of the number of body 
bends is 0.998 and the mean absolute error is 1.931. Experimental results show that 
the proposed algorithm has high accuracy and robustness.

(a) (b)

Fig. 5 a Head and tail recognition accuracy on validation dataset. b Train and validation loss comparison
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The differences in body bends of different nematode strains

To evaluate differences in body bending between strains, seven groups of nematodes 
of different strains are selected. Including wild type N2(Schafer Lab N2) of C. elegans, 
egl-30(ep271), odr-3(n2150) and daf-7(m62) of C. elegans, which have a longer lifespan; 
daf-5(e1386), daf-3(e1376) and jnk-1(gk7) of C. elegans, which have a shorter lifespan 
[36–39]. Thirty one-minute videos are randomly selected for each strain to be manual 
count and automatic count the number of body bends. The mean value and standard 
deviation of manual count and automatic count for each strain are shown in Fig. 7. More 
detailed results are shown in Table 1. It can be seen from Fig. 7 that the average num-
ber of body bends per minute of N2(Schafer Lab N2) of C. elegans is about 71 times by 
manual count and 72 times by automatic count. The average number of body bends per 
minute for egl-30(ep271) of C. elegans is about 100 times by manual count and 101 times 
by automatic count. The odr-3(n2150) of C. elegans averaged about 82 times body bends 

Fig. 6 The number of body bends in one minute is counted manually and automatically. The horizontal axis 
is the result of manual counting and the vertical axis is the result of automatic counting. Points with different 
colors and shapes respectively represent the results of manual counting and automatic counting of different 
strains. The solid brown line is a straight line through the origin. The two green dotted lines are error lines 
with slope 1 and intercept 10

Fig. 7 Mean value and standard deviation of the number of body bends per minute for different strains of 
nematodes
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per minute for both manual and automatic count. The daf-7(m62) of C. elegans averaged 
about 70 times body bends per minute for both manual and automatic count. The daf-
5(e1386) of C. elegans averaged about 50 times body bends per minute for both man-
ual and automatic count. The daf-3(e1376) of C. elegans averaged about 43 times body 
bends per minute for both manual and automatic count. The jnk-1(gk7) of C. elegans 
averaged about 33 times body bends per minute for both manual and automatic count.

From the experimental results, it can be seen that the egl-30(ep271), odr-3(n2150) and 
daf-7(m62) of C. elegans which have a longer lifespan have higher the number of body 
bends than the daf-5(e1386), daf-3(e1376) and jnk-1(gk7) of C. elegans, which have a 
shorter lifespan. In previous studies, the number of body bends has often been selected 
to evaluate locomotion capacity of nematodes [14, 15]. The vitality of nematodes is 
related to their locomotion rate, and nematodes showed an age-related decline in vital-
ity, which is characterized by reduced physical movement [40–42]. These experimental 
videos are selected from the same database with the same cultivation and recording con-
ditions. Counting results show that nematodes with longer lifespans have stronger loco-
motion than nematodes with shorter lifespans under the same conditions. Therefore, it 
can be inferred that the nematodes with longer lifespans show higher vitality than nema-
todes with shorter lifespans under the same conditions. In addition, as shown in Fig. 7, it 
can be seen that each strain has a high standard deviation. This shows that the number 
of body bends of nematodes varies greatly in different periods.

In addition, in order to better illustrate the differences in body bending among differ-
ent strains of nematodes, the time-distance curve is drawn as shown in Fig. 8. Distance 
is the maximum vertical distance between the peak point and the straight line between 
the pharynx and the tail in each frame. If the maximum distance is in the counterclock-
wise direction of the nematode head, it is marked with a positive sign, and vice versa is 
marked with a negative sign. The maximum distance here is similar to the maximum 

Table 1 Mean and standard deviation of the number of body bends

Mean (manual 
count)

Mean (automatic 
count)

Standard deviation 
(manual count)

