
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi 
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Williams et al. BMC Bioinformatics          (2023) 24:194  
https://doi.org/10.1186/s12859-023-05316-x

BMC Bioinformatics

BGWAS: Bayesian variable selection 
in linear mixed models with nonlocal priors 
for genome-wide association studies
Jacob Williams1*, Shuangshuang Xu1 and Marco A. R. Ferreira1 

Abstract 

Background: Genome-wide association studies (GWAS) seek to identify single nucleo-
tide polymorphisms (SNPs) that cause observed phenotypes. However, with highly 
correlated SNPs, correlated observations, and the number of SNPs being two orders 
of magnitude larger than the number of observations, GWAS procedures often suffer 
from high false positive rates.

Results: We propose BGWAS, a novel Bayesian variable selection method based on 
nonlocal priors for linear mixed models specifically tailored for genome-wide associa-
tion studies. Our proposed method BGWAS uses a novel nonlocal prior for linear mixed 
models (LMMs). BGWAS has two steps: screening and model selection. The screening 
step scans through all the SNPs fitting one LMM for each SNP and then uses Bayesian 
false discovery control to select a set of candidate SNPs. After that, a model selection 
step searches through the space of LMMs that may have any number of SNPs from 
the candidate set. A simulation study shows that, when compared to popular GWAS 
procedures, BGWAS greatly reduces false positives while maintaining the same ability 
to detect true positive SNPs. We show the utility and flexibility of BGWAS with two case 
studies: a case study on salt stress in plants, and a case study on alcohol use disorder.

Conclusions: BGWAS maintains and in some cases increases the recall of true SNPs 
while drastically lowering the number of false positives compared to popular SMA 
procedures.
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Background
Genome-wide association studies (GWAS) are a popular tool to identify causal relation-
ships between variations in the genome and observed phenotypes. In GWAS studies, the 
most commonly considered genomic variations are single nucleotide polymorphisms 
(SNPs), which may be of the order of 100,000–1,000,000 s depending on the species and 
the dataset. An important aspect of GWAS analysis is the existence of correlation among 
the observations as a result of study design or population structure. A popular way to 
deal with this correlation is to use linear mixed models that include kinship random 
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effects with a covariance matrix proportional to a realized relationship matrix [1–3]. 
The most widely used procedures for GWAS analysis are single marker association tests 
(SMA), which evaluate the individual predictive ability of each SNP by fitting as many 
linear mixed models (LMMs) as the number of SNPs [1], each model only containing 
one SNP. In a traditional SMA, after evaluating each SNP individually, a multiple com-
parison correction, such as the Bonferroni correction or the Benjamini Hochberg cor-
rection, is used to identify important SNPs and attempt to control the false discovery 
rate (FDR). However, these SMAs based on LMMs still yield high FDR because the SNPs 
themselves are highly correlated [4]. To have better FDR control and still maintain the 
same ability to detect true positive SNPs, we propose a novel Bayesian method for linear 
mixed models with nonlocal priors for efficient analysis of GWAS data.

We call our novel method BGWAS. BGWAS has two steps: screening and model 
selection. First, the screening step fits as many LMMs as the number of SNPs, uses a 
mixture of a Dirac delta at zero and a nonlocal prior, and estimates the probability of 
the Dirac delta component. After that, the screening step computes the posterior prob-
ability of each SNP being a null SNP and uses Bayesian false discovery control [5–8] 
to choose a set of candidate SNPs. Second, the model selection step performs a model 
search where the possible models contain any number of SNPs from the set of candi-
date SNPs. When the model space is too large for complete enumeration, the BGWAS 
model selection step searches through the model space with a genetic algorithm (GA). A 
simulation study presented in the “Results” section shows that, when compared to SMA, 
BGWAS reduces the number of false positives while maintaining the same level of true 
casual SNPs recall.

BGWAS uses novel nonlocal priors specifically tailored for LMMs. Nonlocal pri-
ors were first proposed by [9] and extended fully to Gaussian linear models in [10]. 
[10] proposed product moment (pMOM) priors that are proportional to a Gaussian 
kernel multiplied by the product of the absolute values of the coefficients raised to a 
scalar. Figure 1 presents two pMOM priors and a local prior. When compared to local 

Fig. 1 pMOM nonlocal priors with τ = 0.022 and τ = 0.348 , as well as a local prior
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priors, nonlocal priors lead to a much faster accumulation of evidence in favor of a 
true null hypothesis [9, 10]. This property is especially useful in GWAS where the vast 
majority of SNPs are usually not important. [11] extended the pMOM nonlocal prior 
to generalized linear models by using a Gaussian kernel with a covariance matrix pro-
portional to the diagonal of the Fisher information. In contrast, here we propose a 
pMOM nonlocal prior for LMMs that uses the full Fisher information matrix. When 
compared to using just the diagonal of the Fisher information matrix, the use of the 
full Fisher information matrix in the definition of the nonlocal prior better accounts 
for the correlations between SNPs and, thus, better controls the FDR.

Many of the published works regarding Bayesian analysis of GWAS data use 
Markov chain Monte Carlo (MCMC). [12] proposes a screening algorithm that iden-
tifies causal SNPs using local priors, but does not take into account the relationships 
between SNPs. Similarly, [13] uses local priors with a MCMC implementation in a 
screening algorithm to identify SNPs, but, similarly does not take into account the 
relationships between SNPs. [14] and [15] both propose two-step procedures, first 
screening the SNPs to reduce the size of the problem, and second using a model 
selection step with different local priors in MCMC implementations to identify causal 
SNPs. [14] does not take into account the kinship correlation structure among obser-
vations. [16] takes into account the correlation among observations and SNPs but 
uses local priors in both steps of an iterative two-step procedure. [17] proposes an 
iterative two-step procedure using R2 and nonlocal priors in an MCMC implementa-
tion but does not take into account the kinship correlation structure. By not taking 
into account the kinship correlation structure, an increase of false positives is typi-
cally seen [1–3]. In contrast, our method BGWAS performs a Bayesian procedure 
using nonlocal priors that takes into account the kinship correlation structure and 
the relationships between SNPs. Importantly, instead of MCMC, BGWAS uses a fast 
Empirical Bayes procedure that analyzes GWAS problems of size 105 to 106 SNPs in a 
reasonable amount of time.

