
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Zheng and Shang ﻿BMC Bioinformatics (2023) 24:213
https://doi.org/10.1186/s12859-023-05324-x

BMC Bioinformatics

SVcnn: an accurate deep learning‑based
method for detecting structural variation based
on long‑read data
Yan Zheng1* and Xuequn Shang1* 

Abstract 

Background:  Structural variations (SVs) refer to variations in an organism’s chromo-
some structure that exceed a length of 50 base pairs. They play a significant role in
genetic diseases and evolutionary mechanisms. While long-read sequencing technol-
ogy has led to the development of numerous SV caller methods, their performance
results have been suboptimal. Researchers have observed that current SV callers often
miss true SVs and generate many false SVs, especially in repetitive regions and areas
with multi-allelic SVs. These errors are due to the messy alignments of long-read data,
which are affected by their high error rate. Therefore, there is a need for a more accu-
rate SV caller method.

Result:  We propose a new method-SVcnn, a more accurate deep learning-based
method for detecting SVs by using long-read sequencing data. We run SVcnn and
other SV callers in three real datasets and find that SVcnn improves the F1-score by
2–8% compared with the second-best method when the read depth is greater than
5×. More importantly, SVcnn has better performance for detecting multi-allelic SVs.

Conclusions:  SVcnn is an accurate deep learning-based method to detect SVs. The
program is available at https://​github.​com/​nwpuz​hengy​an/​SVcnn.

Keywords:  Long-read sequencing data, Structural variations, SV caller, Deep learning

Background
Structural Variations (SVs) [1] refer to large-scale mutations (with length ≥ 50 base
pairs) in a genome, which mainly includes deletions, insertions, inversions, transloca-
tions, and complex forms of multiple events. Although SVs are less frequent than SNPs
and small indels, recent research has shown that they play an important role in many
genetic diseases, such as cancer, autism, and Alzheimer’s disease [2–4]. Additionally, SVs
have a significant impact on evolution [5, 6], gene expressions [7], and phenotype [8, 9].
Furthermore, SVs also play an essential role in plants regarding direct phenotype [10].

Over past decades, the problem of calling SVs in the whole genome has been well
studied. Initial studies prioritized SV detection from short reads (100–150 bp). Vari-
ous methods are developed, such as Delly [11], Lumpy [12], Pindel [13], Manta [14],

*Correspondence:
yan.zheng@nwpu-bioinformatics.
com; shang@nwpu.edu.cn

1 School of Computer Science,
Northwestern Polytechnical
University, West Youyi Road 127,
Xi’an 710072, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05324-x&domain=pdf
https://github.com/nwpuzhengyan/SVcnn

Page 2 of 19Zheng and Shang ﻿BMC Bioinformatics (2023) 24:213

Gustaf [15] and SurVIndel [16]. However, these approaches were limited by the short-
read length resulting in suboptimal sensitivity. With the development of long-read
sequencing technologies (such as PacBio [17] and ONT [18]), it has become feasible to
detect SV with high sensitivity since the longer read length enables more accurate align-
ment of reads to the reference genome. Consequently, several new SV callers based on
long-read data have been developed recently, including DeBreak [19], cuteSV [20], Snif-
fles [21], NanoSV [22], picky [23], SVIM [24], PBHoney [25] and SVision [26].

Although current long-read SV callers have made great strides, they still have some
issues that can be further optimized. One issue is that an SV in highly repetitive regions
may be divided into multiple smaller SVs due to incorrect alignments. As a result, many
false SVs may be generated in repeat regions, causing most current long-read SV callers
to miss the true SVs. This problem is particularly common to most long-read SV call-
ers, especially on ONT data, which has a higher error rate (approximately 5–15%) than
Pacbio data [27].

Besides the issue mentioned above, existing methods struggle with resolving multi-
allelic SVs. Since humans have a diploid genome, reads from homologous chromosomes
will be mapped to the same position when aligned to a reference genome. Consequently,
different SVs may exist in this position, which is referred to as multi-allelic SVs. How-
ever, existing methods often only detect one of the SVs present in these cases.

In addition to the two issues mentioned above, we have discovered another issue with
existing SV callers - the output result contains numerous false SVs. Related studies have
shown that each human has about 20,000 structural variations on average [28]. However,
most current SV callers output over 29,000 SVs. This means that even if an individual
has around 20,000 SVs, the existing SV callers would still output several thousand false
SVs. To address this issue, we consider using deep learning to filter out these false SVs.
Over the past few years, there has been a significant increase in the amount of research
focused on deep learning, and many researchers have employed it in SV studies. The
main methods include DeepSVFilter [29], DeepCNV [30], DeepSV [31], CNV-espresso
[32], and Cue [33], etc. Therefore, we are evaluating the potential of deep learning in
eliminating false SVs to enhance the precision of detection results.

Based on our observations, we have developed a novel SV caller method called SVcnn.
This method accurately detects DELs, INSs, DUPs, and INVs. SVcnn is a convolutional
neural network (CNN) based method consisting of three parts. The first part identi-
fies candidate SV regions from the bam file. The second part converts the candidate SV
regions into images and builds the LetNet model. The third part filters false SVs through
the LetNet model and outputs the final SVs. We tested SVcnn and other callers on three
real datasets (CHM13, HG002, HG00733) and found that SVcnn outperforms current
methods with an improved F1-score of 2–8% when the read depth is greater than 5×.
Furthermore, SVcnn can identify more multi-allelic SVs with fewer false SVs.

Results
SVcnn has better performance than traditional methods in new benchmark

We downloaded the ONT long-read data (CHM13, HG002, and HG00733), aligned
them into reference hg38, and got bam files (The Additional file 1: Table S1 con-
tains the long-read data and reference link, while Sect. “Data sources and program

Page 3 of 19Zheng and Shang ﻿BMC Bioinformatics (2023) 24:213 	

commands” contains the Linux commands). Subsequently, we ran SVcnn, DeBreak
(newest version), cuteSV (version=2.0.2), Sniffles2 (version=2.0), and NanoSV (new-
est version) on the bam files to obtain results. Additional file 1: Sect. 2 shows the
detailed numbers of deletions and insertions identified by different methods and in
the benchmark. To evaluate the performance of various SV callers, we also utilized
the Generating benchmark method to generate new benchmarks (Additional file 1:
Sect. 3). The method for verifying if an SV caller output an SV in the benchmark is
available in Additional file 1: Sect. 7. The reason why we didn’t show the INV and
DUP result is that we can not find a high-confidence INV and DUP benchmark at pre-
sent. There is also no perfect INV and DUP caller method. Hence, we only showed the
results of DEL and INS.