Standard deviation 
(automatic count)

egl-30(ep271) 100 101 8.98 10.86

odr-3(n2150) 82 82 34.81 34.28

daf-7(m62) 70 70 30.28 30.33

N2(Schafer Lab N2) 71 72 30.38 30.37

daf-5(e1386) 50 50 30.45 30.36

daf-3(e1376) 43 43 22.97 23.33

jnk-1(gk7) 33 33 12.45 12.39

(See figure on next page.)
Fig. 8 The maximum distance curve from the peak point to the straight line between the pharynx and 
the tail within 30 s. a Time-Distance curve of egl-30(ep271) of C. elegans. The blue, green, and yellow curves 
indicate 66, 49, and 42 body bends in 30 s. b Time-Distance curve of odr-3(n2150) of C. elegans. The blue, 
green, and yellow curves indicate 86, 36, and 16 body bends in 30 s. c Time-Distance curve of daf-7(m62) of C. 
elegans. The blue, green, and yellow curves indicate 74, 55, and 24 body bends in 30 s. d Time-Distance curve 
of N2(Schafer Lab N2) of C. elegans. The blue, green, and yellow curves indicate 51, 34, and 22 body bends 
in 30 s. e Time-Distance curve of daf-5(e1386) of C. elegans. The blue, green, and yellow curves indicate 56, 
26, and 9 body bends in 30 s. f Time-Distance curve of daf-3(e1376) of C. elegans. The blue, green, and yellow 
curves indicate 56, 20, and 7 body bends in 30 s. g Time-Distance curve of jnk-1(gk7) of C. elegans. The blue, 
green, and yellow curves indicate 36, 14, and 8 body bends in 30 s
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amplitude of the worm’s body. It can be seen from Fig. 4a–f that the greater the maxi-
mum vertical distance between the peak point and the straight line between the pharynx 
and the tail, the deeper the body bend of the nematode. Three sets of data are randomly 

Fig. 8 (See legend on previous page.)
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selected from each strain to draw a time-distance curve. The three groups of data are the 
number of body bends at a high stage, the number of body bends at a medium stage and 
the number of body bends at a low stage in each strain respectively. As can be seen from 
Fig. 8, the curve fluctuation of the first three strains (Fig. 8a, b and c) is more intensive, 
indicating that their body bending frequency is higher than N2(Schafer Lab N2) of C. 
elegans (Fig. 8d). The curves of the last three strains (Fig. 8e, f and g) are relatively sparse, 
indicating that their body bending frequency is lower than that of N2(Schafer Lab N2) 
of C. elegans (Fig. 8d). Therefore, it can be inferred that the nematodes with longer lifes-
pans show higher vitality than nematodes with shorter lifespans under the same condi-
tions. Nematodes showed an age-related decline in vitality. Furthermore, it can be seen 
from Fig. 8 that the fluctuation of the curve is variable [40–42]. This indicates that the 
body bending amplitude of different strains of nematodes is variable at different periods.

Discussion
In order to verify the robustness of the proposed algorithm, the results compared with 
related methods are discussed in this section.

Comparison with other head and tail recognition algorithms

Most previous studies have used the following two methods to recognize the heads and 
tails of nematodes. The first method is head and tail recognition based on curvature, 
that is, the head is rounder than the tail [43, 44]; the second method is head and tail 
recognition based on grayscale, that is, the tail area is darker than the head [26]. Curva-
ture-based head and tail recognition methods usually require preprocessing of nema-
tode images. Edge detection is then performed to find the nematode boundary. Three 
points are taken on the boundary of binary image, and the least angle is found to be 
the tail of nematode [43]. However, under common imaging conditions, the tail of the 
nematode usually does not look sharp enough to cause misidentification. The head and 
tail recognition method based on gray level needs to calculate the median brightness of 
the two end parts, and the end region with a higher average brightness value is marked 
as the head [26]. This method is highly dependent on light conditions in the photograph-
ing process of nematode datasets. Under common imaging conditions, the head is often 
darker than the tail. In addition, some studies usually combine these judgment criteria in 
header and tail recognition [26, 43], and carry out some artificial error checking mecha-
nism, which requires manual setting of parameters [21].

In order to better analyze the accuracy of the above two methods, we conducted 
experiments on experimental datasets. We used both the curvature-based and grayscale-
based recognition method to recognize the head of the first frame. When these two 
methods conflict, manual recognition is needed. The head and tail recognition algorithm 
is tested on the first frame of 210 1 min videos. The experimental results are shown in 
Table 2. The rate of conflict between curvature-based and grayscale-based head recogni-
tion methods is 8.1%. Manual checking is used to ensure that the head recognition in the 
first frame is correct when conflicts occur. When there is no conflict, the error rate of 
head recognition is 2.4%.