To decrease the computational burden of LMMs, BGWAS uses estimates of the 
variance components from baseline models for both the screening step and model 
selection step. Methods such as EMMAX [3] and population parameters previously 
determined (P3D [18]) have popularized estimating variance components from a 
baseline model in a SMA using LMMs. EMMAX avoids the repeated estimation of 
the variance components by using the heritability estimate from the null model for 
all SNPs. P3D uses both the estimate of the heritability and the estimate of the inde-
pendent error structure parameter fixed while testing all SNPs. Similarly to EMMAX, 
BGWAS estimates the kinship dependence parameter from a baseline model. As 
EMMAX and P3D have shown, using variance estimates from a baseline model pro-
vides orders of magnitude faster results while losing little to no statistical power.

The remainder of this article is organized as follows. The Methods section presents 
our proposed BGWAS method for fast Bayesian SNP search. The Results section 
presents simulation results using genotype data from Illumina sequencing of 2772 
humans as well as two case studies based on real world examples. The Conclusion 
and Future Directions section discusses conclusions and possible avenues of future 
research.
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Methods
BGWAS works in two distinct steps: a screening step and a model selection step. First, 
the screening step fits as many LMMs as the number of SNPs using a mixture of a Dirac 
delta at zero and a nonlocal prior, and estimates the probability of the Dirac delta com-
ponent. After that, the screening step computes the posterior probability of each SNP 
being a null SNP and uses Bayesian false discovery control [5–8] to choose a set of can-
didate SNPs. Next, the BGWAS model selection step takes the set of candidate SNPs 
identified in the screening step and uses a novel multivariate nonlocal prior to perform 
Bayesian model selection among them. The goal of the model selection step is to further 
control false positives.

The model used in both the screening step and the model selection step is [1]

where Y is an n× 1 phenotype vector, Xc is an n× l matrix with columns including the 
intercept and fixed effects, α is an l × 1 vector of regression coefficients, Xs is an n× p 
matrix with columns including SNPs, β is a p× 1 vector of regression coefficients, Z is 
an n× t incidence matrix mapping each observed phenotype to one of t inbred strains, u 
is a t × 1 vector of random effects accounting for population structure, and ǫ is an error 
term. K is the realized relationship matrix or kinship matrix assumed to be a known 
positive semi-definite matrix calculated at the beginning of the procedure.

The remainder of this section is divided into two subsections: BGWAS Screening Step 
provides details about the screening step and BGWAS Model Selection Step presents 
the model selection step.

BGWAS screening step

The screening step fits as many LMMs as the number of SNPs, with each LMM having 
only one SNP in addition to the control regressors. To speed up computations, we use 
an approach similar to P3D, which is widely used in SMA for GWAS [3, 18]. Specifically, 
the variance parameter κ and the vector of coefficients α of the control regressors are 
fixed at their baseline model estimates when fitting models that include SNPs. The use 
of these estimates leads to great computational savings because of two reasons: first, the 
numerical optimization methods used for estimating κ account for a substantial part of 
the computational cost of fitting LMMs; second, fixing α allows us to use fast numerical 
linear algebra to simultaneously estimate the regression coefficients of the SNPs in all 
LMMs that have just one SNP.

Specifically, we estimate κ and α from the baseline model

These estimates are calculated using the restricted likelihood (REML) which is equiv-
alent to using a flat prior on α , integrating out α , and maximizing the correspond-
ing integrated likelihood with respect to σ 2 and κ . We then take an Empirical Bayes 
approach that assumes κ and α are known parameters equal to their estimates κ̂ and α̂ . 
Let Y = Y − Xcα̂ , be the vector of residuals from the baseline model. Similar to SMA, 

(1)Y = Xcα + Xsβ + Zu + ǫ where ǫ ∼ N (0, σ 2I) and u ∼ N (0, σ 2
κK ),

(2)Y ∼ N (Xcα, σ
2
(I + κZKZ⊤

)).
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the screening step estimates the regression coefficient βj of SNP j, j = 1, . . . , p , in the 
approximate LMM

where xj denotes the covariate related to the jth SNP. Let 
β̂j =

(
x⊤j (I + κ̂ZKZ⊤

)
−1xj

)−1
x⊤j (I + κ̂ZKZ⊤

)
−1

Ỹ be the REML of βj under Eq..  (3). 

Then β̂j|βj
a
∼N (βj , σ

2
βj
) , where σ 2

βj
= σ̂

2
j (x

⊤
j (I + κ̂ZKZ⊤

)
−1xj)

−1 . Note that σ̂ 2
j  is the 

REML estimate calculated for the model given by Eq. (3) for SNP j.
We assume a spike and slab prior for βj [19]. Traditionally, such a prior usually 

assumes for βj a mixture of a Dirac delta function and a Gaussian distribution [13, 
19]. In contrast, instead of a Gaussian distribution, we assume a nonlocal prior which 
has better theoretical properties with respect to the convergence rates of posterior 
probabilities [9, 10]. Specifically, we assume that a priori βj follows a mixture of a 
Dirac delta prior and a moment nonlocal prior [9] of the form

We note that in Eq. (4), we take a hierarchical modeling approach where the regression 
coefficients of all SNPs share the same parameters π0 and τ . We consider three different 
procedures for choosing τ : fix τ = 0.348 as recommended in [10]; fix τ = 0.022 as rec-
ommended in [17]; or estimate τ from the data [11]. Finally, BGWAS borrows strength 
across SNPs by estimating either π0 or (π0, τ ) in a computationally efficient Empirical 
Bayes approach.