Figure 1 shows the recall, precision, and F1-score of SVcnn, DeBreak, cuteSV, Snif-
fles, and NanoSV in CHM13, HG002, and HG00733. Additional file 1: Sect. 2 shows
the detailed data. The figure indicates that SVcnn achieved the highest F1 score in
all datasets. Moreover, the recall and precision values of SVcnn are almost identical
to those of the best-performing methods. Among other callers, DeBreak is the new-
est and the second-best SV caller. The comparison between the SVcnn result and the

Fig. 1  The figure shows the recall, precision, and F1-score of different SV callers using three ONT datasets
for HG002, CHM13 and HG00733. a The recall of DELs in three datasets. b The recall of INSs in three datasets.
c The precision of DELs in three datasets. d The precision of INSs in three datasets. e The F1-score of DELs in
three datasets. f The F1-score of INSs in three datasets. From the histogram, we can clearly see that SVcnn
achieved the best results in F1-score

Page 4 of 19Zheng and Shang ﻿BMC Bioinformatics (2023) 24:213

DeBreak result revealed that the average improvement in the F1-score of SVcnn was
about 4%. Therefore, we can conclude that SVcnn outperforms other methods.

In addition, we are interested in evaluating the performance of different SV callers in
detecting SVs of various lengths. In CHM13, the SVs detected by the different meth-
ods were divided into six intervals based on length: < 500 , 500− 1k , 1k − 2k,2k − 5k ,
5k − 10k , and > 10k . Figure 2 displays the F1-scores of the different SV calling methods
across the different SV length intervals. The results show that SVcnn performs best when
the SV length is less than 500 bp. And when the SV length is less than 10k bp, SVcnn
performs better than most other methods on DEL and outperforms all the methods on
INS. Based on different SV callers’ results, the majority of the DELs and INSs (approxi-
mately 85–90% and 78–88% respectively) have lengths less than 500 bp, and less than 1%
of the SVs have lengths greater than 10k bp. Therefore, while SVcnn may perform poorly
on SVs with lengths greater than 10k bp, it outperforms the other SV calling methods in
the whole benchmark. Additionally, compared to other methods, SVcnn produces fewer
false SVs with lengths less than 500bp (the second-best method, Debreak, exhibits simi-
lar performance). Taken together, these results explain why SVcnn and DeBreak have
better precision compared to the other SV callers. Similar trends are also observed in the
HG002 and HG00733 datasets.

CNN model can improve detection performance

This section aims to show why the LetNet model can improve detection performance.
To achieve this, we conducted an ablation study to evaluate the effectiveness of using the
LetNet model in filtering false SVs. Firstly, we developed an SV detection program called
SVnocnn, which excluded the conversion of SV regions into images and did not undergo
filtration by our trained LetNet model. Subsequently, we obtained the SV results of
SVnocnn on the HG002, CHM13, and HG00733 datasets. Finally, we compared these
results to our benchmark, and based on the F1-scores, we were able to determine the
impact of using the LetNet model in improving SV detection performance.

According to Table 1, we have found that SVcnn’s F1-scores are superior to SVnocnn’s
F1-scores across all datasets. Furthermore, regardless of the SV type, filtering the results
using the LetNet model improves the performance by 1–2%. Therefore, we can conclude
that using the LetNet model for filtering SV is an effective strategy. Additionally, our
method outperforms traditional SV callers even without the Letnet model. Conversely,

Fig. 2  The figure shows the f1-score of different SV callers for SVs with different lengths. The histogram
indicates that SVcnn has the highest f1-score when SVs are less than 500 bp. However, it performs poorly
when SVs exceed 10k bp

Page 5 of 19Zheng and Shang ﻿BMC Bioinformatics (2023) 24:213 	

we infer that SVcnn outperforms traditional methods combined with deep learning fil-
tering strategies. To prove this point, we compared SVcnn with deep learning-based
method: SVision. The result are shown in Fig. 3.

SVcnn has better performance than traditional methods in GIAB benchmark

We downloaded the HG002 ONT long-read data, aligned it into reference hg19, and
obtained the bam file. Then we ran SVcnn, DeBreak, cuteSV, Sniffles2, and NanoSV in
the bam file and got different results. Finally, we compared the results of the different
methods with the benchmark (HG002_SVs_Tier1_v0.6) of HG002 on hg19 downloaded
from the GIAB website. The F1-score for each of the four methods is displayed in Fig. 4.

From Fig. 4, we can still conclude that SVcnn has the best performance. SVcnn’s result
has at least a 3% improvement over DeBreak’s. Additionally, we can see that the F1-score

obtained by using the GAIB benchmark is lower compared to the F1-score in the previ-
ous section. The reason for this is that the GAIB benchmark only provides 12,742 high-
confidence SVs, while the four methods all output at least 23,000 SVs. Therefore, the
precision of all SV callers on this benchmark will be very low. However, many SVs that
are not included in the GIAB benchmark are true SVs as related studies have shown that
each human has about 20,000 structural variants on average [28]. Hence, we propose a
method to generate a new benchmark. Compared with the GIAB benchmark, our new
benchmark is not only more complete (contains thousands more SVs) but also contains
almost all the SVs in the GIAB benchmark (see Additional file 1: Sect. 4). Therefore, we
believe the results shown in Fig. 1 are more meaningful.

SVcnn has better performance than traditional methods under different read depths

In order to study the influence of sequencing depth, we randomly subsampled long reads
from the HG002 ONT dataset at different depths: 30×, 20×, 10×, and 5×. These reads
were aligned to the reference genome hg38 and produced several new BAM files. We
ran five methods (SVcnn, DeBreak, cuteSV, Sniffles2, and NanoSV) on these new BAM
files and evaluated their performance under different read depths. Figure 5 shows the
F1-scores of these methods under different sequencing depths. From the results, it is
evident that SVcnn has the highest F1-score compared to other methods when the read
depth is greater than 5×. More importantly, SVcnn’s F1-score remains above 0.8 even
when the sequencing depth reduces to 10×. However, Sniffles2 performs best when the

Table 1  The F1-score of SVcnn and SVnocnn

SVcnn SVnocnn

HG002_del 0.83 0.82

HG002_ins 0.85 0.84

CHM13_del 0.85 0.84

CHM13_ins 0.89 0.88

HG00733_del 0.79 0.77

HG00733_ins 0.79 0.78

Page 6 of 19Zheng and Shang ﻿BMC Bioinformatics (2023) 24:213

read depth is 5×, and SVcnn is still the second-best method in such conditions. Moreo-
ver, the results show that the performances of Sniffles2 and NanoSV are least affected by
sequencing depths, while cuteSV’s performance is most influenced by read depth.