In this paper, a head and tail localization algorithm based on convolutional neural 
network (VGG19) is used [25]. Compared with other related methods [21, 26, 43, 44], 
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the algorithm has the following advantages. First of all, nematode images do not require 
image preprocessing and retain the characteristics of the original gray image, which 
improves work efficiency. Secondly, the method does not need to use multiple judgment 
criteria and error-checking mechanisms at the same time, which reduces the complexity 
of the automatic. Finally, the algorithm has higher accuracy in predicting the head and 
tail coordinates. In our experiments, different neural networks are used to predict head 
and tail coordinates. The accuracy of prediction using different networks is shown in 
Table 3. It can be seen that compared with the other two networks, the accuracy of using 
VGG19 is higher. The accuracy of nematode head coordinate prediction is 0.993, and the 
accuracy of nematode tail coordinate prediction is 0.991.

Comparison with other automatic counting algorithms

In recent years, several powerful worm trackers have been developed, and these auto-
matics can quantify the bending behavior of nematodes. However, they also have some 
problems. For example, a real-time computer vision system Multi-Worm Tracker 
(MWT) is described in [20]. The MWT method calculates the number of body bends 
by quantifying the nematode body as a sine and cosine function, with a body bend 
corresponding to an advance of π in phase [20]. This method cannot accurately count 
some bending behaviors such as Omega bending, which has certain limitations. Some 
methods quantify the body bending of nematodes by dividing the nematode body into n 
segments and then calculating the bending angle of each segment to generate an angle 
matrix [19, 34]. The bending frequency is defined as the oscillation frequency between 

Table 2 Recognition of the head for various strains

a The number of conflict the between curvature-based and grayscale-based head recognition methods
b The error that occurred in curvature-based method when conflict occurs
c The error that occurred in grayscale-based method when conflict occurs
d The error that occurred in recognition of the head when no conflicts occur

Worm type Number of 
videos

Number of 
 conflictsa

Curvature-based 
 wrongb

Grayscale-based 
 wrongc

Recognition 
 wrongd

egl-30(ep271) 30 3 2 1 1

odr-3(n2150) 30 2 1 1 1

daf-7(m62) 30 2 1 1 1

N2(Schafer Lab N2) 30 0 0 0 0

daf-5(e1386) 30 3 2 1 2

daf-3(e1376) 30 4 3 1 0

jnk-1(gk7) 30 3 1 2 0

Total 210 17 10 7 5

Table 3 The accuracy of coordinate prediction in different neural networks

Head (percentage accuracy) Tail 
(percentage 
accuracy)

ResNet18 0.950 0.921

VGG16 0.971 0.979

VGG19 0.993 0.991
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adjacent segments as described in [19]. In the method described in [34], the calculated 
bending angle for each segment is marked as positive or negative according to the dor-
sal–ventral direction of the nematode. Then the angle matrix is normalized, and finally 
the angle is checked from beginning to end. Each time the angle changes sign or reaches 
0 degrees, the bent end is found and the count is pushed forward. Even ignoring the 
small curves at the tips of the head and tail. This counting method counts every bend in 
the nematode body, which does not accord with the calculation standard of the number 
of body bends of nematode described in [22].

Most methods of calculating the number of body bends are by calculating the cur-
vature at each point of the nematode’s centerline [18, 45, 46]. Take the CeleST method 
described in reference [18] for example. Specifically, the curvature of the centerline is 
calculated at multiple locations, followed by applying a one-dimensional Fast Fourier 
Transform to the curvature at multiple body locations. Subsequently, the number of 
body bends is calculated from time coordinates in the short-time Fourier analysis of 
the curvature heat map. This method scores the number of stripes appearing in the 
heat map/time [18]. The curvature heat map of CeleST method counting is shown in 
Fig.  9B. The curvature of the nematode at each body point (vertical axis) is a func-
tion of time (horizontal axis), with head curvature at the top and tail curvature at 
the bottom. Dark blue shows the curvature clockwise from the head and dark red 
shows the curvature counter-clockwise from the head. In order to make a better com-
parison between the proposed algorithm and CeleST method, the maximum distance 
between the peak point of nematode in each frame and the line between pharynx and 
tail is shown in Fig.  9C. The blue part represents the maximum distance clockwise 
from the head and the red part represents the maximum distance counter-clockwise 

