
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi 
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Baik et al. BMC Bioinformatics          (2023) 24:190  
https://doi.org/10.1186/s12859-023-05321-0

BMC Bioinformatics

Deep learning approach for early prediction 
of COVID-19 mortality using chest X-ray 
and electronic health records
Seung Min Baik1  , Kyung Sook Hong2   and Dong Jin Park3*   

Abstract 

Background: An artificial-intelligence (AI) model for predicting the prognosis or 
mortality of coronavirus disease 2019 (COVID-19) patients will allow efficient allocation 
of limited medical resources. We developed an early mortality prediction ensemble 
model for COVID-19 using AI models with initial chest X-ray and electronic health 
record (EHR) data.

Results: We used convolutional neural network (CNN) models (Inception-ResNet-V2 
and EfficientNet) for chest X-ray analysis and multilayer perceptron (MLP), Extreme 
Gradient Boosting (XGBoost), and random forest (RF) models for EHR data analysis. 
The Gradient-weighted Class Activation Mapping and Shapley Additive Explanations 
(SHAP) methods were used to determine the effects of these features on COVID-19. We 
developed an ensemble model (Area under the receiver operating characteristic curve 
of 0.8698) using a soft voting method with weight differences for CNN, XGBoost, MLP, 
and RF models. To resolve the data imbalance, we conducted F1-score optimization by 
adjusting the cutoff values to optimize the model performance (F1 score of 0.77).

Conclusions: Our study is meaningful in that we developed an early mortality predic-
tion model using only the initial chest X-ray and EHR data of COVID-19 patients. Early 
prediction of the clinical courses of patients is helpful for not only treatment but also 
bed management. Our results confirmed the performance improvement of the ensem-
ble model achieved by combining AI models. Through the SHAP method, laboratory 
tests that indicate the factors affecting COVID-19 mortality were discovered, highlight-
ing the importance of these tests in managing COVID-19 patients.

Keywords: COVID-19, Deep learning, Prediction model, Chest X-ray, Electronic health 
record

Background
Three years have passed since coronavirus disease 2019 (COVID-19) was discovered, 
but the spread of the virus has not ended globally [1]. The number of COVID-19 cases 
peaked in January 2022 and has been declining since then [2]. Although COVID-19 has 
a relatively low mortality rate [3], the number of infected people was so large at times 
that healthcare systems worldwide were in crisis owing to the large number of deaths.
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COVID-19 research using artificial intelligence (AI), including deep learning (DL) 
and machine learning (ML), which have been studied extensively in the medical field, 
has been actively conducted (Table 1) [4–10]. AI is a concept that includes ML and 
DL. DL—a field of ML—is based on artificial neural networks, which are ML algo-
rithms created by mimicking the principles and structures of human neural networks. 
DL models can be divided into deep neural networks (DNNs), convolutional neural 
networks (CNNs), and recurrent neural networks. DNNs are DL models that use mul-
tiple hidden layers and are useful for the analysis of high-dimensional data. Another 
DL class—the CNN—is used for the classification of image data, and there have been 
many studies on its usefulness [11, 12]. A CNN generates feature maps by applying 
convolution kernels to the input image. It proceeds with repeated convolution and 
pooling processes (feature extraction layer). Finally, the fully connected layer per-
forms classification using extracted features [13]. Chest X-rays are easy to access and 
are often used for COVID-19 patients. Compared with other types of images, they are 
easy to collect and have a large amount of data; therefore, they have been widely used 
for DL targeting COVID-19 patients. In a previous study, the performance of a DL 
model using image data as a tool for diagnosing COVID-19 was acceptable (Table 1) 
[9]. However, in most studies, researchers developed classification models using nor-
mal and COVID-19 chest X-rays (Table 1) [10, 14].

For COVID-19, prognosis and mortality prediction are as important as the diag-
nosis. In January 2022, when COVID-19 incidence was at its highest, the world was 
overwhelmed by a shortage of medical capacity, increasing the number of deaths [2]. 
AI models for predicting the prognosis or mortality of COVID-19 patients will enable 
the efficient allocation of limited medical resources. In addition, useful information 
can be provided to the medical staff during treatment.

