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Abstract 

Background: Computational models of cell signaling networks are extremely useful 
tools for the exploration of underlying system behavior and prediction of response 
to various perturbations. By representing signaling cascades as executable Boolean 
networks, the previously developed rxncon (“reaction-contingency”) formalism and 
associated Python package enable accurate and scalable modeling of signal transduc-
tion even in large (thousands of components) biological systems. The models are split 
into reactions, which generate states, and contingencies, that impinge on reactions; 
this avoids the so-called “combinatorial explosion” of system size. Boolean description 
of the biological system compensates for the poor availability of kinetic parameters 
which are necessary for quantitative models. Unfortunately, few tools are available to 
support rxncon model development, especially for large, intricate systems.

Results: We present the kboolnet toolkit (https:// github. com/ Kufal ab- UCSD/ kbool net, 
complete documentation at https:// github. com/ Kufal ab- UCSD/ kbool net/ wiki), an R 
package and a set of scripts that seamlessly integrate with the python-based rxncon 
software and collectively provide a complete workflow for the verification, validation, 
and visualization of rxncon models. The verification script VerifyModel.R checks for 
responsiveness to repeated stimulations as well as consistency of steady state behavior. 
The validation scripts TruthTable.R, SensitivityAnalysis.R, and ScoreNet.R provide various 
readouts for the comparison of model predictions to experimental data. In particular, 
ScoreNet.R compares model predictions to a cloud-stored MIDAS-format experimental 
database to provide a numerical score for tracking model accuracy. Finally, the visu-
alization scripts allow for graphical representations of model topology and behavior. 
The entire kboolnet toolkit is cloud-enabled, allowing for easy collaborative develop-
ment; most scripts also allow for the extraction and analysis of individual user-defined 
“modules”.

Conclusion: The kboolnet toolkit provides a modular, cloud-enabled workflow for the 
development of rxncon models, as well as their verification, validation, and visualiza-
tion. This will enable the creation of larger, more comprehensive, and more rigorous 
models of cell signaling using the rxncon formalism in the future.
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Background
Modeling of cell signaling networks is a crucial tool in the development of the under-
standing of how said networks operate both normally and pathogenically, providing 
information which can be used to identify possible therapeutic targets. To this end, a 
variety of formalisms for describing and simulating these signaling networks have been 
developed [1–4]. Among these formalisms is rxncon (“reaction-contingency”) [4–7], 
which seeks to overcome two major challenges in cell signaling modeling: the poor 
availability of kinetic parameters for reactions, and the “combinatorial explosion”, the 
phenomenon in which the enumeration of all potential states of complexes contain-
ing multiple proteins with several possible post-translational modifications results in 
unwieldy and computationally expensive models [5, 8].

The rxncon formalism separates biological signaling networks into two parts: elemen-
tal states, which represent information about the status of the system components and 
reactions, which produce and consume states (see [9] for a detailed explanation of rxn-
con’s model structure and syntax). The bipartite nature of the resulting network solves 
the problem of the “combinatorial explosion” by eliminating the need for enumera-
tion of all combinations of microstates. The first problem, sparse knowledge of kinetic 
parameters, is addressed by allowing compilation of rxncon models into purely qualita-
tive Boolean networks. Alternatively, rxncon models can be compiled into agent- and 
rule-based models, allowing for pseudo-quantitative simulation of the system [10]; how-
ever, compilation into Boolean networks allows for fast and parameter-free evaluation of 
model dynamics.

In Boolean networks, a system is represented as a set of nodes which can be ON or 
OFF; the Boolean vector of values of all nodes represents a state of the network. The 
system’s state is updated in discrete synchronous steps where the new value of each node 
is calculated as a Boolean function of existing values of other nodes. As a result of the 
finite nature the state space, any simulation of a Boolean network will eventually fall into 
a finite-size (one or more) loop of Boolean states that the network will indefinitely visit 
in order; such loop is called an attractor and represents a steady state of a Boolean net-
work. Importantly, most Boolean networks have more than one attractor that the system 
can reach, in a deterministic manner, from different initial states. Due to the enormous 
size of the state space  (2n where n is the number of states and reactions in a system), the 
assessment of all possible system trajectories through this space is poorly scalable; how-
ever, it can provide great insight into model behavior.

The use of parameter-free Boolean logic and a bipartite network structure makes rxn-
con models efficiently scalable and allows for iterative simulations of extremely large and 
complex systems (e.g. the previous published rxncon model of the cell division cycle of 
Saccharomyces cerevisiae involved 357 unique components, 790 reactions, and 598 con-
tingencies [9]).

Maintaining rxncon models of this size presents its own host of challenges. Using cur-
rently available software, consistency checks of the model behavior under various combi-
nations of perturbations must be performed manually. A previously developed interface 
which provided tools for exploration of a model’s topology and Boolean state space is 
unfortunately no longer available [4]. The published versions of the rxncon software 
provide only limited means for visualizing the model behavior, and no tools to verify 
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it automatically [6]. Furthermore, there is no systematic method of comparing simula-
tion output to pre-existing experimental data or of generating predictions and targets for 
experimental validation once a final model has been developed. Inspired by CellNOptR 
[11], we present kboolnet, a collection of R and Python scripts which serve as a toolkit 
for the verification, validation, and visualization (VVV) of rxncon models. The kboolnet 
toolkit enables separation of full models into smaller, more easily analyzable modules, 
iterative and collaborative development, and comparison to a manually curated database 
of responses to various combinations of experimental stimuli and inhibitors.

