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Abstract 

Background: Together with application of next-generation sequencing technologies 
and increased accumulation of genomic variation data in different organism species, 
an opportunity for effectively identification of superior alleles of functional genes to 
facilitate marker-assisted selection is emerging, and the clarification of haplotypes of 
functional genes is becoming an essential target in recent study works.

Results: In this paper, we describe an R package ‘geneHapR’ developed for haplotypes 
identification, statistics and visualization analysis of candidate genes. This package 
could integrate genotype data, genomic annotating information and phenotypic vari-
ation data to clarify genotype variations, evolutionary-ship, and morphological effects 
among haplotypes through variants visualization, network construction and pheno-
typic comparison. ‘geneHapR’ also provides functions for Linkage Disequilibrium block 
analysis and visualizing of haplotypes geo-distribution.

Conclusions: The R package ‘geneHapR’ provided an easy-to-use tool for haplotype 
identification, statistic and visualization for candidate gene and will provide useful 
clues for gene functional dissection and molecular-assistant pyramiding of beneficial 
alleles of functional locus in future breeding programs.
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Introduction
Haplotype is a linear combination of variants in specific genomic region. Identifica-
tion of superior haplotypes of functional genes are essential for developing markers for 
effective breeding work [1] and dissecting casual variants of target morphological and 
physiological traits [2–4]. Recent advances of next-generation sequencing (NGS) tech-
nologies and accumulation of genomic and phenotypic variation data make it possible 
for haplotype detection of nearly all effective locus applied in future breeding programs. 
Therefore, an efficiency tool is urgent for connecting of bio-data and breeders or molec-
ular genetics researchers, due to haplotype analysis is becoming essential part of high 
impacted researches reported in recent years that focus on gene functional validation 
and application in plants [5, 6], animals [3, 7] and human beings [8, 9].

Haplotypes of target genes could be identified from genomic variations using many 
programs, including pegas [10], DnaSP [11] and CandiHap [12]. However, the visualized 
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summarization of haplotypic variations of given locus was still challenging for current 
programs. For instance: Linkage disequilibrium block (LD-block) analysis and visuali-
zation is supported by HaploView [13], and haplotype network calculation and visuali-
zation are specifically supported by CandiHap and Network, while group information 
analysis was not supported by CandiHap. To date, a thoroughly haplotype analysis and 
thence summarized visualization require two or more programs, which are time con-
suming due to data conversion and results migrating.

Marker-assisted breeding in crop species relies on pyramiding of superior haplotypes 
related to target traits [14]. Superior haplotypes could be identified through pheno-
type comparison analysis and visualized by programs of SPSS, Excel or by R packages 
like haplo.stats [15] and ggplot2 [16]. However, plotting of evolutionary relationship of 
variants, geo-distribution and LD-block of each haplotypes requires more professional 
programs, which were challenging for preliminary users to grasp. As a consequence, 
haplotypic identification and visualization analysis cannot yet be accomplished by sin-
gle accessible program at present, and it is a huge challenge for breeders and molecular 
biologists who are not familiar with complicated command line programs.

Moreover, screening of superior haplotypes from huge amount bio-data generated by 
next-generation sequencing platform were also severely restricted in current programs 
such as: pegas [10] and DnaSP [11], or required complicated data format conversion 
process which impact the efficiency of haplotype identification analysis, such as: the 
pipeline applied in CandiHap [12]. Hence, an easy-to-use and efficient tool for haplotype 
identification, statistics and visualization analysis based on NGS platform is essential for 
future research programs.

Here, we introduced geneHapR, a toolkit developed in R language, for haplotypic sta-
tistics of functional genes including haplotype identification, morphological effects anal-
ysis and results visualization for researchers.

Implementation
The geneHapR is developed in R language and three essential steps were required for 
haplotype analysis, including data importing, haplotype identification and haplotype vis-
ualization (Fig. 1). In addition, two optional steps, including filter of variants and adjust-
ment of haplotype results were also realizable in geneHapR.

Format of imported datasets and relevant functions

The geneHapR requires three types of imported data: genotype, annotation, and acces-
sion information. The first type is genotype data that could be retrieved from published 
variants database, or obtained by Sanger sequencing or extracted from variants calling 
results of next generation sequencing or micro-array. Sequences were usually stored in 
FASTA format file and variants were usually stored in VCF, P.link or HapMap format 
files. Variants in published database could also be retrieved as above format.