SVcnn has better performance for multi‑allelic SVs

To test the performance of different methods for multi-allelic structural variations (SVs),
we selected 243 pairs of multi-allelic deletions (DELs) (486 DELs in total) and 584 pairs
of multi-allelic insertions (INSs) (1168 INSs in total) from the HG002 benchmark data-
set. HG002 is a heterozygous genome, and these multi-allelic SVs (<1000bp) not only

Fig. 3  The F1-scores of SVcnn and SVision for calling a DELs and b INSs in HG002, CHM13, and HG00733.
The main reason for the poor performance of SVision is that SVision outputs too many SVs (about 50,000), far
exceeding the expected number (about 22,000) of SVs

Fig. 4  The figure shows the F1-score of different SV callers using the GIAB benchmark (HG002_SVs_Tier1_
v0.6). From the histogram, we can see that SVcnn still has the best F1-score

Fig. 5  The F1-scores of SVcnn and other SV callers for calling a DELs and b INSs in HG002 under different
sequencing depths. From the histograms, we can see that SVcnn has the best performance when the
sequencing depth is greater than 5×. When sequencing depth is 5×, SVcnn is still the second-best method

Page 7 of 19Zheng and Shang ﻿BMC Bioinformatics (2023) 24:213 	

share the same type but also have a length difference of less than 20%. We then com-
pared the results of different SV callers with these multi-allelic SVs. Table 2 presents
the comparison results. The table shows that SVcnn can detect the most multi-allelic
SVs (93.4% DELs and 89.6% INSs). The second-best method, DeBreak, can only identify
74.6% of multi-allelic DELs and 73.1% of multi-allelic INSs. This suggests that most cur-
rent SV callers can only output one SV for a pair of multi-allelic SVs.

Next, we checked the multi-allelic SVs in CHM13. As most regions of CHM13 are
homozygous, we considered it to be a homozygous genome. Therefore, there should
not be any multi-allelic SVs in CHM13. If SV callers output multi-allelic SVs in CHM13,
those SVs must be false positives. We counted the number of multi-allelic SVs identified
by different methods in CHM13, and the results are shown in Table 3. From Table 3, it is
evident that SVcnn had the fewest multi-allelic SVs, which also implies that it produced
the fewest false positives. DeBreak was the second-best method, with only 766 multi-
allelic DELs and 1207 multi-allelic INSs. However, NanoSV had the worst result, as it
generated a large number of multi-allelic SVs (false positives). This is also the reason for
the low precision value of NanoSV.

SVcnn has better performance than methods based on deep learning

In addition to the traditional SV detection methods mentioned above, we also compared
SVcnn with deep learning-based methods. We applied the latest version of SVision to
the bam files of HG002, CHM13, and HG00733 to obtain results. Then we choose a
more meaningful new benchmark to evaluate the performance of SVision. Figure 3 illus-
trates the F1-scores of SVcnn and SVision in CHM13, HG002, and HG00733.

Based on Fig. 3, we observed that SVcnn has significantly better performance than
SVision. There are two primary factors that account for this difference. Firstly, SVision
outputs an excessive number of SVs, particularly INS (averaging over 30,000), which is
higher than the expected number in an individual. Related research has shown that the
total SVs in an individual are only about 22,000. Secondly, SVision’s main purpose is to
detect complex SVs, hence its capability in detecting simple SVs is limited.

The running time of different methods

We evaluated the speed performance of several SV callers: SVcnn, vapor, cuteSV, Snif-
fles2, and DeBreak, on the HG002 ONT dataset with a sequencing depth of 50×. The

Table 2  The number of multi-allelic SVs detected by different methods for 243 pairs of multi-allelic
DELs and 584 pairs of multi-allelic INSs

SVcnn cuteSV Sniffles2 DeBreak NanoSV

486 DELs 454 316 357 363 323

1168 INSs 1047 795 750 854 853

Table 3  The number of multi-allelic SVs detected by different methods for CHM13

SVcnn cuteSV Sniffles2 DeBreak NanoSV

DELs 122 965 1732 766 8651

INSs 227 1525 2075 1207 17,909

Page 8 of 19Zheng and Shang ﻿BMC Bioinformatics (2023) 24:213

experiments were conducted on the same Linux server with a memory capacity of 1.4T.
We recorded the running time of each SV caller and provided their respective running
commands in the Additional file 1: Sect. 1.4. The detailed data are presented in Table 4.

Based on Table 4, we have observed that SVcnn’s processing speed is slow, with its
performance being only better than NanoSV. This can be attributed to the fact that a sig-
nificant amount of time is spent converting SV-containing regions into images. On the
other hand, cuteSV has the fastest processing speed due to being a C language program.

Discussion
From the results section, we can conclude that our method SVcnn outperforms exist-
ing traditional methods, including DeBreak, cuteSV, Sniffles2, and others. In addition,
we conducted an ablation experiment in the Results section to demonstrate the effec-
tiveness of deep learning. The experimental results showed that the deep learning fil-
tering strategy only improved the results by 1–2%, while SVCNN’s improvement was
2–8%. This indicates that even without the deep learning filtering strategy, our method
still outperforms traditional methods. Conversely, we infer that SVcnn outperforms tra-
ditional methods combined with deep learning filtering strategies.

In addition to traditional methods, there are also some SV callers that use deep learn-
ing to detect SV or explore the internal structure of SV, such as SVision [26]. We also ran
SVision and compared its results with SVcnn, and found that SVcnn still outperformed
SVision. The main purpose of SVision is to explore the internal structure of complex
SVs, so its performance is not as good as SVcnn in the overall benchmark. Therefore, we
can conclude that SVcnn is more accurate than existing SV callers.

Conclusions
In past research, numerous long-read based SV calling methods have been developed.
Generally, long-read based SV callers outperform short-read ones as the former has a
more reliable alignment. However, we have observed that current SV callers face certain
challenges while dealing with SVs in repeat regions and multi-allelic SVs. Therefore, we
propose a new method, called SVcnn, which uses long-read data to detect SVs. The inno-
vation of this method lies in the use of a LetNet model for filtering SVs. Compared to
existing methods, SVcnn offers the following advantages:

1	 SVcnn has the best F1-score for all datasets.
2	 SVcnn can filter more false SVs.
3	 SVcnn still has good performance when the sequencing depth is low.
4	 SVcnn has better performance for multi-allelic SVs.