The contributions of this study are as follows. (1) We developed a medical AI 
model that utilizes initial chest X-ray and laboratory test data for early prediction of 
COVID-19 mortality. (2) We confirmed the prediction performance improvement 
of the ensemble model achieved by combining multiple AI models. (3) We identified 
specific clinical markers in COVID-19 mortality prediction. (4) We performed chest 
X-ray lesion visualization for COVID-19 mortality prediction. (5) We demonstrated 
the possibility of using electronic health record (EHR) data in DL.

Table 1 Artificial intelligence (AI) research related to COVID-19

CT computed tomography

References Subject

Rahman et al. [4] Diagnosis of COVID-19 using cough and breath sounds

Villavicencio et al. [5] Early diagnosis of COVID-19 based on symptoms

Zhang et al. [6] Classification of mild and severe cases of COVID-19 based on multivariate blood 
testing

Mahdavi et al. [7] Prediction of COVID-19 mortality based on invasive and non-invasive clinical 
information

Yu et al. [8] Prediction of mechanical ventilation and mortality for COVID-19 patients

Mohammad-Rahimi et al. [9] Diagnosis of COVID-19 through X-ray and CT images

Bridge et al. [10] Classification of COVID-19 and non-COVID-19 patients using CT images
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Results
A total of 304 COVID-19 patients were enrolled in this study, excluding two patients 
who died within 24 h of admission. The enrolled patients were categorized into a non-
survival group (68 patients) and a survival group (236 patients). The mean age was 
75.4 ± 10.86  years for the non-survival group and 66.0 ± 16.57  years for the survival 
group (P < 0.05). The proportions of patients with comorbidities, such as hypertension 
(P < 0.05), diabetes mellitus (P < 0.05), and kidney disease (P < 0.05), were higher in the 
non-survival group than in the survival group. The differences in the laboratory results 
between the two groups are presented in Additional file 1: Table S1.

Performance of DL models using chest X‑rays

Among the models, the overall mortality prediction performance was the best for Effi-
cientNet B1, with an area under the receiver operating characteristic curve (AUROC) of 
0.7063, accuracy of 0.77, precision of 0.64, recall of 0.57, and F1 score of 0.57, followed 
by EfficientNet B2 (AUROC of 0.6769, accuracy of 0.78, precision of 0.65, recall of 0.55, 
F1 score of 0.55), and Inception-ResNet-V2 (AUROC of 0.6166, accuracy of 0.76, preci-
sion of 0.50, recall of 0.50, F1 score of 0.46). In this study, EfficientNet B1 and Efficient-
Net B2 achieved better results than Inception-ResNet. Details are presented in Table 2 
and Fig. 1.

Performance of DL (MLP) and ML models using EHR data

The results of the EHR comparisons between the survival and non-survival groups are 
presented in Additional file 1: Table S1.

Extreme Gradient Boosting (XGBoost) had the best mortality prediction perfor-
mance (AUROC of 0.8352, accuracy of 0.85, precision of 0.81, recall of 0.70, F1 score 
of 0.73), followed by MLP (AUROC of 0.8109, accuracy of 0.84, precision of 0.79, recall 
of 0.68, F1 score of 0.71) and RF (AUROC of 0.7980, accuracy of 0.84, precision of 0.82, 
recall of 0.66, F1 score of 0.70). The performance of MLP was as good as that of the tree 
series, indicating the usefulness of MLP for hospital structured data (EHR) analysis. The 

Table 2 Performance of each model, including the ensemble model

AUROC area under the receiver operating characteristic curve, EHR electronic health record, RF random forest, DL deep 
learning, MLP multi-layer perceptron
a Ensemble model: Ensemble of EfficientNet B1, XGBoost, RF and DL (MLP)
b Ensemble model was optimized by F1 score (cutoff-value adjustment)

Method AUROC Accuracy Precision Recall F1 score

Chest X-ray

 Inception-ResNet-V2 0.6166 0.76 0.50 0.50 0.46

 EfficientNet B2 0.6769 0.78 0.65 0.55 0.55

 EfficientNet B1 0.7063 0.77 0.64 0.57 0.57

EHR data

 XGBoost 0.8352 0.85 0.81 0.70 0.73

 RF 0.7980 0.84 0.82 0.66 0.70

 DL (MLP) 0.8109 0.84 0.79 0.68 0.71

 Ensemble  modela 0.8698 0.84 0.86 0.66 0.69

 Optimized ensemble  modelb 0.8698 0.86 0.81 0.74 0.77
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performance of the prediction model using EHR data was better than that of the model 
using chest X-rays (Table 2, Fig. 1).