We now discuss how to estimate π0 and τ . We assign a noninformative uniform 
prior on the interval (0,1) for the probability of a true null SNP π0 . As the uniform 
prior is bounded on the interval (0,1), this is a proper prior for π0 . For the scale 
parameter τ , we assign an Inverse Gamma prior as proposed in [11] for generalized 
linear models. To set the hyperparameters of this Inverse Gamma prior, we note that 
[17] proposed to fix τ at 0.022 for GWAS analysis. Thus, we set the prior mean of τ to 
0.022. In addition, we note that values of τ smaller than 0.01 would allow the selection 
of too many false SNPs. Further, values of τ that are too close to zero lead to numeri-
cal instabilities. Based on these considerations, we assign an Inverse Gamma prior 
with shape 0.55/0.022+ 1 and scale 0.55 implying a prior mean of τ equal to 0.022. In 
addition, this choice implies the prior probability that τ is less than 0.01 is less than 
0.001, stochastically bounding τ away from zero to make computations stable. As the 
simulation study in the Results Section shows, this choice of priors works very well 
for GWAS analysis.

Multiplying the corresponding density for β̂j by the prior for βj given in Eq. (4) and 
integrating out βj , we obtain the predictive density:

(3)Ỹ
a
∼N (xjβj , σ

2
j (I + κ̂ZKZ⊤

)),

(4)

p(βj|τ ,π0) = π0δ(βj = 0)+ (1− π0)

β
2
j (x

⊤
j (I + κ̂ZKZ⊤

)
−1xj)

nτσ 2
j

× N

(
βj | 0,

nτσ 2
j

(x⊤j (I + κ̂ZKZ⊤
)
−1xj)

)
.
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The derivation of the predictive density is provided in the Additional file  1. Assum-
ing that β̂1, β̂2, . . . , β̂p conditional on β1,β2, . . . ,βp are approximately independent, an 
approximate likelihood function for π0 and τ is given by

Let p(τ ) and p(π0) be the prior densities for τ and π0 , respectively. Then, by Bayes Theo-
rem the joint posterior density of τ and π0 is

BGWAS estimates π0 and τ by maximizing the posterior density given in (7). When τ is 
treated as fixed, only π0 is estimated from the posterior distribution. After that, BGWAS 
takes an Empirical Bayes approach that fixes π0 = π̂0 and τ = τ̂ to calculate the poste-
rior probability of βj = 0 for all j using the predictive density of β̂j . Specifically, applying 
Bayes theorem, the posterior probability is given by:

With the posterior probabilities of βj = 0 for all SNPs, the BGWAS screening step uses 
a Bayesian FDR control procedure [5–8] to select a set of candidate SNPs. Let k be the 
number of candidate SNPs and Xk be the design matrix that includes all such candidate 
SNPs.

BGWAS model selection step

The BGWAS model selection step searches through the model space of all LMMs that 
contain any number of candidate SNPs in Xk . Similarly to the screening step, to speed up 
computations the model selection step uses estimates of κ and α from a baseline model. 
Specifically, first κ and α are estimated assuming as baseline model the full model

These estimates are calculated using restricted maximum likelihood (REML) estimation. 
After that, for all other models we assume that κ and α are known parameters equal to 
their estimates κ̂ and α̂ . Next, similarly to the screening step, define Ỹ = Y − Xcα̂ . Now 
consider a model Ml with s possible SNPs, where 0 ≤ s ≤ k . Let β l be the vector of coef-
ficients and Xl be the covariate matrix associated with these s SNPs. Then, the distribu-
tion of Ỹ in model Ml is approximately

(5)

p(β̂j|τ ,π0) =

∫
N (β̂j|βj , σ

2
βj
)p(βj|τ ,π0)dβj

= π0N (β̂j | 0, σ
2
βj
)+ (1− π0)(2πσ

2
βj
)
−1/2

(nτ + 1)−3/2

×

(
1+

nτ β̂2
j

(nτ + 1)σ 2
βj

)
exp

[
−

β̂
2
j

2(nτ + 1)σ 2
βj

]
.

(6)L(τ ,π0; β̂1, . . . , β̂p) =

p∏

j=1

p(β̂j|τ ,π0).

(7)p(τ ,π0|β̂1, . . . , β̂p)
a
∝L(τ ,π0; β̂1, . . . , β̂p)p(τ )p(π0).

(8)P(βj = 0|β̂j , τ̂ , π̂0) =
π̂0N (β̂j|0, σ

2
βj
)

p(β̂j|τ̂ , π̂0)
.

(9)Y ∼ N (Xcα + Xkβk , σ
2
(I + κZKZ⊤

)).
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We propose a novel product moment (pMOM) prior for Gaussian linear mixed models. 
This prior uses the Fisher Information matrix in its Gaussian kernel. We note that [11] 
proposed to use the diagonal of the Fisher Information matrix in the Gaussian kernel 
of a pMOM prior for generalized linear models. Instead of the diagonal of the Fisher 
Information matrix, our use of the full Fisher Information matrix allows for the high cor-
relations among SNPs to be accounted for in the pMOM prior. Specifically, the prior we 
propose is

where

Note that τ̂ is either estimated in the screening step or fixed at the chosen value.
The marginal likelihood ml(Ỹ) is then

where

Here, E1(
∏

s

i=1
β
2

li
) is the expected value of 

∏s
i=1 β

2
li with respect to N (β l |0, σ̂

2

l
(nτ̂ + 1)C

−1

l
) 

and E2(
∏s

i=1 β
2
li) is the expected value of 

∏s
i=1 β

2
li with respect to N (β l |β̃s, σ̂

2
l C

−1
l ) . To 

compute both expectations, a Monte Carlo simulation obtains 1000 draws from the dis-
tribution N (β l |β̃s, σ̂

2
l C

−1
l ) and performs a transformation of variables to get a second 

set of 1000 draws from N (β l |0, σ̂
2
l (nτ̂ + 1)C−1

l ) . Now, these draws can be used to obtain 
Monte Carlo estimates of E1(

∏s
i=1 β

2
li) and E2(

∏s
i=1 β

2
li) . Proof of the marginal likelihood 

derivation given in Eq. (13) is provided in the Additional file 1.
To assign the prior probability on a model Ml with s SNPs, we assume that SNPs are 

true positives or true negatives according to a sequence of exchangeable Bernoulli trials 
with probability of a true negative equal to π0 . Thus, the prior probability of model Ml 
with s SNPs is

(10)Ỹ|Ml
a
∼N (Xlβ l , σ

2
l (I + κ̂ZKZ⊤

)).