Table 4  The run time of different methods

SVcnn cuteSV Sniffles2 DeBreak NanoSV

Time 15 h 42 m 16 m 20 m 48 m 5 d 40 m

Page 9 of 19Zheng and Shang ﻿BMC Bioinformatics (2023) 24:213 	

There are still some limitations to SVcnn. For complex SVs (where two different types
of SVs are adjacent), SVcnn still does not perform well. Additionally, for BNDs (a single
type of SV), SVcnn is still unable to detect them. Furthermore, the speed of SVcnn is
slow because it needs to convert the regions where the SVs are located into images. In
the future, we intend to further study the detection of BNDs and complex SVs, as well as
optimize the speed of SVcnn.

Methods
Details of other SV callers and testing data

Almost all SV callers are developed based on short-read or long-read data. In the pre-
vious section, we stated that SV callers based on long-read data have higher sensitiv-
ity than those based on short-read data. Therefore, our method is also developed based
on long-read data. The two most popular long-read technologies are PacBio and Oxford
Nanopore (ONT). Compared to PacBio data, the reads in ONT data have a higher error
rate. Therefore, it is more challenging to detect SVs on ONT data. Hence, we chose to
test our performance on ONT data in this paper.

There are so many long-read SV callers, and testing them individually was impracti-
cal. Therefore, we selected four traditional methods from many long-read SV callers:
NanoSV [22], Sniffles2 [34],cuteSV [20] and DeBreak [19]. These four methods are
selected for their high accuracy in detecting SVs. NanoSV [22] is the only method that
targets ONT data to call SVs. Sniffles2 [34] is the second version of the most popular SV
caller. CuteSV [20] is the method that has been shown to have the highest recall value.
DeBreak [19] is the newest method, which was published in Nature Communications. In
addition to the traditional search methods, we select an SV caller based on deep learn-
ing: SVision [26]. SVision is a method published in Nature Methods in 2022, which uses
a deep learning model to explore the internal structure of complex SVs.

To test the performance of SV callers, we downloaded the HG002 benchmark
(HG002_SVs_Tier1_v0.6) from GIAB, which is available at https://​ftp-​trace.​ncbi.​nlm.​
nih.​gov/​giab/​ftp/​data/​Ashke​nazim​Trio/​analy​sis/​NIST_​SVs_​Integ​ration_​v0.6/​HG002_​
SVs_​Tier1_​v0.6.​vcf.​gz. This benchmark is widely accepted by researchers in related fields
as the most reliable benchmark. We selected only the pass-type SVs, which have very
high confidence, resulting in a total of 5463 DELs and 7279 INSs. These 12,742 SVs have
very high quality, and their SV lengths and breakpoints are correct. Therefore, we con-
sider these SVs to be 100% accurate. We aligned the long-read sequencing data to the
GRCh37 reference genome and applied SVcnn and other methods in the alignment file.
Finally, we compared the results obtained from different methods.

Except for this benchmark, finding such a high-quality benchmark in other datasets is
hard. Additionally, although this benchmark (HG002_SVs_Tier1_v0.6) is of high qual-
ity, it is not comprehensive. Related studies have shown that each human individual has
an average of 20,000 structural variants [28], while this benchmark only includes 12,742
SVs. This means that the benchmark is likely to miss thousands of true SVs. Besides this,
using just one benchmark to test performance may not be sufficient.

To resolve this problem, we utilized results from different methods on HiFi reads
[35] and genome assemblies of the sample (just like HG002) to further enhance the

https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz

Page 10 of 19Zheng and Shang ﻿BMC Bioinformatics (2023) 24:213

benchmarks. HiFi reads are generated using circular consensus sequencing (CCS) mode
on PacBio long-read systems, with an impressively low error rate of only about 0.1%.
This data can be used to obtain a much-improved benchmark. The detailed steps to cre-
ate this new benchmark are outlined in Additional file 1: Sect. 3.

Finally, we selected three sample genomes (CHM13, HG002, and HG00733) and
downloaded their genome assemblies to create a new benchmark. The download links
for these sample genome assemblies are provided in Additional file 1: Table S2. These
three new benchmarks were used along with HG002_SVs_Tier1_v0.6 to test the per-
formance of different SV callers.

Overview of SVcnn

According to our observations, we have found that the current methods perform
poorly in detecting multi-allelic SVs and SVs in repeat regions. Therefore, we propose
a new method called SVcnn to detect SVs accurately throughout the whole genome.
Utilizing long-read sequencing data, SVcnn is an accurate SV caller based on deep-
learning models. Compared with existing SV callers, SVcnn can overcome some chal-
lenges that are not solvable by other methods. For example, SVcnn uses hierarchical
clustering to identify if a region contains multi-allelic SVs. Moreover, SVcnn utilizes
the LetNet model to distinguish whether an SV is a true SV or not. Hence, SVcnn out-
performs other SV callers in terms of its precision and accuracy.

The input of SVcnn consists of (i) a sorted long read bam file and (ii) a reference
file. SVcnn mainly consists of three main steps: (1) Detecting candidate SVs, (2)

Fig. 6  The overview of SVcnn. There are three main steps in SVcnn. (1) Detecting candidate SV regions, (2)
Converting regions to images and building model, (3) Filtrating and outputting SVs

Page 11 of 19Zheng and Shang ﻿BMC Bioinformatics (2023) 24:213 	

Converting to image and building model, (3) Filtering and outputting SVs. Figure 6
illustrates the steps involved in SVcnn, while the detailed steps are explained in the
following sections.

Detecting candidate SV regions

The first step of SVcnn is to detect candidate SV regions (regions where SVs may exist).
Before running the method, we need to download the long-read sequencing data and
the reference genome. Next, we should align the long reads into the reference genome
using current aligner methods and obtain the SAM file. Finally, we should convert the
SAM file into a sorted BAM file using samtools [36]. The sorted BAM file and reference
genome will be processed as input data by SVcnn.

Estimating the parameters

Before detecting the SVs, we process the bam file and estimate the parameters. We ran-
domly select 1000 nodes from the reference and calculate the average coverage of these
nodes using the following formula:

In the genome, there are some regions that have very high coverage, sometimes dozens
of times higher than the average coverage. This indicates that reads from other regions
align to this region, and the similarity between these regions is very high. For these
regions, it becomes difficult to determine which reads belong to which specific region.
Additionally, when we convert SVs into images, analyzing these regions would take up
a lot of time. Therefore, we have decided to discard these high-coverage regions. If a
region has a coverage exceeding five times the average, we will filter out the SVs in that
region.