Performance of ensemble model with DL (CNN, MLP) and ML (XGBoost, RF)

The performance of the ensemble model improved to 0.8698, with an accuracy of 0.84, a 
precision of 0.86, a recall of 0.66, and an F1 score of 0.69 (Table 2, Fig. 1A). The perfor-
mance was apparently improved because the CNN model using images helped analyze 
the area for the prediction that could not be sufficiently explained with structured data 
alone. Although the AUROC of XGBoost among the models using EHR data was 0.8352 
and that of EfficientNet B1 was approximately 0.7063 among the models using chest 
X-rays, the AUROC of our ensemble model was increased to 0.8698.

We performed F1-score optimization on the developed ensemble model because 
there was an imbalance between the numbers of surviving and non-surviving groups in 
the data. The F1 score is a classification metric that combines precision and recall. We 
performed F1-score optimization by adjusting the cutoff value to 0.35. As a result, the 
accuracy was increased from 0.84 to 0.86 and the F1 score was increased from 0.69 to 
0.77 (Table 2, Fig. 1B), while the AUROC remained the same. The performance of the 
ensemble model with F1-score optimization was the best among the models developed 
(Fig. 1B).

The optimized ensemble model achieved an AUROC of 0.8698, an accuracy of 0.86, 
a precision of 0.81, a recall of 0.74, and an F1 score of 0.77, which were significant 
improvements.

Analysis of feature impact of EHR data via SHAP methods

Although the DL model is unable to extract feature importance, we extracted the feature 
impact through the SHAP method for each model, including the DL model. We dem-
onstrated the application of DL and ML for classifying COVID-19 mortality using EHR 
data.

The SHAP method provides a means of assessing the contributions of features to mor-
tality. We employed it to obtain the feature impact of each ML (RF, XGBoost) and DL 

Fig. 1 A AUROC of each model, including the ensemble model. B Rador plot for the performance of each 
model, including the ensemble model
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(MLP) model using EHR data, as shown in Fig. 2A–C. Here, blue indicates a negative 
correlation with mortality, and red indicates a positive correlation with death. The SHAP 
results for the models were as follows. For the XGBoost model, age had the largest fea-
ture impact, followed by serum glucose,  O2 saturation,  PaCO2, total  CO2, and pH. For 
the RF model,  O2 saturation had the largest feature impact, followed by pH, age, base 
excess, serum glucose, and lymphocyte (%). For the DL (MLP) model, age had the largest 
feature impact, followed by total protein,  O2 saturation, red cell distribution width, fer-
ritin, D-dimer, and serum glucose levels.

Activation maps for survival and non‑survival groups

Figure 2D shows the activation maps for the survival and non-survival groups. Regions 
highlighted in red indicate coarse localization mapping of regions recognized as impor-
tant for COVID-19 mortality. There were visually significant differences between the 
Gradient weighted Class Activation Mapping (Grad-CAM) activation maps of the two 
groups. In the activation map of the non-surviving group, the highlighted part can be 
observed mainly in the lung than in the activation map of the survival group (Fig. 2D). 
Additionally, in the activation maps of the non-survival group, all regions of the lung 
(upper, middle, and lower lobes) were highlighted.

Discussion
Our study is meaningful in that we developed an early mortality prediction model using 
only the initial chest X-ray and EHR data of COVID-19 patients. Early prediction of the 
clinical courses of patients is helpful for not only treatment but also bed management. 
Furthermore, chest X-rays and laboratory tests are readily available for patients with 
severe COVID-19 who are difficult to transport for advanced tests such as computed 