The second type of imported data is annotation files. Annotation files of sequenced 
species could be retrieved as GFF/GFF3 format from published database, such as: 
Phytozome [17]. For species that have not been included in published database, anno-
tation files could be prepared in a custom BED4/6 format. Contents of each column in 
the custom BED4/6 are complied with the definition at Genome Browser FAQ (http:// 
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genome. ucsc. edu/ FAQ/ FAQfo rmat. html# forma t1). The columns contents of BED6 
format are: (1) chromosome name, (2) chromosome start, (3) chromosome end, (4) 
name, (5) score and (6) strand. In custom BED6 format, contents of the fourth col-
umn were custom as name and type, which were separated by a space. For example, 
“LOC_Os07g15770.1 CDS” indicates the CDS of LOC_Os07g15770.1. And the BED4 
format contains the first 4 columns of custom BED6 format and DNA strands was set 
as positive by default.

The third type of imported data is accession/individual information, including phe-
notypic data, individual group/category and geographic coordinates including longi-
tude and latitude information. An example of accession information was showed in 
Table 1. The accession names were defined in the first column and followed by other 
information (Subpopulation for accession category, longitude and latitude for geo-
graphic coordinates, grain length and grain width for phenotypes).

All required data could be imported by functions listed in Table  2. The “import_
vcf()” function was used for importation of VCF file based on the vcfR package [18]. 
The “import_seqs()” function was used for importation of sequences in Fasta format 
based on the Biostrings package. And the annotation files in GFF and BED format 
could be imported using “import_gff()” or “import_bed()” command based on the 
rtracklayer package [19].

Fig. 1 The workflow of geneHapR. There are three essential and two optional steps for haplotype 
identification using geneHapR. The required input datasets are genotype, annotations and accession 
information. And the output visualizing results include haplotype genotypes, haplotype network, 
geo-distribution, phenotype comparisons and LD-blocks

Table 1 An example of detailed accession information

ID Subpopulation Longitude Latitude Grain length Grain width

C001 Indica 121 14.6 8.50 2.90

C002 Intermediate 121 14.6 10.20 2.63

C003 Japonica 51.3 35.45 8.75 3.32

C004 Japonica 116.28 39.54 7.83 3.22

C005 Japonica 121 14.6 10.47 3.00

C006 Indica 116.28 39.54 8.10 2.47

http://genome.ucsc.edu/FAQ/FAQformat.html#format1


Page 4 of 13Zhang et al. BMC Bioinformatics          (2023) 24:199 

Variants extraction

Usually, genomic variants of interested genes could be retrieved as VCF, P.link HapMap 
or table format from target database. However, for species with no variants database, 
users can easily extract interested genomic regions from the original variants file with 
functions like “filter*()”. For example, the “filter_VCF()” function provides a conveni-
ent way to extract variants from VCF document. There were three modes for variants 
extraction, (1) by position, require a chromosome name and boundary of target region; 
(2) by region type, require annotation and specified a type for extraction; (3) by both of 
position and region type.

However, there is a bottleneck for extracting variants from huge documents using per-
sonal computer, due to R needs to import the entire dataset. So, we complimented func-
tions looks like “filterLarge*()” for variants extraction from huge documents, such as: 
“filterLargeVCF()” for huge VCF file, and “filterLargeP.link()” for huge P.link document.

Haplotype identification

Haplotype was identified by functions like “*2hap()” listed in Table 3, eg.: “vcf2hap()” for 
genomic data in VCF format. Individuals containing missing or heterozygotes loci could 
be eliminated by setting parameter “na_drop” and “hetero_remove” as “TRUE”.

There are two main steps for haplotype identification. Firstly, determine genotype of 
each accession and deal with accessions with missing genotypes; secondly, designate 
haplotypic names to all genotypes.