Identifying candidate SV regions

From the aforementioned steps, we obtained a sorted BAM file using aligner methods
such as minimap2 [37] and NGMLR [21], and samtools. SVcnn scans the entire sorted
BAM file to extract all candidate SV regions. A region may contain two different SVs
due to the existence of multi-allelic SVs. Therefore, we first identify the regions where
SVs may exist before identifying the exact SVs. Two main methods can be used to detect
candidate SV regions. The first method involves detecting candidate SV regions by
checking the CIGAR string, while the second method uses split reads (as shown in step
1 of Fig. 6). Please note that duplications cannot be directly identified from the bam file.
Duplications can be considered a special type of insertion, which shares the same fea-
tures as an insertion in the bam file. Therefore, we first identify all insertions and then
compare their insertion sequences with the reference to determine whether the SV is an
insertion or duplication.

average_coveragebamfile =
1

1000

1000

i=1

coveragei

Page 12 of 19Zheng and Shang ﻿BMC Bioinformatics (2023) 24:213

1.	 Detect candidate SV by CIGAR strings. To detect candidate SVs using CIGAR
strings, we scan the sorted BAM file and check the alignments one by one. To reduce
false positives in the results, we only retain alignments with a MAPQ greater than 20
(by default). For each retained alignment, we examine the CIGAR string and record
all insertions (I) and deletions (D) longer than 30bp as candidate SVs.

2.	 Detect candidate SV by split read. For large structural variants (SVs), it can be chal-
lenging to identify SV signatures directly from the cigar string. This is because reads
near these large SVs tend to split into multiple alignments, generating split reads
(similar to the middle part of step 1 shown in Fig. 6). Therefore, we inspect the sorted
BAM file and retain primary alignments (MAPQ >20) that are divided into multi-
ple parts. Next, SVcnn identifies candidate SVs using the following criteria. More
detailed steps are outlined in Additional file 1: Sect. 5.

(1)	 Suppose the read has two alignments and the two alignments are on the same
chromosome and on the same strand. This split alignment probably contains a
DEL or INS. We respectively record the distance of two alignments on refer-
ence and read (ref_distance, read_distance). Next, we get the SV by calculating
the difference of read_distance and ref_distance.

(2)	 Suppose the read has two alignments or three alignments and these alignments
are on the same chromosome and have different strands. This split alignment
probably contains an INV. We record the positions of the breakpoints and get
the INV.

From the above two steps, we can obtain detailed information about each can-
didate SV. We use a length-6 tuple to record every candidate SV, which consists
of (chr_name, s_pos, e_pos, length, type, read_name). Here, chr_name refers to the
chromosome name; s_pos and e_pos represent the start and end positions of the SV
respectively; length denotes the SV length; type indicates the type of SV (e.g., DEL,
INS, INV); and read_name specifies the name of the read where this SV is located.

After obtaining the tuple for each candidate SV, we have to merge the tuples that
represent the same SV in order to generate candidate SV regions. Since we record
the SV in the form of a tuple for each read, if an SV has N supporting reads, it will be
recorded N times. The method used to combine the candidate SVs into candidate SV
regions is described in the following paragraph.

For each tuple generated in the previous step, we extract a length-5 tuple (chr_
name, s_pos, e_pos, type,1). This new tuple is recorded as the initial region, where
the final value ’1’ represents the support read number. Let region1=(chr_name1, s_
pos1, e_pos1, type1,1) and region2=(chr_name2, s_pos2, e_pos2, type2,1) be two ini-
tial regions. If these two regions meet the following criteria, we merge them into one
region.

1	 chr_name1=chr_name2.
2	 type1=type2.
3	 abs(max(s_pos1,s_pos2)-min(e_pos1,e_pos2)) ≤ 1000.

Page 13 of 19Zheng and Shang ﻿BMC Bioinformatics (2023) 24:213 	

The third criterion means the distance between the two regions is less than 1000bp.
After merging the two regions into a new region, we record the new region as (chr_
name1, min(s_pos1,s_pos2), max(e_pos1,e_pos2),type1,2). Because the regions on the
two reads are merged together, the last value changes from 1 to 2. We repeat this step
until the remaining regions cannot be merged, and finally, we get a list of candidate
SV regions. To remove the effects of noise, we only retain candidate SV regions with
more than 3 supporting reads (the last value of the tuple).

Converting regions to images and building model

This section is mainly divided into two parts: the first part involves converting the region
into an image, while the second part focuses on training the LeNet model.

Converting regions to images

From the steps outlined above, a list of candidate SV regions is obtained. In this subse-
quent step, we intend to convert these regions into images. To obtain more comprehen-
sive information on SVs, a flank_len is set for each candidate region, with its value being
the minimum of (200, 2*region_len). Each candidate region is then converted into an
image.

We use a five-color image to represent each candidate region. For a region described
by (chr_name, s_pos, e_pos, type, support_read_num), all alignments near the region are
checked and each character of the corresponding CIGAR string is converted into a pixel.
The alignments of each read occupy a row in the image. The following rules govern the
conversion process (refer to step 2 of Fig. 6 for examples of DEL, INS, and INV):

1	 The Match of alignment with a plus strand (+) is represented as a yellow pixel.
2	 The Match of alignment with a minus strand (−) is represented as a blue pixel.
3	 The DEL of alignment is represented as a black pixel.
4	 The INS of alignment is represented as a red pixel.
5	 The X (mismatch) of alignment is represented as a green pixel.

In the image, each line represents a read, and each column represents a position on the
reference. For each candidate SV region (chr_name, s_pos, e_pos, type,support_read_
num), the converted image starts at position (s_pos-flank_len) and ends at position (e_
pos+flank_len). However, there is a problem in this case: INS does not occupy a position
on the reference. This means that if we use columns to represent the position on the
reference, the INS will not be displayed in the image. As a result, such images cannot
display INS information. To solve this problem, we implemented the following method.
In the bam file, M (match) occupies most of the positions, so we can replace part of M
with I (INS) according to the length of the INS. In this paper, for every 10-bp INS, we
replaced an M on the reference with an I. For example, if the length of an INS is 50 bp,
we find 5 Ms on the reference near the INS and replace them with 5 Is. After the replace-
ment, we convert this region into an image, and a red vertical line representing the INS
can be seen in the image. A specific example can be seen in Step 2 of Fig. 6.