Fig. 2 Shapley additive explanations (SHAP) method for feature impact and activation map visualization. A 
XGBoost, B Random forest, C Deep learning (Multilayer perceptron), D Activation map visualization for the 
survival and non-survival groups
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tomography. We developed an AI model using only chest X-rays and EHR data, which 
are routinely obtained for patients with severe COVID-19. We confirmed the perfor-
mance improvement of the ensemble model achieved by blending AI models using 
materials with various characteristics, such as chest X-ray and EHR data. Through SHAP 
methods, laboratory tests that affect COVID-19 mortality were discovered, highlight-
ing their importance in managing COVID-19 patients. All patients enrolled in our study 
had at least moderate severity of COVID-19, requiring a high-flow nasal cannula or 
advanced respiratory support, such as a mechanical ventilator. Accordingly, in the chest 
radiographs of both groups, significant lung lesions were observed in most cases. In 
mortality prediction, our CNN (EfficientNet B1) model using chest X-rays achieved an 
AUROC of 0.706. According to previous studies, the performance of the CNN model 
for diagnosing COVID-19 using normal chest X-rays and COVID-19 chest X-rays is 
relatively good [15, 16]. However, it is not easy to develop a mortality prediction model 
using a CNN for COVID-19 patients who have lung lesions in chest X-ray images [17, 
18]. Therefore, we utilized EHR data, which are widely used in hospitals, to improve the 
performance of the prediction model. EHR data are largely structured, e.g., comorbidi-
ties, laboratory tests, and vital signs, and numerical. In general, DL models such as MLP 
are known to achieve good results for Big Data [19]. In this study, we used 23,712 data-
sets and applied the MLP model. In addition, to improve the prediction performance, 
an ML model (XGBoost, RF) with good classification performance was used [20]. In 
our study using EHR data, MLP exhibited a smaller AUROC than XGBoost but a larger 
AUROC than RF. Thus, the use of MLP can be considered in the analysis of structured 
hospital data.

We developed a model with improved performance using an ensemble of various 
AI models. In the ensemble process, optimal results were obtained under the follow-
ing conditions: XGBoost, which achieved the highest AUROC, was assigned the largest 
weight; CNN (EfficientNet B1), which had the lowest AUROC, was assigned the second-
largest weight; and MLP and RF were both assigned the smallest weight. In general, it 
is necessary to select AI models with various characteristics that perform well, and by 
assigning larger weights to models with better performance, models with improved per-
formance can be developed. However, we obtained optimal results when we assigned 
large weights to the CNN model, which exhibited relatively poor performance. These 
results are presumed to be due to differences in the learning methods of the different 
AI models (CNN, MLP, ML) resulting from data with different characteristics (images 
and structured hospital data). Because most hospital data consist of images and EHR 
data (mostly structured data), similar to the data in our study, our ensemble technique is 
useful for developing a prediction model with good performance for respiratory diseases 
using hospital data.

An important point in the development of a mortality prediction model is that there is 
a data imbalance; i.e., there are less data for the non-survival group than for the survival 
group. Therefore, the F1 score is as important as the AUROC and accuracy for evaluat-
ing model performance. The F1 score is the harmonic mean of the precision and recall. 
In our data, there was a data imbalance between the two groups; thus, F1-score opti-
mization (cutoff-value adjustment) was performed to improve the performance of the 
ensemble model (Table 2, Fig. 1B). For the development of mortality prediction models 
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in the medical field, the F1-score optimization process performed in this study is worth 
considering.

Because the enrolled patients had moderate-to-severe disease, significant lesions were 
commonly observed on chest X-rays for both groups. Nevertheless, there was a clear 
difference in the activation map obtained using Grad-CAM between the two groups 
(Fig. 2D). Recently, several studies have been published on the application of Grad-CAM 
in various fields of medicine [21, 22]. Applying the activation map using Grad-CAM to 
COVID-19 patients is expected to help clinicians predict the patients’ hospital courses. 
In addition, we obtained information on the factors affecting COVID-19 mortality using 
SHAP methods, which have been recently introduced in the medical field [23, 24]. In the 
SHAP results of XGBoost, RF, and MLP, the  O2 saturation and serum glucose level were 
commonly ranked high. Studies on the strong association between the worse clinical 
outcome of COVID-19 and hypoxemia have been conducted [25]. One study indicated 
that the survival rate of COVID-19 patients increased when the  O2 saturation increased 
beyond 90.5% [26]. However, because COVID-19 is a respiratory disease, the impor-
tance of  O2 saturation may not be a unique finding. Meanwhile, it is an interesting result 
that the serum glucose level ranks high for all three models in the SHAP results. Sev-
eral studies on the association between the mortality of COVID-19 and diabetes mel-
litus have been reported. However, in our study, the serum glucose level alone exhibited 
importance. COVID-19 is easily transmitted by sepsis, and serum glucose levels must 
be maintained at an appropriate level in sepsis [27]. Therefore, the results of this study 
provide valuable evidence that the serum glucose level of COVID-19 patients should 
be properly maintained. Because the DL model is a black-box system, it is impossible 
to obtain information on the extent to which each parameter contributes to the perfor-
mance of the prediction model. However, it is possible to investigate the feature impact 
for MLP using the SHAP method. With the development of AI technology in the medi-
cal field, the Grad-CAM and SHAP methods will help clinicians to evaluate patients.