(11)π(β l |τ̂ , σ̂
2
l ) = dl

s∏

i=1

β
2
li × N

(
β l | 0, τ̂ σ̂

2
l n(X

⊤
l (I + κ̂ZKZ⊤

)
−1Xl)

−1
)

(12)dl =

{∫

Rs

s∏

i=1

β
2
li × N

(
β l | 0, τ̂ σ̂

2
l n(X

⊤
l (I + κ̂ZKZ⊤

)
−1Xl)

−1
)
dβ l

}−1

.

(13)

ml(Ỹ) = (2πσ̂ 2
l )

−(
n
2 )|I + κ̂ZKZ⊤|−1/2

(nτ̂ + 1)−s/2 exp

(
−

Rl

2σ̂ 2
l

)
E2(

∏s
i=1 β

2
li)

E1(
∏s

i=1 β
2
li)
,

Cl =
nτ̂ + 1

nτ̂
X⊤
l (I + κ̂ZKZ⊤

)
−1Xl ,

β̃ l = C−1
l X⊤

l (I + κ̂ZKZ⊤
)
−1

Ỹ,

Rl = Ỹ
⊤
(I + κ̂ZKZ⊤

)
−1[(I + κ̂ZKZ⊤

)− XlC
−1
l X⊤

l ](I + κ̂ZKZ⊤
)
−1

Ỹ.

(14)p(Ml) = (π0)
(k−s)

(1− π0)
s.
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BGWAS implements this prior probability by setting π0 equal to the estimated propor-
tion π̂0 of true null SNPs estimated in the screening step.

Then, by Bayes Theorem the posterior probability of model Ml is

where m = 2k is the total number of possible models.
To perform model selection with the candidate SNPs identified in the screening step, 

BGWAS either uses complete enumeration (when the number of candidate SNPs is less 
than 16) or searches the model space with a genetic algorithm. Specifically, we have 
implemented a genetic algorithm with the function ga() from the R package GA [20] that 
iterates mutation, crossover, and selection steps.

Our implementation starts with an initial population of 100 models that includes one 
model with just the intercept and 99 models with only one SNP per model. If the screen-
ing step yields more than 99 candidate SNPs, then the 99 SNPs with the highest poste-
rior probabilities are used in the initial population. If the screening step yields less than 
99 candidate SNPs, then the remaining models in the initial population are chosen based 
on the GA package’s default settings. The fitness function used in this genetic algorithm 
is log(P(Ml))+ log(ml(Ỹ)) . The algorithm stops if either 4000 maximum iterations are 
reached or if convergence is achieved with 400 consecutive iterations having the same 
best model.

Results
Simulation study

To assess the performance of BGWAS compared to SMA, data have been simulated 
under the mixed effects model:

where u ∼ N (0, σ 2
κK ) and ǫ ∼ N (0, σ 2I) . For this simulation study we consider two 

SMA procedures with Bonferroni correction: “SMA-Approx.” estimates variance com-
ponents estimated from a baseline model [3, 18],  “SMA-Exact” estimates variance 
components for each model [2, 21]. In addition, we consider BGWAS with the three 
different methods for the nonlocal prior procedure discussed in the BGWAS Screen-
ing Step section. These three nonlocal prior procedures differ in the way they specify 
the hyperparameter τ : fix τ = 0.348 as recommended in [10]; fix τ = 0.022 as recom-
mended in [17]; and estimate τ from the data assuming an Inverse Gamma prior with 
shape 0.55/0.022+ 1 and scale 0.55. In all nonlocal prior based methods, we assume a 
uniform prior on the interval (0,1) for π0 . As discussed in [10] and [17], the fixed val-
ues of τ = 0.348 or τ = 0.022 assign 0.99 marginal prior probability to |βi| ≥ 0.2σ or 
|βi| ≥ 0.05σ respectively. As a consequence, pre-specifying different values of τ may have 
a large effect on the false discovery rates and true positive rates of nonlocal prior meth-
ods. As an alternative, estimating τ provides a data-driven way to set the scale parameter.

To assess performance of these methods we use three different criteria: number of true 
positives, number of false positives, and the F1 score. The F1 score is the harmonic mean 

(15)P(Ml |Ỹ) =
p(Ml)ml(Ỹ)∑m
j=1 p(Mj)mj(Ỹ)

∝ p(Ml)ml(Ỹ),

(16)Y = α1+ Xβ + Zu + ǫ,
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of precision (one minus the false discovery rate) and recall (the number of detected true 
SNPs divided by the total number of true SNPs). Similarly to [22], we define true posi-
tives and false positives using a buffer region. Specifically, if one or more selected SNPs 
are in a 5 kilobase pair (kbp) window centered at a true causal SNP, then that is counted 
as one true positive. Selected SNPs not located in any of the true-causal-SNP buffer 
regions are declared false positives. This buffer region mirrors the way scientists decide 
to further investigate genes that are near SNPs identified in GWAS studies [23, 24].

This simulation study is rather extensive and the full results are shown in the Addi-
tional file  1. We consider four different sizes of genotype data, all subsetted from an 
Illumina sequencing of 2772 humans. The four different sizes reflect all considered com-
binations of two sample sizes ( n = 400 and n = 2772 ) and number of SNPs ( p = 225,000 
and p = 800,000 ). When there are 225,000 SNPs, there are 15 causal SNPs starting 
at position 7500 and with 15,000 SNPs in between each causal SNP. When there are 
800,000 SNPs there are 20 causal SNPs starting at position 20,000 and with 40,000 SNPs 
in between each causal SNP. We explore four different vectors of regression coefficients 
for each set of causal SNPs. The first vector of regression coefficients is a vector of zeros, 
that is, there are no causal SNPs. In the three other vectors of regression coefficients, all 
coefficients are equal to 0.4 except for the coefficients at positions 1, 5, 9, 13, and 17. At 
these positions ( β(1) ), the coefficients are equal to each other and take on the values of 
0.1, 0.4, and 1.6 for each of the three vectors of regression coefficients. Further, we set 
σ
2 = 0.2 and have three different values of κ : 0, 0.1, and 1. Note that when κ = 0 the true 

model does not have kinship random effects. In that case of κ = 0 , we implement SMA 
with simple linear regression. However, note that in this simulation study we always 
implement BGWAS with LMMs. Finally, we illustrate this procedure using two different 
nominal FDR levels, the traditional 0.05 and a less conservative 0.1.