Page 14 of 19Zheng and Shang ﻿BMC Bioinformatics (2023) 24:213

Building LetNet model

From the previous step, we have obtained images that are converted from candidate
SV regions. In this step, we will be training a Convolutional Neural Network (CNN)
model, which is why our method is called SVcnn. The CNN model we have chosen
is the LeNet model [38]. The LeNet model was one of the first convolutional neural
networks developed by Yann LeCun et al and contributed to the advancement of deep
learning. Since its inception in 1988, after years of research and multiple successful
iterations, this pioneering work has been named LeNet. The LeNet model comprises
three convolutional layers, two subsampling layers, and two fully connected layers.
The detailed parameters of the seven layers are shown below:

1	 The first layer C1 is a convolutional layer and the input data is 224 * 224. The layer
has six convolution kernels of 5 × 5 and the size of feature mapping is 220 * 220.

2	 The second layer S2 is the subsampling layer that outputs 6 feature graphs of size
110 * 110. Each cell in each feature map is connected to 2 * 2 neighborhoods in the
corresponding feature map in C1.

3	 The third layer C3 is a convolution layer with sixteen convolution kernels of 5 * 5. the
output size of C3 is 106 * 106.

4	 The fourth layer S4 is similar to S2, with size of 2 * 2 and output of sixteen 53 × 53
feature graphs.

5	 The fifth layer C5 is a convolution layer with 120 convolution kernels of size 5 * 5.
The output size of feature mapping is 49 * 49.

6	 The sixth layer F6 is fully connected to C5, and 84 feature graphs are output.
7	 The seventh layer F7 is also a fully connected layer and 4 feature graphs are output

(The 4 feature graphs represent DEL, INS, INV, and noSV).

Because the LetNet model requires a fixed input image size, it is necessary to normal-
ize previously obtained images. This is achieved by utilizing the resize function in the
Python library which resizes the image to a uniform size of 224Ã–224 pixels. Subse-
quently, the training dataset becomes an essential component required for training
the LetNet model. HG002_SVs_Tier1_v0.6 is currently the widely accepted bench-
mark dataset utilized by researchers. Therefore, we use the SVs in this benchmark
as training data. However, this benchmark only includes two SVs, DEL and INS. To
achieve better results, we have added INVs and noSVs to the training data. To get
high-quality INVs, we find 120 common INVs from other SV callers’ results and label
them as INV. In addition, we also find 7138 regions without SVs in the reference and
label them as noSV. In this way, we get 20,000 training regions containing four types
(5463 DELs, 7279 INSs, 120 INVs, and 7138 noSVs). Then we convert all these regions
into images. Finally, we got 20,000 images as the training dataset. For the training, we
shuffle the 20,000 images and apply the ten-fold cross-validation for model training.
The training images are divided into 10 groups, each containing 2000 images. One
of the groups is selected as the validation set during model training, leading to 10
models (ID from 0 to 9). Every trained model is applied to the validation set, and the
loss and accuracy of every model are calculated. The training iterations are 5000. Ulti-
mately, we retain the model with the highest accuracy.

Page 15 of 19Zheng and Shang ﻿BMC Bioinformatics (2023) 24:213 	

After obtaining the trained LeNet model, we input the candidate SV region images
obtained in the previous steps into the model. We use the model to determine the
probability of an SV occurring in this region and identify the type of SV. We select the
label with the highest probability as the judgment result. If the model determines that
there is no SV in this region, then we discard the candidate SV region. However, if
the model identifies a DEL, INS, or INV, we will calculate the exact length and break-
points of the SV in the next section.

Filtrating and outputting SVs

In the previous steps, we determined whether there is an SV in a candidate SV region, as
well as its type. In this section, we need to further assess whether the region has multi-
allelic SVs and determine the exact length of the SVs. This section consists of two main
steps. The first step involves using hierarchical clustering to identify multi-allelic SVs
within a region, while the second step involves outputting the correct SVs.

Judging whether there are multi‑allelic SVs

For each candidate SV region (after the filtration of the letnet model), we extract all reli-
ably aligned reads and refine them to obtain a candidate SV. In candidate SV regions
(especially in the repeat regions)(chr_name, s_pos, e_pos, type,support_read_num),
some reads may have wrong alignments. For example, we have shown some read align-
ments of repeat regions in Fig. 7. The alignments of Read4 in Fig. 7 will give the two

Fig. 7  In this figure, we show the alignments of 7 different reads. The reads in the green and blue boxes will
be retained as reliable reads. The reads in the red box will be filtered as unreliable reads

Page 16 of 19Zheng and Shang ﻿BMC Bioinformatics (2023) 24:213

wrong SVs and affect the detection results. To avoid wrong alignments, we only retain
two types of long reads. First, we retain long reads which can go through the region
(chr_name, s_pos-1000, e_pos+1000), just like Read1− Read4 . Second, we retain the
long reads that have two or over two alignments, just like Read5. As shown in Fig. 7, the
reads ( Read1− Read5 ) in the green and blue boxes will be retained as reliable reads and
the reads ( Read6− Read7 ) in the red box are filtrated as unreliable reads. By removing
unreliable reads, SVcnn can get better results in repeat regions.

For reliable reads after the last step, if the read contains more than one candidate SVs
of the same type, we will merge them. For example, for the Read4 in Fig. 7, it has two
small wrong DELs and we try to merge them into one correct DEL. Suppose one read has
two candidate SVs of type t like SV1 (chr_name, s_pos1, e_pos1, length1, t, read_name)
and SV2 (chr_name, s_pos2, e_pos2, length2, t, read_name). We merge them as SV_m:
(chr_name, min(s_pos1,s_pos2), max(e_pos1,e_pos2), length1 + length2, t, read_name).

Finally, we will cluster the SVs for each candidate SV region. For a candidate SV region
named A with N reads, we will first calculate the average SV length by the following
formula:

After obtaining the average length, we divide the candidate SV regions into two types
(long SVs and short SVs) based on whether the average SV length is greater than 500 bp.

1.	 Long SVs (greater than 500bp): First, we sort the SVs in the candidate SV region by
their lengths. Each SV is recorded as a cluster, with the average length of all SVs in
the cluster set as the cluster_length. If the difference in cluster_length between two
clusters is less than 20%, we merge the two clusters into one. We repeat this process
for the remaining clusters until no more clusters can be merged.