The main limitation of our study was that it was conducted at a single institution 
with a small number of patients. Therefore, external validation was not performed on 
the developed model. However, to compensate for this, k-fold cross-validation was per-
formed 10 times for chest X-ray images and 5 times for EHR data. We acknowledge that 
external validation is an important process in the development of AI models. In the 
future, we intend to collect data from multiple institutions for developing an improved 
prediction model.

Conclusions
We developed a COVID-19 mortality early prediction model using only chest X-rays and 
EHR data, which are the most accessible data in hospitals, in which multiple AI models 
are combined to improve the prediction performance. Our model can help clinicians 
predict the clinical outcomes of COVID-19 patients as early as possible.

Methods
Patients and data collection

The overall process of the study is shown in Fig. 3.
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This study included patients admitted to a tertiary hospital with a diagnosis of 
COVID-19 between September 2021 and May 2022. All participants required high-flow 
nasal cannula oxygen therapy or mechanical ventilation for respiratory assistance. All 
the patients underwent chest radiography and routine blood tests upon admission.

Because the objective of our study was to develop an early prediction model for mor-
tality for COVID-19 patients, all the chest X-rays were limited to data acquired on the 
day of admission, and they were exported in the Digital Imaging and Communications in 
Medicine (DICOM) format.

EHR data, such as sex, age, medical history, and laboratory findings, were collected. 
The collected parameters are presented in Additional file 1: Table S1. All the collected 
EHR data and chest X-rays were anonymized.

Data pre‑processing

We collected initial chest X-rays in the DICOM format and converted them into Joint 
Photographic Experts Group (JPEG) files of 512 × 512 pixels. The best results were 
obtained by running the model with a batch size of 16 and image size of 512 × 512 pixels. 
In the case of an image size of 768 × 768 pixels, when the batch size was 16, it was over-
loaded, and when the batch size was 8, the performance was lower than that when the 
image size was 512 × 512 pixels, because of overfitting. Thus, we used 512 × 512 pixel 
JPEG files for DL, and it was possible to reduce the time consumption compared with 
using the original file directly in the CNN DL process.

Augmentation was performed on the converted chest X-ray files to develop the DL 
model with improved performance. ImageDataGenerator was used for pre-processing 
in the TensorFlow framework. The augmentation data were used for model training, 
whereas data without augmentation were used for model validation.

We acquired 23,712 EHR datasets, and the missing value of 1859 (7.8%) was pre-pro-
cessed as the median value for the DL model. The EHR data used in this study consisted 

Fig. 3 Flowchart of the development of the early prediction model for COVID-19 mortality
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of 78 parameters, including sex and age, comorbidity, arterial blood gas analysis results, 
vital signs, and laboratory results of 61 tests (Additional file 1: Table S1). During the EHR 
data pre-processing step, the range of the parameters was standardized and scaled using 
the “scikit-learn” Python library.

DL (CNN) model development for chest X‑ray image analysis

In the case of image data (chest X-ray analysis), we utilized CNN models, including Effi-
cientNet B1, EfficientNet B2, and Inception-ResNet-V2. EfficientNet is an optimized 
model that was developed through multiple experiments and consists of reinforcement-
learning structures [28]. The EfficientNet and Inception-ResNet-v2 models exhibit 
excellent performance for image classification [29]. In DL model training, increasing 
the number of epochs improves the performance; however, if the number of epochs is 
excessive, the performance deteriorates owing to overfitting. Because optimization is 
performed at the best validation loss value, it was performed using the early stopping 
technique during training to prevent an excessive increase in the number of epochs. 
Finally, the number of epochs was set as 40, and early stopping (patience = 8) was used 
to stop learning if the validation loss did not improve during the 8 additional epochs. 
Because this study was conducted using initial chest X-rays of 304 patients, augmenta-
tion and k-fold validation were used to improve the model performance. K-fold cross-
validation has a significant advantage in that all data can be utilized. In this study, image 
pre-processing was performed using the ImageDataGenerator library to learn image 
data in TensorFlow framework, and the validation loss and F1 score were used as evalu-
ation indices. Image data classification was performed using the Inception-ResNet-V2, 
EfficientNet B1, and EfficientNet B2 models, and the number of epochs was set as 40. 
The evaluation index for the CNN model was the validation loss, and the early stop-
ping technique was used. The validation loss, which was the evaluation index for the 
developed model, decreased as the number of epochs increased and was optimized for 
the epoch with the smallest validation loss. If the number of epochs increases, even if 
the first smallest validation loss occurs, the early stopping technique uses the option of 
patience to execute additional epochs, and if a lower validation loss occurs, training is 
continued. In this study, the patience of 8 was used, and among the three CNN models, 
EfficientNet B1 achieved the best AUROC.