Fig. 9 Comparison between the proposed method and CeleST method. A Locomotion state of nematodes 
in different periods. (a)–(c) represents the locomotion state of nematode in the region I; (d)–(f ) represents the 
locomotion state of nematode in region II; (g)–(i) represents the locomotion state of nematode in region III. 
B Curvature heat map of CeleST method counting. The vertical axis represents the curvature of each point 
of the nematode body, with the curvature of the head at the top and the curvature of the tail at the bottom. 
C Maximum distance from peak point of nematode to straight line between pharynx and tail. The red part 
represents the maximum distance in the counterclockwise direction of the head, represented by a plus sign; 
the blue part represents the maximum distance in the clockwise direction of the head, indicated by a minus 
sign
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from the head. Figure  9A shows the locomotion state of nematodes in regions I to 
III in Fig.  9B and C respectively. As can be seen from Fig.  9A (a), (b) and (c), the 
maximum distance of the nematode peak point is always on the same side, and the 
body bending count cannot move forward. However, the fringe number in region I in 
Fig. 9B is increased and the body bend count can be advanced. As can be seen from 
Fig. 9A (d), (e) and (f ), the direction of the maximum distance between the nematode 
peak point and the line between the pharynx and the tail changed, and the results of 
the proposed method are consistent with those of the CeleST method for body bend-
ing counting. Counting results are shown in region II of Fig. 9B and C. As can be seen 
from Fig. 9A (g), (h) and (i), the nematode is in a deep bending state, where the curva-
ture and maximum distance are shown in region III in Fig. 9B and C.

Furthermore, in order to more accurately compare the effectiveness of the proposed 
method and CeleST method in calculating the number of body bends of nematodes, 
we conduct experiments on the demonstration dataset provided by CeleST method 
[18]. Nematodes in the dataset are swimming [18], and 10 nematodes are selected for 
the experiment. In order to compare the counting results of the two methods, we per-
form manual counting according to the criteria described in [22]. The results of the 
number of worm body bends calculated in three ways are shown in Fig. 10. As can be 
seen from Fig. 10, the number of body bends calculated by CeleST method is gener-
ally higher than that calculated by manual counting, and the counting results of the 
proposed algorithm are closer to manual counting. Experimental results show that 
the proposed algorithm is effective and robust.

Applications for the proposed algorithm

The algorithm can automatically recognize and analyze the bending behavior of C. 
elegans. It can be used to evaluate the locomotion ability of C. elegans in toxicology, 
aging, drug screening, etc. Before using the tool, researchers could use filming equip-
ment to capture video of individual C. elegans. Subsequently, the algorithm can be 
used to automatically recognize the body bending behavior of C. elegans and perform 
counting analysis. The algorithm can be used for counting under different illumi-
nation conditions. Of course, the better the illumination conditions, the higher the 
accuracy. Before feature point extraction, binary images need to be obtained. Gen-
erally speaking, the higher the resolution of the image, the better the segmentation 

Fig. 10 The results of the number of body bends are counted by CeleST method, manual and the proposed 
method respectively. The horizontal axis represents 10 worms. The vertical axis shows the number of body 
bends
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effect. The running steps of the algorithm presented in this paper can be obtained 
from the Additional file 2.

However, this algorithm also has some limitations. For example, it may be impossible 
to accurately count some coiled behaviors of C. elegans. In addition, this algorithm can 
only be used to recognize and analyze the bending behavior of individual C. elegans. In 
the future, we will automatically recognize and analyze the bending behavior of multiple 
C. elegans in a video.