2.	 Short SVs (less than or equal to 500bp): For short SVs, sequencing noise has a great
effect on the SV length. Therefore, when two SVs are of similar length and are short,
it is difficult to distinguish between them. To address this issue, we use hierarchi-
cal clustering to separate these reads. If we observe a bimodal distribution for all SV
lengths, we report two heterozygous SVs. The detailed steps are provided in Addi-
tional file 1: Sect. 8.

For every cluster (cluster_type, cluster_length) obtained, we select an SV in the cluster
that is the closest to the cluster_length to represent the cluster. These selected SVs are
recorded as candidate SVs and will be further processed in the next step.

Filtering false SVs and outputting final result

In the previous step, we obtained a set of candidate SVs. We filter out candidate SVs
with lengths less than 30 bp, as they are not considered SVs. Based on our observations,
there are many false SVs in simple repeat regions due to the noisy ONT data. Therefore,
we use a stricter criterion to remove false SVs in simple repeat regions. Specifically, if a
candidate SV is located in a simple repeat region (the method to determine if a region is
a simple repeat region is described in Additional file 1: Sect. 9), we check the SV lengths

average_SV _lenregionA =
1

N

N∑

i=1

SV _leni

Page 17 of 19Zheng and Shang ﻿BMC Bioinformatics (2023) 24:213 	

of all reads in that location. If more than half of the reads have SV lengths greater than
40bp, the candidate SV will be retained.

Finally, for every retained candidate SV, we calculate the local_coverage and the sup-
port_rate. The local_coverage is the sum of reads in all clusters within this candidate SV
region. The support_rate of a candidate SV is defined as follows:

Here, the cluster_read_num is the number of reads in the cluster representing the can-
didate SV. If the support_rate is greater than 20% and the number of supporting reads is
greater than 3 (by default), we consider these SVs as true SVs and output them.

In the previous section, we mentioned that it is hard to directly identify DUP from
the bam file because DUP shares the same features as INS. We have now obtained all
the INS and will proceed to extract DUP from the INS. Firstly, we identify the insertion
sequence and label it as INS_seq. Next, we extract a sequence (ins_bp-3*ins_len,ins_
bp+3*ins_len) from the reference and label it as ref_seq. We then use the swalign library
available in Python to align the INS_seq into ref_seq, with a match score of 2 and a mis-
match score of -1. Finally, we check the alignment result to determine whether more
than 80% of the INS_seq can be matched to the ref_seq. If this criterion is met, we out-
put the SV as a DUP; otherwise, we output the SV as an INS.

Performance measure

To evaluate the performance of different SV callers, we use three measurements: Recall,
Precision, and F1-score. The F1-score is the harmonic mean of precision and recall. All
three measurements are in the range between 0 and 1, and they are defined as follows:

Note that TP is the number of SVs detected by a method that appears in the benchmark,
benchmark_count is the total number of benchmark SVs, and method_count is the total
number of SVs predicted by the method.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​023-​05324-x.

Additional file 1. Supplementary material.

Acknowledgements
We would like to thank the helpful discussion with Professor Wing-Kin Sung in the computing school of NUS.

Author Contributions
YZ designed the method and implemented the algorithm and complete the manuscript. XS is the major coordinator,
who contributed a lot of time and effort to the discussion of this project. Both authors read and approved the final
manuscript.

support_rate = cluster_read_num/local_coverage

Recall :
TP

benchmark_count

Precision :
TP

method_count

F1− score :
2 ∗ recall ∗ precision

recall + precision

https://doi.org/10.1186/s12859-023-05324-x

Page 18 of 19Zheng and Shang ﻿BMC Bioinformatics (2023) 24:213

Funding
Publication costs were funded by the National Natural Science Foundation of China (Grant No. 62072374). This project
has been funded by the National Natural Science Foundation of China (Grant Nos. 61702420, 61332014, 61702420
and 61772426) and the Top International University Visiting Program for Outstanding Young Scholars of Northwestern
Polytechnical University.

Availability of data and materials
The SVcnn is available at https://​github.​com/​nwpuz​hengy​an/​SVcnn. Other datasets’ download links are shown in the
Additional file.

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Received: 22 February 2023 Accepted: 6 May 2023

References
	1.	 Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, Zhang Y, Ye K, Jun G, Hsi-Yang Fritz M. An

integrated map of structural variation in 2504 human genomes. Nature. 2015;526(7571):75–81.
	2.	 Macintyre G, Ylstra B, Brenton JD. Sequencing structural variants in cancer for precision therapeutics. Trends Genet.

2016;32(9):530–42.
	3.	 Weischenfeldt J, Symmons O, Spitz F, Korbel JO. Phenotypic impact of genomic structural variation: insights from

and for human disease. Nature Rev Genet. 2013;14(2):125–38.
	4.	 Rovelet-Lecrux A, Hannequin D, Raux G, Meur NL, Laquerrière A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercel-

letto M. App locus duplication causes autosomal dominant early-onset alzheimer disease with cerebral amyloid
angiopathy. Nature Genet. 2006;38(1):24–6.

	5.	 Dennenmoser S, Sedlazeck FJ, Iwaszkiewicz E, Li X-Y, Altmüller J, Nolte AW. Copy number increases of transposable
elements and protein-coding genes in an invasive fish of hybrid origin. Mol Ecol. 2017;26(18):4712–24.

	6.	 Lupski JR. Structural variation mutagenesis of the human genome: impact on disease and evolution. Environ Mol
Mutagen. 2015;56(5):419–36.

	7.	 Chiang C, Scott AJ, Davis JR, Tsang EK, Li X, Kim Y, Hadzic T, Damani FN, Ganel L, Montgomery SB. The impact of
structural variation on human gene expression. Nature Genet. 2017;49(5):692–9.

	8.	 Zichner T, Garfield DA, Rausch T, Stütz AM, Cannavó E, Braun M, Furlong EE, Korbel JO. Impact of genomic structural
variation in drosophila melanogaster based on population-scale sequencing. Genome Res. 2013;23(3):568–79.

	9.	 Liu D-X, Rajaby R, Wei L-L, Zhang L, Yang Z-Q, Yang Q-Y, Sung W-K. Calling large indels in 1047 arabidopsis with
indelensembler. Nucleic Acids Res. 2021;49(19):10879–94.

	10.	 Gabur I, Chawla HS, Snowdon RJ, Parkin IA. Connecting genome structural variation with complex traits in crop
plants. Theor Appl Genet. 2019;132:733–50.