The format of haplotype results in geneHapR and adjustment

In gene haplotype results, most users prefer nucleotide coordinates start from start 
codon. However, the coordinate of variants in next-generation sequencing database were 

Table 2 The required format of datasets and import functions of geneHapR

Datasets Input file format Import function

Genotype (necessary) VCF: *.vcf, *.vcf.gz;
FASTA: *.fa, *.fasta;
P.link: (*.ped & *.map);
hmp: *.hmp;
table: *.txt, *.csv

import_vcf();
import_seqs();
import_plink.pedmap();
import_hmp();
read.table(), read.csv()

Annotation (optional) GFF: *.gff, *.gff3,
BED4/BED6: *.bed

import_gff();
import_bed()

Accession information (optional) table: *.txt, *.csv read.table(), read.csv()

Table 3 Functions for haplotype identification

Source data format Function

VCF vcf2hap()

P.link(ped&map) plink.pedmap2hap()

Fasta seqs2hap()

HapMap hmp2hap()

Table table2hap()
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usually based on chromosome. Thus, we complimented “hapSetATGas0()” and “gffSe-
tATGas0()” functions for conveniently conversion of coordinate in gene haplotype and 
annotation files, respectively. Additionally, rare haplotypes could be eliminated by “fil-
ter_hap()” function.

Furthermore, haplotype results could be converted into standard format for other soft-
ware by functions like hap2*(), for example, function “hap2DNAbin()” and “hap2hmp()” 
can convert haplotype result into DNAbin object or HapMap format.

Haplotype results can be saved and re-imported for re-analysis using “write_hap()” 
and “import_hap()” function, respectively. For haplotype results, we defined hapResult 
and hapSummary class in R, both included a matrix storing the haplotype genotypes and 
other related information. For clear demonstration, the two matrices in hapResult and 
hapSummary were divided into six parts as shown in Fig. 2.

The part I was fixed as “CHROM”, “POS”, “INFO” and “ALLELE” indicates the contents 
type of each line in Part II, which contains four lines storing variants information includ-
ing chromosome, position, information of each variant and alleles, respectively. There 
is several summary information of current object in part III, like the total number of 
haplotypes, individuals and variants. The part IV, V and VI includes haplotypes related 
information, like haplotype names in part IV, genotypes in part V, accession names and 
frequents in part VI. The difference between hapResult and hapSummary is that each 
row of part IV–VI represents single individual in hapResult; but represents a haplotype 
in hapSummary and the frequent column only exists in hapSummary.

Visualization of haplotype results and statistics

In visualization functions, we introduced algorithms for network construction, LD-
block calculation. And we personalized visualizing functions from pegas for haplotype 
network, from maps for geographic distribution, and from genetics for LD-block analy-
sis. With personalized functions users can easily visualize their haplotypes results and 
statistics without complex format conversion.

Fig. 2 The schematic diagram of hapResult and hapSummary. The hapResult and hapSummary could be 
divide into six parts. Part I was fixed and consists of “CHROM”, “POS”, “INFO” and “ALLELE”, indicates the contents 
type of each line in Part II. Part II contains four lines storing variants information. There is several summary 
information of current object in part III. The part IV, V and VI includes haplotypes related information, 
the haplotype names were included in part IV, genotypes were included in part V, accession names and 
frequents were included in part VI
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Haplotype visualization

Firstly, haplotype variants could be visualized as a table-liked figure by “plotHapT-
able()” function. The complementation of this function is based on the ggplot2 pack-
age. This function takes the haplotype result as input and generates an R object of 
ggplot class. Hence, theme of the visualization could be personalized with ggplot2 
package. For visualizing the relative variant positions we presented “displayVarOnGe-
neModel()” function which takes the annotation and haplotype result as inputs. With 
this function, users can easily display the variants and coordinates upon the gene 
schematic diagram.

Haplotype evolutionary ship

For illustrating relationships between haplotypes, “get_hapNet()” function was devel-
oped for haplotype network construction and “plot_hapNet()” function was devel-
oped for further visualization. In the haplotype network, each circle represents a 
haplotype and the size indicates individual number, and dots/short lines along the 
links represents variants between the haplotypes.

Haplotypes geographical distribution

Many traits are influenced by geographical location, due to differences of day length, 
rainfall, and altitude conditions. The “hapDistribution()” function was developed for 
demonstrating distribution of major haplotypes across global/region map. The “sym-
bol.size” was designed as circle size controller, and “show.label” controls exhibition 
of the accession number in each location (circle). Although there is no limitation of 
haplotype display in this function, for a better readability, we suggest no more than 4 
major haplotypes included in this analysis.

Identification of superior haplotype

To identify superior haplotype, “hapVsPheno()” and “hapVsPhenos()” function were 
developed for identification of phenotypic differences between haplotypes. The out-
liers (bigger than Q3 + 3*(Q3 – Q1) or less than Q1 – 3*(Q3 − Q1)) were removed 
before the calculation of significance by default. And the significances and p values 
were marked upon corresponded comparison. The rare haplotype with group mem-
ber less than 5 won’t be analyzed by default.