The remainder of this section is divided into three subsections: General Simulation 
Study examines the two combinations of parameters closest to the case studies; Behav-
ior of BGWAS when there is no Kinship Dependence Structure investigates how well 
BGWAS with the nonlocal prior performs when there are no causal SNPs, that is, when 
all regression coefficients are 0; Behavior of BGWAS when there are no Causal SNPs 
investigates how BGWAS performs when data have been simulated from a linear model 
instead of a linear mixed model; and Recommendation provides a recommendation for 
which BGWAS procedure to use.

General simulation study

Here we focus on results of the simulation study for combinations of sample size, num-
ber of SNPs, and parameter values that best match the case studies we explore later in 
the Case Studies section. The first simulation study combination shown in Table  1 is 
similar to the A. Thaliana case study. The A. Thaliana case study has 328 observations 
and about 230,000 SNPs. Estimates from the best model suggest the closest simulation 
study combination of parameter values is κ = 1 and σ 2 = 0.2 . The closest matching set 
of coefficients is the third setting with positions 1, 5, 9, and 13 all taking the value 1.6. 
However, we show results for all three different settings of the coefficients for the two 
nominal FDR levels. The second simulation study combination shown in Table 2 is simi-
lar to the alcohol dependence case study, which considers the log of age of first drink 



Page 10 of 20Williams et al. BMC Bioinformatics          (2023) 24:194 

Ta
bl

e 
1 

Re
su

lts
 fo

r G
W

A
S 

da
ta

 s
im

ul
at

ed
 fr

om
 L

M
M

 w
ith

 n
=

4
0
0
,p

=
2
2
5
,0
0
0
,κ

=
1  , 

an
d 
σ
2
=

0
.2

In
 th

is
 ta

bl
e,

 th
er

e 
ar

e 
15

 c
au

sa
l S

N
Ps

. T
he

 re
gr

es
si

on
 c

oe
ffi

ci
en

ts
 o

f t
he

 1
5 

ca
us

al
 S

N
Ps

 a
re

 β
=

(
β
(
1
)
,0
.4
,0
.4
,0
.4
,β

(
1
)
,0
.4
,0
.4
,0
.4
,β

(
1
)
,0
.4
,0
.4
,0
.4
,β

(
1
)
,0
.4
,0
.4
)
⊤

 . T
P 

in
di

ca
te

s 
Av

er
ag

e 
nu

m
be

r o
f T

ru
e 

Po
si

tiv
es

, F
P 

is
 

Av
er

ag
e 

nu
m

be
r o

f F
al

se
 P

os
iti

ve
s, 

an
d 

F1
 is

 th
e 

Av
er

ag
e 

F1
 s

co
re

. A
ve

ra
ge

 P
er

fo
rm

an
ce

 o
f e

ac
h 

m
et

ho
d 

ov
er

 5
0 

da
ta

se
ts

 fo
r e

ac
h 

se
tt

in
g

N
om

in
al

 F
D

R
M

et
ho

d
β
(1
)
=

0
.1

β
(1
)
=

0
.4

β
(1
)
=

1
.6

TP
FP

F1
Ti

m
e 

(s
)

TP
FP

F1
Ti

m
e 

(s
)

TP
FP

F1
Ti

m
e 

(s
)

0.
05

SM
A

-A
pp

ro
x.

5.
2

6.
9

0.
38

4
4.

6
4.

1
0.

39
4

3.
9

36
.4

0.
14

4
SM

A
-E

xa
ct

5.
2

7.
0

0.
38

10
3

4.
6

4.
2

0.
39

10
4

3.
9

36
.9

0.
14

93

N
P, 
τ
=

0
.3
4
8

4.
2

0.
6

0.
42

37
3.

1
0.

1
0.

34
17

4.
0

0.
0

0.
42

29

N
P, 
τ
=

0
.0
2
2

6.
1

0.
8

0.
55

35
6.

3
0.

6
0.

57
30

4.
1

0.
0

0.
43

35

N
P, 
τ

 e
st

im
at

ed
6.

4
0.

8
0.

57
40

6.
7

0.
8

0.
60

36
4.

1
0.

0
0.

43
37

0.
1

SM
A

-A
pp

ro
x.

5.
5

8.
1

0.
39

4
5.

3
5.

2
0.

42
4

4.
0

41
.4

0.
13

4
SM

A
-E

xa
ct

5.
6

8.
2

0.
39

10
3

5.
3

5.
3

0.
42

10
4

4.
0

41
.9

0.
13

93

N
P, 
τ
=

0
.3
4
8

4.
6

0.
7

0.
45

32
3.

9
0.

2
0.

40
33

4.
0

0.
0

0.
42

31

N
P, 
τ
=

0
.0
2
2

6.
4

0.
9

0.
57

39
6.

8
0.

8
0.

60
35

4.
4

0.
0

0.
45

37

N
P, 
τ

 e
st

im
at

ed
6.

6
0.

9
0.

59
48

7.
0

1.
1

0.
61

45
4.

4
0.

0
0.