Potential applications of the proposed algorithm

The proposed algorithm can be used not only to count the number of body bends but also to 
calculate the amplitude of worms. Worm amplitude is defined as the maximum amplitude 
found along the worm body as described in [19, 34]. In reference [19], the worm amplitude 
is quantified by fitting the entire body of the worm into a rectangular boundary box, and the 
width of the optimal boundary box is the amplitude. In reference [34], the skeleton of worm 
is rotated to the horizontal axis in the direction of an equivalent ellipse, with the origin being 
the centroid of the skeleton. The maximum y coordinate minus the minimum y coordinate is 
the maximum amplitude. In this paper, the maximum amplitude is obtained by calculating 
the angle between the peak point and two adjacent inflection points. The included angle αi is 
shown in Fig. 3h. The smaller the angle αi, the greater the amplitude. Therefore, the smallest 
angle αi is the maximum amplitude.

Conclusion
The number of body bends is a key locomotion behavior indicator in assessing the loco-
motion capacity of nematodes. In order to reduce the manpower and time consump-
tion in counting the number of nematode body bends and achieve high throughput and 
high accuracy counts, an algorithm is proposed for automatic counting and analysis of 
body bending behavior. The accuracy of the proposed algorithm is verified by manual 
counting. The effectiveness and robustness of the proposed method are verified by com-
parison with related methods. Different strains of nematodes are selected to analyze 
the differences in body bending behavior, which confirmed that nematodes show age-
related decline in vitality [40–42]. Through high-throughput processing and analysis, the 
proposed method facilitates the study and characterization of nematodes’ locomotion 
behavior. Although we only select nematodes in foraging, escape, and swimming states 
for experiments to prove the robustness of the proposed algorithm, it is also applicable 
to nematodes in other states of locomotion. The proposed algorithm will provide con-
venience in the fields of drug activity screening, anti-aging research, and toxicological 
evaluation.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 023- 05307-y.

Additional file 1. Specific experimental data of Caenorhabditis elegans behavioral phenotypes database and 
‘escape response’ database.

Additional file 2. The specific operation steps of this method.

https://doi.org/10.1186/s12859-023-05307-y


Page 19 of 20Zhang and Chen  BMC Bioinformatics          (2023) 24:175  

Acknowledgements
The authors are grateful for the valuable comments and suggestions of the reviewers.

Author contributions
WC and HZ conceived the research topic. HZ designed, implemented the method and wrote the original draft. WC 
performed the evaluation and revision. All authors read and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China—Tianyuan Fund for Mathematics 
(12026210 and 12026209)..

Availability of data and materials
The code is freely available at https:// github. com/ hthana/ Body- Bend- Count.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 27 January 2023   Accepted: 26 April 2023

References
 1. Larsen BB, Miller EC, Rhodes MK, Wiens JJ. Inordinate fondness multiplied and redistributed: the number of species 

on earth and the new pie of life. Q Rev Biol. 2017;92(3):229–65.
 2. Antoshechkin I, Sternberg PW. The versatile worm: genetic and genomic resources for Caenorhabditis elegans 

research. Nat Rev Genet. 2007;8(7):518–32.
 3. Ian A: C. elegans: a practical approach. C Elegans A Pract Approach. 1999.
 4. Kaletta T, Hengartner MO. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov. 

2006;5(5):387–98.
 5. Park H-EH, Hwang W, Ham S, Kim E, Altintas O, Park S, Son HG, Lee Y, Lee D, Heo WD, et al. A PTEN variant uncou-

ples longevity from impaired fitness in Caenorhabditis elegans with reduced insulin/IGF-1 signaling. Nat Commun. 
2021;12(1):5631.

 6. Dehghan E, Goodarzi M, Saremi B, Lin R, Mirzaei H. Hydralazine targets cAMP-dependent protein kinase leading to 
sirtuin1/5 activation and lifespan extension in C. elegans. Nat Commun. 2019;10(1):4905.

 7. Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN. Caenorhabditis elegans: an emerging 
model in biomedical and environmental toxicology. Toxicol Sci Off J Soc Toxicol. 2008;106(1):5.

 8. García-González AP, Ritter AD, Shrestha S, Andersen EC, Yilmaz LS, Walhout AJM. Bacterial metabolism affects the C. 
elegans response to cancer chemotherapeutics. Cell. 2017;169(3):431–41.