Development of DL (MLP) and ML models for EHR data analysis

In the case of EHR data, we selected DL models such as MLP and ML models such as 
XGBoost and RF. MLP is a class of DNN that consists of at least three layers: the input, 
hidden, and output layers [30]. Because the EHR data mainly comprise quantitative 
results, MLP was used. Tree-based ML, such as XGBoost and RF, exhibits excellent clas-
sification performance [31]. ML and DL analyses were performed using 23,712 datasets. 
K-fold cross-validation (n_split:5) was applied to all the datasets to prevent data loss. 
We performed DL (MLP) in addition to ML for classification using EHR data with a data 
imbalance. With regard to MLP, the best performance was achieved when one hidden 
layer of MLP was used. When two or more hidden layers were stacked, the performance 
was poor because of overfitting.
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Ensemble model development for performance improvement

The ensemble technique combines two or more related but different analytical mod-
els, and the results are blended into an ensemble spread to improve the prediction 
performance [32, 33]. We developed an ensemble model by combining the Efficient-
Net B1 model using chest X-rays with XGBoost, MLP, and RF using EHR data. Ensem-
ble techniques can be divided into three main types: hard voting, soft voting, and 
weighted voting [34, 35]. In this study, the models were assembled using the blending 
technique of weighted voting. The models selected for the ensemble were Efficient-
Net B1, which exhibited the best performance among the CNN models, and MLP, 
XGBoost, and RF for EHR data analysis. Using these four models, we developed an 
ensemble model by assigning weights (0.3 for EfficientNet B1, 0.4 for XGBoost, and 
0.15 for MLP and RF). Therefore, we used the ensemble technique with DL (CNN) of 
chest X-rays and DL (MLP) and ML (XGBoost and RF) of EHR data to improve the 
COVID-19 mortality prediction performance.

F1‑score optimization of ensemble model

The performance of the models was evaluated according to the AUROC, accuracy, 
precision, recall, and F1 score. The F1 score is the harmonic average of the precision 
and recall. In the analysis with data imbalance, both the accuracy and the F1 score 
were used to evaluate the classification performance. We optimized the F1 score with 
a cutoff adjustment (0.35) to develop a model that could predict both classes in a bal-
anced manner.

Stratified k‑fold cross‑validation

We performed k-fold validation using both chest X-rays and EHR data. The cross-
validation method used in the sensitivity analysis of k-fold cross-validation in predic-
tion error estimation was used to generate more general models for more realistic 
profiles [36–38]. In the CNN models (EfficientNet B1, EfficientNet B2, and Inception-
ResNet-V2) for chest X-ray analysis, the following k-fold validation (n_split:10) was 
performed to maximize the image data utilization and avoid data loss: training with 
90% data, validation with 10% data, and repeating this process 10 times. For the EHR 
data analysis, k-fold validation (n_split:5) was performed to avoid data loss.

Activation map visualization for chest X‑ray and SHAP method for EHR data

We implemented the Grad-CAM technique in a pipeline for the visual explanation of 
chest X-rays for COVID-19 mortality prediction. The Grad-CAM technique utilized 
for the visual explanation of CNN-based models creates a coarse localization map 
that highlights important areas of the image [39].

In addition, EHR data analysis using the Shapley Additive Explanations (SHAP) 
method was performed used to evaluate the impact of the features on COVID-19 
mortality. The “Shapley” value is a concept in game theory that indicates the contribu-
tions of different features to a particular outcome. SHAP values were obtained using 
Deep Learning Important Features (DeepLIFT) by propagating activation differences 
[40]. DeepLIFT for the SHAP value of DL (MLP) is a method for decomposing the 
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output prediction of a neural network for a specific input by backpropagating all fea-
tures to extract the contribution of all neurons in the network. We used the SHAP 
method to investigate the features that contributed to COVID-19 mortality in our 
EHR data for ML (RF, XGBoost) and DL (MLP).
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