	11.	 Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. Delly: structural variant discovery by integrated paired-
end and split-read analysis. Bioinformatics. 2012;28(18):333–9.

	12.	 Layer RM, Chiang C, Quinlan AR, Hall IM. Lumpy: a probabilistic framework for structural variant discovery. Genome
Biol. 2014;15(6):1–19.

	13.	 Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large dele-
tions and medium sized insertions from paired-end short reads. Bioinformatics. 2009;25(21):2865–71.

	14.	 Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, Cox AJ, Kruglyak S, Saunders CT. Manta:
rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics.
2016;32(8):1220–2.

	15.	 Trappe K, Emde A-K, Ehrlich H-C, Reinert K. Gustaf: Detecting and correctly classifying svs in the ngs twilight zone.
Bioinformatics. 2014;30(24):3484–90.

	16.	 Rajaby R, Sung W-K. Survindel: improving cnv calling from high-throughput sequencing data through statistical
testing. Bioinformatics. 2021;37(11):1497–505.

	17.	 Roberts RJ, Carneiro MO, Schatz MC. The advantages of smrt sequencing. Genome Biol. 2013;14(6):1–4.
	18.	 Jain M, Olsen HE, Paten B, Akeson M. The oxford nanopore minion: delivery of nanopore sequencing to the genom-

ics community. Genome Biol. 2016;17(1):1–11.
	19.	 Chen Y, Wang A, Barkley C, Zhao X, Gao M, Edmonds M, Chong Z.: Debreak: deciphering the exact breakpoints of

structural variations using long sequencing reads. 2022.
	20.	 Jiang T, Liu Y, Jiang Y, Li J, Gao Y, Cui Z, Liu Y, Liu B, Wang Y. Long-read-based human genomic structural variation

detection with cutesv. Genome Biol. 2020;21(1):1–24.
	21.	 Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, Von Haeseler A, Schatz MC. Accurate detection of

complex structural variations using single-molecule sequencing. Nature Methods. 2018;15(6):461–8.

https://github.com/nwpuzhengyan/SVcnn

Page 19 of 19Zheng and Shang ﻿BMC Bioinformatics (2023) 24:213 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	22.	 Cretu Stancu M, Van Roosmalen MJ, Renkens I, Nieboer MM, Middelkamp S, De Ligt J, Pregno G, Giachino D,
Mandrile G, Espejo Valle-Inclan J. Mapping and phasing of structural variation in patient genomes using nanopore
sequencing. Nature Commun. 2017;8(1):1–13.

	23.	 Gong L, Wong C-H, Cheng W-C, Tjong H, Menghi F, Ngan CY, Liu ET, Wei C-L. Picky comprehensively detects high-
resolution structural variants in nanopore long reads. Nature Methods. 2018;15(6):455–60.

	24.	 Heller D, Vingron M. Svim: structural variant identification using mapped long reads. Bioinformatics.
2019;35(17):2907–15.

	25.	 English AC, Salerno WJ, Reid JG. Pbhoney: identifying genomic variants via long-read discordance and interrupted
mapping. BMC Bioinf. 2014;15(1):1–7.

	26.	 Lin J, Wang S, Audano PA, Meng D, Flores JI, Kosters W, Yang X, Jia P, Marschall T, Beck CR. Svision: a deep learning
approach to resolve complex structural variants. Nature Methods. 2022;19(10):1230–3.

	27.	 Van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends Genet.
2014;30(9):418–26.

	28.	 Mantere T, Kersten S, Hoischen A. Long-read sequencing emerging in medical genetics. Front Genet. 2019;10:426.
	29.	 Liu Y, Huang Y, Wang G, Wang Y. A deep learning approach for filtering structural variants in short read sequencing

data. Brief Bioinf. 2021;22(4):370.
	30.	 Glessner JT, Hou X, Zhong C, Zhang J, Khan M, Brand F, Krawitz P, Sleiman PM, Hakonarson H, Wei Z. Deepcnv: a

deep learning approach for authenticating copy number variations. Brief Bioinf. 2021;22(5):381.
	31.	 Cai L, Wu Y, Gao J. Deepsv: accurate calling of genomic deletions from high-throughput sequencing data using

deep convolutional neural network. BMC Bioinf. 2019;20(1):1–17.
	32.	 Tan R, Shen Y. Accurate in silico confirmation of rare copy number variant calls from exome sequencing data using

transfer learning. Nucleic Acids Res. 2022;50(21):123–123.
	33.	 Popic V, Rohlicek C, Cunial F, Hajirasouliha I, Meleshko D, Garimella K, Maheshwari A.: Cue: a deep-learning frame-

work for structural variant discovery and genotyping. Nature Methods. 2023;1–10
	34.	 Smolka M, Paulin LF, Grochowski CM, Mahmoud M, Behera S, Gandhi M, Hong K, Pehlivan D, Scholz SW, Carvalho

CM, et al.: Comprehensive structural variant detection: from mosaic to population-level. Biorxiv. 2022;2022–04
	35.	 Hon T, Mars K, Young G, Tsai Y-C, Karalius JW, Landolin JM, Maurer N, Kudrna D, Hardigan MA, Steiner CC. Highly

accurate long-read hifi sequencing data for five complex genomes. Sci Data. 2020;7(1):399.
	36.	 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Subgroup G.P.D.P. The

sequence alignment/map format and samtools. Bioinformatics 2009;25(16), 2078–2079
	37.	 Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.
	38.	 Wu P-HN, Marek MW. Helping second language literature learners overcome e-learning difficulties: Let-net team

teaching with online peer interaction. J Educ Learn. 2013;2(4):87–101.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	SVcnn: an accurate deep learning-based method for detecting structural variation based on long-read data
	Abstract
	Background:
	Result:
	Conclusions:

	Background
	Results
	SVcnn has better performance than traditional methods in new benchmark
	CNN model can improve detection performance
	SVcnn has better performance than traditional methods in GIAB benchmark
	SVcnn has better performance than traditional methods under different read depths
	SVcnn has better performance for multi-allelic SVs
	SVcnn has better performance than methods based on deep learning
	The running time of different methods

	Discussion
	Conclusions
	Methods
	Details of other SV callers and testing data
	Overview of SVcnn
	Detecting candidate SV regions
	Estimating the parameters
	Identifying candidate SV regions
	Converting regions to images and building model
	Converting regions to images
	Building LetNet model
	Filtrating and outputting SVs
	Judging whether there are multi-allelic SVs
	Filtering false SVs and outputting final result

	Performance measure

	Anchor 30
	Acknowledgements
	References