 9. Scott TA, Quintaneiro LM, Norvaisas P, Lui PP, Wilson MP, Leung K-Y, Herrera-Dominguez L, Sudiwala S, Pessia A, Clay-
ton PT, et al. Host-microbe co-metabolism dictates cancer drug efficacy in C. elegans. Cell. 2017;169(3):442-456.e418.

 10. Sellegounder D, Liu Y, Wibisono P, Chen C-H, Leap D, Sun J. Neuronal GPCR NPR-8 regulates C. elegans defense 
against pathogen infection. Sci Adv. 2019;5(11):eaaw717.

 11. McDonough MC, Guo DJ, Guo TL. Developmental toxicity of bisphenol S in Caenorhabditis elegans and NODEF mice. 
Neurotoxicology. 2021;87:156–66.

 12. Zhang Y, Zhao C, Zhang H, Lu Q, Yin L. Trans-generational effects of copper on nerve damage in Caenorhabditis 
elegans. Chemosphere. 2021;284: 131324.

 13. Ch’Ng QL, Sieburth D, Kaplan JM. Profiling synaptic proteins identifies regulators of insulin secretion and lifespan. 
PLoS Genet. 2008;4(11): e1000283.

 14. Xu T, Zhang M, Hu J, Li Z, Wu T, Bao J, Wu S, Lei L, He D. Behavioral deficits and neural damage of Caenorhabditis 
elegans induced by three rare earth elements. Chemosphere. 2017;181:55–62.

 15. Li J, Li D, Yang Y, Xu T, Li P, He D. Acrylamide induces locomotor defects and degeneration of dopamine neurons in 
Caenorhabditis elegans. J Appl Toxicol. 2016;36(1):60–7.

 16. Liu L, He S, Tang M, Zhang M, Lin K. Pseudo toxicity abatement effect of norfloxacin and copper combined exposure 
on Caenorhabditis elegans. Chemosphere. 2021;287(Pt 1): 132019.

 17. Lublin AL, Link CD. Alzheimer’s disease drug discovery: in-vivo screening using C. elegans as a model for β-amyloid 
peptide-induced toxicity. Drug Discov Today Technol. 2013;10(1):e115–9.

 18. Restif C, Ibanez-Ventoso C, Vora MM, Guo S, Metaxas D, Driscoll M. CeleST: computer vision software for quantitative 
analysis of C. elegans swim behavior reveals novel features of locomotion. PLoS Comput Biol. 2014;10(7):e1003702.

 19. Cronin CJ, Mendel JE, Mukhtar S, Kim YM, Stirbl RC, Bruck J, Sternberg PW. An automated system for measuring 
parameters of nematode sinusoidal movement. BMC Genet. 2005;6:5.

 20. Swierczek NA, Giles AC, Rankin CH, Kerr RA. High-throughput behavioral analysis in C. elegans. Nat Methods. 
2011;8(7):592–8.

https://github.com/hthana/Body-Bend-Count


Page 20 of 20Zhang and Chen  BMC Bioinformatics          (2023) 24:175 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 21. Wang J, Wang Z-W. Track-A-Worm, an open-source system for quantitative assessment of C. elegans locomotory and 
bending behavior. PLoS ONE. 2013;8:e69653.

 22. Hart AC. Behavior. WormBook. 2006.
 23. Nibali A, He Z, Morgan S, Prendergast L: Numerical coordinate regression with convolutional neural networks. arXiv 

preprint arXiv:180107372 (2018).
 24. Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. Comput Sci 

2014;abs/1409.1556.
 25. Mane M, Deshmukh A, Iliff A. Head and Tail Localization of C. elegans. ArXiv 2020;abs/2001.03981.
 26. Geng W, Cosman P, Berry CC, Feng Z, Schafer WR. Automatic tracking, feature extraction and classification of C. 

elegans phenotypes. IEEE Trans Bio Med Eng. 2004;51(10):1811–20.
 27. Huang KM, Cosman P, Schafer WR. Machine vision based detection of omega bends and reversals in C. elegans. J 

Neurosci Methods. 2006;158(2):323–36.
 28. Gonzalez RC, Woods RE, Masters BR. Digital image processing, Third Edition. J Biomed Opt. 2009;14(2):029901.
 29. Jain R, Kasturi R, Schunck BG. Machine vision. 1995.
 30. Dong X, Song P, Liu X. An automated microfluidic system for morphological measurement and size-based sorting of 