45
40



Page 11 of 20Williams et al. BMC Bioinformatics          (2023) 24:194  

Ta
bl

e 
2 

Re
su

lts
 fo

r G
W

A
S 

da
ta

 s
im

ul
at

ed
 fr

om
 L

M
M

 w
ith

 n
=

2
7
7
2
,p

=
8
0
0
,0
0
0
,κ

=
0
.1

 , a
nd

 σ
2
=

0
.1

In
 th

is
 ta

bl
e,

 th
er

e 
ar

e 
20

 c
au

sa
l S

N
Ps

. T
he

 re
gr

es
si

on
 c

oe
ffi

ci
en

ts
 o

f t
he

 2
0 

ca
us

al
 S

N
Ps

 a
re

 β
=

(
β
(
1
)
,0
.4
,0
.4
,0
.4
,β

(
1
)
,0
.4
,0
.4
,0
.4
,β

(
1
)
,0
.4
,0
.4
,0
.4
,β

(
1
)
,0
.4
,0
.4
,0
.4
,β

(
1
)
,0
.4
,0
.4
,0
.4
)
⊤

 . T
P 

in
di

ca
te

s 
Av

er
ag

e 
nu

m
be

r o
f T

ru
e 

Po
si

tiv
es

, F
P 

is
 A

ve
ra

ge
 n

um
be

r o
f F

al
se

 P
os

iti
ve

s, 
an

d 
F1

 is
 th

e 
Av

er
ag

e 
F1

 s
co

re
. A

ve
ra

ge
 P

er
fo

rm
an

ce
 o

f e
ac

h 
m

et
ho

d 
ov

er
 5

0 
da

ta
se

ts
 fo

r e
ac

h 
se

tt
in

g

N
om

in
al

 F
D

R
M

et
ho

d
β
(1
)
=

0
.1

β
(1
)
=

0
.4

β
(1
)
=

1
.6

TP
FP

F1
Ti

m
e 

(s
)

TP
FP

F1
Ti

m
e 

(s
)

TP
FP

F1
Ti

m
e 

(s
)

0.
05

SM
A

-A
pp

ro
x.

14
.1

16
9.

5
0.

14
13

9
18

.7
22

3.
9

0.
14

95
9.

0
26

0.
2

0.
06

10
6

SM
A

-E
xa

ct
14

.1
16

9.
8

0.
14

11
37

18
.7

22
3.

9
0.

14
10

93
9.

0
26

0.
2

0.
06

19
68

N
P, 
τ
=

0
.3
4
8

13
.0

1.
1

0.
76

25
9

16
.6

2.
2

0.
85

28
1

8.
4

0.
7

0.
58

20
8

N
P, 
τ
=

0
.0
2
2

13
.8

1.
6

0.
78

27
9

16
.9

2.
4

0.
86

32
1

10
.1

1.
7

0.
64

24
2

N
P, 
τ

 e
st

im
at

ed
14

.0
1.

6
0.

79
28

3
16

.8
2.

7
0.

85
33

9
10

.9
1.

5
0.

67
25

4

0.
1

SM
A

-A
pp

ro
x.

14
.2

17
6.

6
0.

14
13

9
18

.8
23

4.
5

0.
14

95
9.

1
27

4.
4

0.
06

10
6

SM
A

-E
xa

ct
14

.2
17

7.
0

0.
14

11
37

18
.8

23
4.

5
0.

14
10

93
9.

1
27

4.
4

0.
06

19
68

N
P, 
τ
=

0
.3
4
8

13
.1

1.
4

0.
76

26
5

16
.9

2.
1

0.
87

29
3

8.
4

0.
9

0.
58

21
0

N
P, 
τ
=

0
.0
2
2

14
.0

1.
6

0.
79

28
9

17
.1

2.
4

0.
87

31
3

11
.2

1.
4

0.
69

25
2

N
P, 
τ

 e
st

im
at

ed
14

.2
1.

8
0.

79
29

1
16

.9
2.

8
0.

85
34

0
11

.7
1.

4
0.

71
26

7



Page 12 of 20Williams et al. BMC Bioinformatics          (2023) 24:194 

with 1738 subjects and approximately 840,000 SNPs. The closest simulation study com-
bination has κ = 0.1 and σ 2 = 0.2 with the regression coefficients all equal to 0.4. For a 
full understanding of how each method performs in each combination, the Additional 
file 1 provides tables with the same information as shown in Tables 1 and 2 for all other 
combinations of sample size, number of SNPs, and parameter values. Tables 1 and 2 dis-
play results averaged over 50 datasets for each setting. The average number of true posi-
tives (TP), average number of false positives (FP), and average F1 score are given for each 
method for each setting. The best result for each nominal FDR in each column appears 
in boldface.

In both tables, BGWAS with nonlocal priors better controls false discoveries while 
maintaining a level recall of true SNPs similar to that of SMA. In terms of overall perfor-
mance, the F1 score is highest for BGWAS in every setting in every simulation setting. 
In Table 1, BGWAS either with using τ = 0.022 or estimating τ detects a higher number 
of true positives compared to SMA in all settings and with all FDR nominal levels. In 
addition, when compared to SMA, BGWAS reduces the number of false positives by a 
factor of 10 or more. In Table 2, the number of true positives detected by BGWAS with 
τ = 0.022 or estimating τ is similar to the number of true positives detected by SMA 
when using a type 1 nominal level of 0.1. Importantly, in Table 2, BGWAS reduces false 
positives by a factor of 100 or more. The reduction in false positives is credited to both 
the BGWAS screening step and the BGWAS model selection step. The BGWAS screen-
ing step is less conservative than SMA and the BGWAS model selection step better con-
trols FDR.

Different ways to specify τ in our BGWAS approach offer their own benefits. The use 
of τ = 0.348 provides the best false discovery control out of any method but also has the 
lowest true positive rate out of any method. Thus BGWAS with τ = 0.348 is by far the 
most conservative method. Overall, BGWAS using τ = 0.022 well balances the true pos-
itives and false discoveries in nearly all settings. Finally, BGWAS estimating τ performs 
the best in most circumstances in terms of true positive rate.