Linkage disequilibrium (LD) analysis

After identification and confirmation of main effect genomic variants contributing to 
target traits, DNA markers need to be developed for molecular assisted selection. The 
genomic variant itself is an ideal choice for marker development. Moreover, linked 
genomic variations could also be used for marker development. The linkage disequi-
librium analysis could be conducted by “plot_LDheatmap()” function and will be 
helpful for screening of closely linked variants.
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Results
Data preparation of a grain size regulating gene in rice

For demonstrating the usage of geneHapR, the genotype and phenotype data and 
annotation of a grain size regulating gene  OsGHD7 [20, 21]  were retrieved from 
Rice Variation Map [22] and Rice Functional Genomics and Breeding [23] and Rice 
Genome Annotation Project [24], respectively.  The R script used for haplotype iden-
tification and visualzation of OsGHD7 could be found in additional file 1.

Haplotype statistics and visualization of OsGHD7

Firstly, genotype (Additional file 2), annotation (Additional file 3), phenotype (Addi-
tional file 4), and accession information (Additional file 5) were imported by functions 
listed in Table 1. And then haplotype of OsGHD7 was identified using “table2hap()” 
function. In this step, accessions with heterozygotes or missing genotypes were elimi-
nated. Finally, in line with previous studies [21], a total of 499 accessions and 8 main 
haplotypes were remained after elimination of rare haplotypes and missing genotypes.

The nucleotide coordinates were determined according to chromosome position in 
most variants database and next-generation sequencing results. But, it’s more mean-
ingful if the coordinates of nucleotide initiated at the start codon (ATG) of target 
genes for further research. We then adjusted the coordinates of start codon to zero 
in haplotype results and annotation files by “hapSetATGas0()” and “gffSetATGas0()” 
function, respectively. The genotype of each haplotype was visualized using “plotHap-
Table()” function (Fig. 3A). Different nucleotide and Indels were assigned with differ-
ent color, and the haplotype frequency was plotted at right. Moreover, variant details 
could be displayed bellow the ALLELE line. And then the position and allelic types of 
OsGHD7 were visualized upon the gene schematic diagram (Fig.  3B) with “display-
VarOnGeneModel()” function. Each box represents an exon, and the flag with posi-
tion and genotype represents a variant.

The evolutionary relationship between haplotypes was visualized as a haplotype 
network (Fig. 3C). The variants between each closed haplotypes were marked as dots. 
Circle size represents the frequency of relevant haplotype and the pie angle repre-
sents proportion of corresponding group.

Global distributions of three main haplotypes in OsGHD7 were illustrated in Fig. 4, 
and H003 is mainly distributed across Asia. Grain width of accessions carrying H001 
and H002 were significantly lower and higher than others (Fig. 5), respectively. There-
fore, the H002 haplotype would be preferred for breeding selections.

Linkage disequilibrium statistics were also performed and visualized with hapRe-
sult directly without format conversion through “plot_LDheatmap()” function. In 
OsGHD7, the 3’ end variants were closely linked with each other compared with that 
of 5’ end variant (Fig. 6).
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Discussion
During last two decades, many programs have been developed for haplotype analysis 
[25]. However, the limitation of current accessible programs is the lack of visualiza-
tion and phenotypic effect results, which has restricted the application of superior 

Fig. 3 Visualization of haplotype classification, genomic variants and evolutionary network. A Haplotype 
classifications of OsGHD7, each line represent a haplotype and colored columns represents loci and 
frequency in the last column. B Visualization of variants position above gene model, the black line represents 
genome and rectangles represent exon. Flags represent variants and the coordinate with alleles in 
parenthesis were displayed above gene model. Two or more transcripts will be displayed in different colors. C 
Example of OsGHD7 haplotype network. Each circle represents a haplotype and the size indicates accession 
number. The pies in different color represent the ratio of category in each haplotype. The symbols on line 
between haplotypes represent number of variants
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haplotypes in breeding programs [26, 27]. Therefore, we tried to introduce geneHapR 
to facilitate further exploration of haplotypic variations.

Genotype data of target gene can be download from published variants database, or 
obtained from Sanger sequencing, or extract from variants calling results of next-gen-
eration sequencing project. And variants of thousands of individuals usually stored in 
large files. It’s a time-consuming work and challenge to extract variants with a Graphi-
cal User Interface program, such as: Excel, Notepad++ and EditPlus. The filterLarge*() 
functions in geneHapR provide a convenient way for researchers to efficiently extract 
variants from such large files on personal computer.