C. Elegans. IEEE Trans NanoBiosci. 2019;18(3):373–80.
 31. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77(1):71–94.
 32. Dallière N, Holden-Dye L, Dillon J, O’Connor V, Walker RJ. Caenorhabditis elegans Feeding Behaviors. Oxford 

Research Encyclopedia of Neuroscience;2017.
 33. Quan W, Po M, Hulme E, Chen S, Samuel ADT. Proprioceptive coupling within motor neurons drives C. elegans 

forward locomotion. Neuron. 2012;76(4):750–61.
 34. Yemini E, Jucikas T, Grundy LJ, Brown A, Schafer WR. A database of Caenorhabditis elegans behavioral phenotypes. 

Nat Methods. 2013;10(9):877.
 35. Broekmans OD, Rodgers JB, Ryu WS, Stephens GJ. Resolving coiled shapes reveals new reorientation behaviors in C. 

elegans. Elife. 2016;5:e17227.
 36. Neumann-Haefelin E, Qi W, Finkbeiner E, Walz G, Baumeister R, Hertweck M. SHC-1/p52Shc targets the insu-

lin/IGF-1 and JNK signaling pathways to modulate life span and stress response in C. elegans. Genes Dev. 
2008;22(19):2721–35.

 37. Shaw WM, Luo S, Landis J, Ashraf J, Murphy CT. The C. elegans TGF-β Dauer pathway regulates longevity via insulin 
signaling. Curr Biol. 2007;17(19):1635–45.

 38. Shen LL, Du M, Lin XF, Cai T, Wang DY. Genes required for the functions of olfactory AWA neuron regulate the lon-
gevity of Caenorhabditis elegans in an insulin/IGF signaling-dependent fashion. Neurosci Bull. 2010;26(2):91–103.

 39. de Magalhaes JP, Budovsky A, Lehmann G, Costa J, Li Y, Fraifeld V, Church GM. The human ageing genomic 
resources: online databases and tools for biogerontologists. Aging Cell. 2009;8(1):65–72.

 40. Hsu AL, Feng Z, Hsieh MY, Xu XZ. Identification by machine vision of the rate of motor activity decline as a lifespan 
predictor in C. elegans. Neurobiol Aging. 2009;30(9):1498–503.

 41. Hahm JH, Kim S, DiLoreto R, Shi C, Lee SJ, Murphy CT, Nam HG. C. elegans maximum velocity correlates with health-
span and is maintained in worms with an insulin receptor mutation. Nat Commun. 2015;6:8919.

 42. Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM, Sakano Y, Paupard MC, Hall DH, Driscoll M. 
Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature. 2002;419(6909):808–14.

 43. Hoshi K, Shingai R. Computer-driven automatic identification of locomotion states in Caenorhabditis elegans. J 
Neurosci Methods. 2006;157(2):355–63.

 44. Leifer AM, Fang-Yen C, Gershow M, Alkema MJ, Samuel A. Optogenetic manipulation of neural activity in freely mov-
ing Caenorhabditis elegans. Nat Methods. 2011;8(2):147–52.

 45. Sznitman R, Gupta M, Hager GD, Arratia PE, Sznitman J. Multi-environment model estimation for motility analysis of 
Caenorhabditis elegans. PLoS ONE. 2010;5(7): e11631.

 46. Sznitman J, Purohit PK, Krajacic P, Lamitina T, Arratia PE. Material properties of of Caenorhabditis elegans swimming at 
low Reynolds number. Biophys J. 2010;98(4):617–26.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Automated recognition and analysis of body bending behavior in C. elegans
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Methods
	Algorithm for head and tail localization
	Algorithm for feature points extraction
	Count the number of body bends

	Results
	C. elegans datasets
	Verification of head and tail location algorithm
	The proposed algorithm verification by manual counting
	The differences in body bends of different nematode strains

	Discussion
	Comparison with other head and tail recognition algorithms
	Comparison with other automatic counting algorithms
	Applications for the proposed algorithm
	Potential applications of the proposed algorithm

	Conclusion
	Anchor 22
	Acknowledgements
	References