The differences in performance of BGWAS in Tables 1 and 2 are mainly due to differ-
ences in sample size n, variance parameter κ , and number of possible SNPs p. Tables 1 
and 2 are useful because their conditions are similar to those of the two case studies, 
thus the results in these two tables inform us about the reliability of the case studies 
results. However, to understand the impact of sample size, variance parameter, and 
number of possible SNPs on the performance of BGWAS and SMA methods, we need to 
also examine Tables S1 through S9 in the Additional file 1. Comparison of all the tables 
leads to three main conclusions. First, we note that larger values of the variance param-
eter κ lead to a decrease in the performance of both BGWAS and SMA. Second, the 
impact of increasing the number of possible SNPs p depends on the sample size. If the 
sample size is small n = 400 , then increasing p from 225,000 to 800,000 causes severe 
deterioration in performance of both BGWAS and SMA. However, if the sample size is 
moderate n = 2772 , then increasing p from 225,000 to 800,000 has little impact on the 
performance. Third, when the sample size increases, both BGWAS and SMA are able to 
detect a larger number of true causal SNPs. However, when the sample size increases, 
the number of false discoveries increases tremendously for SMA. As a result, when the 
sample size increases the performance of SMA in terms of F1 either remains about the 
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same (when p = 800,000 ) or deteriorates (when p = 225,000)—this happens because 
the simulation study is based on real-life correlated SNPs. In contrast, when the sample 
size increases, the number of false discoveries remains well controlled by BGWAS. As a 
result, as the sample size increases, the performance of BGWAS in terms of F1 becomes 
even better.

A major consideration in the application of GWAS methods is the computational cost 
of the procedures. Tables 1 and 2 show for each procedure the average time in seconds 
averaged over 50 datasets. All timings in these tables and in the Additional file  1 are 
for computations performed on 100 cores of a 128 core AMD EPYC 7702 with 256 GB. 
All operations were implemented in the R statistical language built with OpenBLAS for 
optimized numerical linear algebra [25]. As BGWAS is a two-step procedure, it can not 
be faster than the screening step. However, since both its screening step and the model 
selection step approximate the variance from a baseline model, the times for BGWAS 
are much faster than a traditional SMA such as EMMA [2]. In these tables the timings 
range from 2 to 8 times faster for BGWAS. Therefore, BGWAS with different choices of 
τ are accurate procedures that maintain true positive rates while dramatically reducing 
the number of false positives in an efficient manner.

Behavior of BGWAS when there is no kinship dependence structure

To understand how the nonlocal prior procedure performs when data are simulated 
from a linear model, we simulate 50 datasets from the model

where ǫ ∼ N (0, σ 2I) . Similarly to the general simulation study, σ 2 = 0.2 . We use the four 
different combinations of data sizes as in the general simulation study, that is, n = 400 or 
n = 2772 and p = 225,000 or 800,000. We again use the same set of causal SNPs as in 
the general simulation study, where the number of causal SNPs is 15 or 20 with all posi-
tions having value of 0.4 besides positions 1, 5, 9, 13, and 17 where these positions take 
on the values of 0.1, 0.4, and 1.6. For the SMA procedure, we assume the linear model 
without the kinship random effect. Thus, the SMA procedure in this section is exact. 
Meanwhile, our BGWAS procedure assumes the LMM given in Eq. (17). However, note 
that for datasets where BGWAS estimates κ to be 0, then BGWAS will behave as if the 
fitted model is a linear model with independent error structure.

Table 3 presents average number of true positives, false positives, and F1 score for 50 
simulated datasets for n = 400 and p = 225,000 . The best result for each nominal FDR 
in each column appears in boldface. Table 3 has similar results to Table 1 in terms of 
true positives, false positives, and F1 score. Results for other combinations of sample 
size, number of SNPs, and parameter values for the case κ = 0 shown in full detail in 
the Additional file  1 are also similar to results for the linear mixed model. Therefore, 
BGWAS performs better than SMA even when the true model is a linear model without 
kinship random effects.

Behavior of BGWAS when there are no causal SNPs

To examine the behavior of BGWAS in the case when there is no true causal SNPs, we 
have simulated 50 datasets for each combination of sample sizes ( n = 400 and n = 2772 ), 

(17)Y = α1+ Xβ + ǫ,
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number of SNPs ( p = 225,000 and p = 800,000 ), and κ ( κ = 0 , κ = 0.1 , and κ = 1 ) from 
the model

where u ∼ N (0, σ 2
κK ) and ǫ ∼ N (0, σ 2I) . Since there are no true causal SNPs in this 

simulation study, for each method we recorded the number of false positives. Table 4 
presents the average number of false positives over the 50 datasets created under the 
several considered combinations of sample size, number of SNPs and κ . The best result 
for each nominal FDR in each column appears in boldface.

All methods are relatively conservative when there are no causal SNPs. We note that 
keeping τ fixed at 0.348 is still the most conservative method out of all methods. More 
importantly, when there are no causal SNPs, BGWAS with an estimated τ from the 
data controls false discoveries better than fixing τ = 0.022 . Combined with the results 
from the general simulation study, BGWAS with estimating τ from the data is the best 
method.

Recommendation

We have considered BGWAS with multiple different choices of τ and different FDR 
nominal values. Both estimating τ from the data and setting τ at 0.022 have similar per-
formance in terms of the F1 score in almost all the combinations of the simulation study 
parameters. We note that when τ is estimated, the prior is an Inverse Gamma prior 
with a prior mean of 0.022. Therefore, the similar performance of these two methods is 
expected. Estimating τ tends to have slightly higher false discoveries and slightly higher 
true positives comparatively in the general simulation study. In the case of no causal 
SNPs, when compared to fixing τ at 0.022, estimating τ had a smaller number of false 
discoveries. As the goal of GWAS is detection of true positive SNPs while maintaining 
false discoveries to a reasonable level, we think that estimating τ from the data is the best 
approach for conducting real GWAS analyses. In this same light, setting the nominal 
level at 0.1 instead of 0.05 provided similar F1 scores but higher number of true posi-
tives. Therefore, our recommendation for GWAS analyses is estimating τ from the data 
and using a FDR nominal level of 0.1.

Case studies

To demonstrate the utility and flexibility of BGWAS, we present two case studies with 
real data analyses. First, BGWAS is applied to data from a published study of salt stress 
on the selfing species A. Thaliana [24]. Second, BGWAS is applied to a study of alcohol 
dependency in humans and explores the response variable “age of first drink”. To nor-
malize and variance-stabilize the data, the logarithm transformation has been applied to 
age of first drink. To briefly highlight the differences between BGWAS and SMA, Table 5 
presents the number of SNPs found by each method for each nominal FDR level.