Fig. 4 Example of geo-distribution of major haplotypes of OsGHD7. Circle size represents accessions counts 
and the pies in different color represent constituent ratios of classified haplotype categories for relevant 
accessions derived from different eco-regions. The Arabic number in circles indicate accession numbers at 
each location

Fig. 5 Example of trait comparison between haplotypes. Grain thickness comparisons among accessions 
carrying different haplotypes of OsGHD7, * indicates: p < 0.05, ** indicates: p < 0.01, *** indicates: p < 0.001
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Publicly available database generated by genotyping microarrays and next-generation 
sequencing usually contain missing genotypes. Given that most individuals used in hap-
lotype analysis were genetically unrelated, thus the genotype imputation algorism was 
not included in geneHapR. Furthermore, missing genotype often emerge due to low 
DNA quality, or inadequate genotype calling algorithms [28]. And heterozygous effects 
of allelic variants are usually unclear. Therefore, to assure the reliability of statistic results 
of interested haplotypes for target genes, individuals harboring missing genotype or het-
erogeneous sites were removed by default.

There are much more programs that can be used for haplotype identification, such as: 
HaploView and DnaSP. But the format of result data needs to be converted for down-
stream analysis. For instance, DNA sequences must be aligned and trimmed before 
haplotype identification using DnaSP, and result must be exported as “Roehl Data 
File” for haplotype network visualization using NetWork. To avoid format conversion 
works which is fallible and intricate, geneHapR provides a one-station solution and an 
easy-to-use toolkit for variants extraction, haplotype identification, statistics, and visu-
alization. Comparison between geneHapR and other haplotype analysis software were 

Fig. 6 LD-block visualization of each site. The gene model was presented at top of the plot, the line 
represents genome and the rectangles represent exons. The oblique line bellows the gene model represent 
variants. The LD-block with colors key lie at the bottom

Table 4 Comparison between the geneHapR and other software

a “Yes” represents program supported this function
b “No” represents not supported
c Requires another software named Network

geneHapR CandiHap Haplo.stats HaploView pegas DnaSP

Variants table Yesa Yes Nob No No Yes

Variants track Yes Yes No No No No

LD-block Yes Yes No Yes No No

Haplotype network Yes Yes No No Yes Yesc

Geographical distribution Yes No No No No No

Phenotype comparison Yes Yes Yes No No No
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summarized in Table  4, which revealed more comprehensive functions supported by 
geneHapR. For example, users can easily demonstrate genotypic variants, evolutionary 
relationships and main haplotypes’ geographical distributions after haplotype identifica-
tion using geneHapR.

CandiHap is a recently released software that provides functions for haplotype iden-
tification, statistics, and visualization. Comparison between CandiHap and geneHapR 
was also conducted on the same platform of computer running windows 10 system 
with CPU Intel-i7-8700 (3.20 GHz) and 24 GB memory. In all comparisons, geneHapR 
shows a higher efficiency in haplotype identification process (Table 5). In geneHapR, the 
imported genotype data was converted into data.frame object, and haplotype identifi-
cation was then directly conducted. While CandiHap needs three steps of data format 
conversion and the second one needs much more time. This might lead to the cost of 
geneHapR being hundreds of times faster than CandiHap.

To clarify the accuracy of geneHapR, we recalculated the haplotypes of GHD7 with 
CandiHap. Accessions containing “DEL” were eliminated manually for compatibil-
ity. Finally, CandiHap identified seven haplotypes, harboring 202, 178, 73, 8, 6, 6 and 6 
individuals, respectively, which is consistent with geneHapR. Furthermore, we also per-
formed a comparison between geneHapR and DnaSP using genotype data of SiTOC1 
(Additional file 6), a functional gene controlling heading date in Setaria italica [29]. The 
haplotype result revealed by geneHapR is matchable with previously report [29] except 
the Indel size is one base pair longer and coordinates is one base pair smaller, due to the 
Indel identification algorithm is different in these two programs.

Conclusion
The geneHapR package provides an easy-to-use toolkit for haplotype identification, 
statistics, phenotype association and result visualization analysis towards specific func-
tional genes. The package has been submitted to CRAN and is available at: https:// 
CRAN.R- proje ct. org/ packa ge= geneH apR.
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