For each application and under each FDR level, BGWAS with different choices of τ 
yields a much smaller number of identified SNPs than the SMA procedures. In addition, 
the results of the simulation study suggest that many of the SNPs found by the SMA 

(18)Y = α1+ Zu + ǫ,
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methods may be false positives. Therefore, following the recommendation from the early 
section, the remainder of this section discusses the SNPs discovered using BGWAS with 
estimating τ from the data.

Salt stress in A. Thaliana

We analyze data from a study that considers three different settings of salt stress to 
identify SNPs and their genes associated with the response of A. Thaliana to salt 
stress [24]. The three settings considered by [24] were a control setting, 75  mM of 
NaCl, and 125 mM of NaCl. Different measures of the root structure were taken to 
gauge how salt stress impacted the plants. In our case study, we analyze the aver-
age length of lateral root per main root length for 328 A. Thaliana accessions under 
75 mM NaCl salt stress. Genotype data was sequenced in [26]. Only SNPs with minor 
allele frequency greater than 0.01 were included in the analysis.

Following the recommendation given earlier, here we discuss the SNPs found by 
BGWAS estimating τ from the data and with a nominal FDR level of 0.1. Of the seven 
SNPs identified, one SNP is perfectly correlated to two other SNPs and another SNP 
is perfectly correlated with another SNP, implying nine identified SNPs. The 9 SNPs 
are located in the genes AT1G48300.1, AT1G62500, nearby AT2G38970, AT3G60370, 
AT4G14305.1, AT4G39955, AT4G39970, AT4G40000, AT5G28500.1. SNPs found in 
AT4G39955, AT4G39970, and AT4G40000 are in linkage disequilibrium. Importantly, 
AT1G62500 (also known as DEG27) is a gene that becomes differentially expressed in 
the event of salt stress [27]. In addition, AT4G39955 is an α/β-Hydrolases superfamily 
protein; these proteins have been shown to enhance salt tolerance in the sweet potato 
family [28].

Alcohol use disorder in humans

We consider publicly available data from The Collaborative Study on the Genetics of 
Alcoholism (COGA), which was performed to identify genetic factors associated with 
alcohol dependency [29]. In this case study we analyze the response variable “log of 
age of first drink” for 1738 people of European ancestry. Illumina sequencing pro-
vided approximately 1 million SNPs. Only SNPs with minor allele frequency larger 

Table 5 The number of SNPs identified by each method for each case study

Multiple comparison corrections are based on the number of SNPs in a given genotype dataset

Method Salt stress Age first drink

α = 0.05 α = 0.1 α = 0.05 α = 0.1

SMA-Approx. 22 25 8 8

SMA-Exact 22 26 8 8

NP, τ = 0.348 4 4 1 2

NP, τ = 0.022 5 8 3 4

NP, τ estimated 7 7 4 6
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than 0.01, not in the X/Y chromosomes, and with RS identifiers were investigated. To 
control for the effect of sex, this analysis was performed on the residuals of the linear 
mixed model for log age of first drink regressed on sex.

Following the recommendation given earlier, here we discuss the SNPs found by 
BGWAS estimating τ from the data and with a nominal FDR level of 0.1. The six SNPs 
discovered are located in genes KCNMA1, near PPIAP33, ANKS1B, RBL1, ABCF1, 
and LINC02237. We note that KCNMA1 is known as a gene associated with alco-
hol dependency [30]. In addition, in a study with people of Chinese Han ethnicity, 
ANKS1B has been associated with alcoholism [31]. Finally, genes RBL1 and ABCF1 
may be good candidates for further investigation.

Conclusion and future directions
We have proposed BGWAS, a novel Bayesian two-step procedure based on nonlocal 
priors for the analysis of GWAS data. In BGWAS, we propose in Eq. (4) a hierarchical 
approach where the regression coefficients for the several SNPs share the same mixing 
probability π0 and the same scale parameter τ . Thus, BGWAS borrows strength across 
SNPs to estimate π0 and τ in a very efficient Empirical Bayes approach. With the esti-
mates π̂0 and τ̂ , in both screening and model selection steps, BGWAS uses Bayes theo-
rem to efficiently compute posterior probabilities and make decisions on which SNPs 
to select. We note that it is not clear how to implement a classical/frequentist approach 
that would borrow strength across SNPs in a way similar to BGWAS. In addition, we 
note that our simulation studies with real SNP data show that, when compared to widely 
used frequentist procedures, BGWAS has favorable performance with much smaller 
FDR.

One important issue when using nonlocal priors is the specification of the scale 
parameter τ . Previous literature has proposed τ = 0.348 for usual linear regression prob-
lems [10] and τ = 0.022 for GWAS analysis [17]. In contrast, here we propose an empiri-
cal Bayes procedure that estimates τ from the GWAS data. Our simulation studies show 
that, when compared to fixing τ at 0.348 or 0.022, our procedure that estimates τ per-
forms the best in most circumstances in terms of true positive rates. In addition, in the 
case when there are no causal SNPs, our procedure that estimates τ from the data con-
trols false discoveries better than fixing τ at 0.022. Therefore, our recommendation for 
GWAS analyses is to estimate τ from the data.

Of the nine SNPs found by BGWAS for the Salt Stress case study, two of the SNPs 
were found in genes that have associated salt stress publications. Given the results of 
the simulation setting most closely related to this case study, Table 1 in the manuscript, 
we strongly believe that most of the other SNPs found by BGWAS are worthy of further 
investigation. The human case study of AUD found six SNPs of which two were located 
in genes previously related to AUD in publications. Similarly to the A. Thaliana case 
study, the simulation setting most similar to that of the case study, Table 2 of the manu-
script, suggests that the remainder of the SNPs found by BGWAS are highly likely to be 
true positives and worth further investigation.

There are many possible avenues for future research. For example, a potentially useful 
avenue is to extend our work to non-Gaussian data such as the number of lateral roots in 
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plants or the indicator of alcohol dependency in studies of alcohol use disorder. Another 
possible area of research would be to extend BGWAS to BioBank scale data.
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