Implementation
Recap of rxncon

The rxncon (“reaction-contingency”) formalism [4–7] describes a signaling network as a 
bipartite directed network with nodes of two types: states and reactions. States represent 
the specific state of a protein at a certain domain or residue level (i.e. what other pro-
tein is bound at said domain or a specific covalent modification applied at said residue). 
Reactions represent uni- or bi-molecular interactions which produce and/or consume 
states (indicated by directed edges of respective types in the network). States in turn 
serve as contingencies which either positively or negatively regulate reactions, also indi-
cated by directed edges. By creating a bipartite structure that separates reactions from 
states, as well as making the states of individual domains/residues on a protein inde-
pendent of each other, rxncon avoids the “combinatorial explosion” often found in rule-
based models.

The reactions and states are entered, usually semi-manually, in an MS Excel spread-
sheet (the primary input format accepted by the rxncon software) in accordance with 
syntactic rules specified in the original publication [5]. Published software [7], written 
in Python, then parses the spreadsheet and generates either a Boolean model in a format 
compatible with the Boolean network-based BoolNet simulator [12] or the agent- and 
rule-based pseudo-quantitative NFsim simulator [10]. Published software [5] also offers 
several ways of visualizing the network and the resulting simulation trajectories. For 
example, the so-called regulatory graph is a static representation of the bipartite network 
with nodes and edges color-coded by their types (a small prototype is shown in Fig. 1). 
Following a Boolean simulation, the trajectory (including the attractor) can be visualized 
as a matrix where nodes are listed vertically and time ticks horizontally; at each tick, the 
node can be either on or off as illustrated by the color of the matrix entry (an example in 
Fig. 1).

Kboolnet implementation overview

kboolnet is a system of independent scripts; each script performs a single standalone task 
and relies on user-provided arguments. Most of the scripts are developed in R (v4.0.2) 
[13] with RStudio (v1.2.5001) [14], to capitalize on R’s versatile network and data analysis 
tools. However, the extract_modules.py and reaction_mapping.py scripts are developed 
in Python (v3.8.3) to provide an interface with the original implementation of rxncon [6, 
7, 15].

The R scripts require the packages ggplot2 (v3.3.2) [16], dplyr (v1.0.5) [17], openxlsx 
(v4.2.3) [18], googledrive (v1.0.1) [19], tidyr (v1.1.3) [20], numbers (v0.7.5) [20, 21], xml2 
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(v1.3.2) [20–22], BoolNet (v2.1.5) [12], egg (v0.4.5) [23], optparse (v1.6.6) [23, 24], igraph 
(v1.4.2) [25], rappdirs (v0.3.3) [26], and RCy3 (v2.8.0) [27]. The Python scripts require the 
packages rxncon (v2.0b18) [6, 7, 15], and openpyxl (v3.0.2). Visualizations were gener-
ated using Cytoscape (v3.7.1) [28]. The package and its documentation can be found in a 
GitHub repository located at https:// github. com/ Kufal ab- UCSD/ kbool net/. Installation 
instructions are located in the repository wiki. Once the kboolnet R package is installed, 
the setupKboolnet() function must be run from an interactive R terminal. Afterward the 
scripts (and accompanying example files) will be available in a user-determined direc-
tory, and can be executed using RStudio’s built-in “sourcing” functionality or from the 
system command line. A summary of the available scripts can be found in Table 1. Fur-
ther details of the implementation for VerifyModel.R, TruthTable.R, and ScoreNet.R can 
be found below.

Evaluation of the attractor space of a rxncon model in the presence and absence of stimuli 

and perturbations: VerifyModel.R

The VerifyModel.R script enables visualization and exploration of the attractors in 
the state space that the rxncon model visits in response to the addition and removal 
of ligands, starting from a specified initial state and with an option of forcing selected 
nodes (states and reactions) to be permanently on or off (to simulate the effect of inhibi-
tors, gene knockdowns, etc.). The script follows a three-step workflow:

1. Initial simulation round. The network is first simulated from the provided initial 
state, with all ligand nodes off, until reaching an initial “no-ligand” attractor. If no initial 

Fig. 1 Overall workflow of ScoreNet.R. The ScoreNet.R script’s workflow takes two main inputs: a rxncon 
model, here pictured by its regulatory graph (reactions [light-red nodes] produce [blue arrows] states 
[light-blue nodes]; these states serve as positive [green arrow] or negative [red arrows, not shown] regulators 
of reactions, and as inputs [black arrows] to Boolean gates [white diamonds]) and a database of experimental 
data. The model is compiled to a Boolean network and simulated under the same stimulus/inhibitor 
combinations as applied in the experiments in the database. This produces a set of response predictions 
which is then compared to the experimental database to give a score for the model

https://github.com/Kufalab-UCSD/kboolnet/
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state is provided, the default “neutral” state as defined by rxncon (all reactions off, all 
components in their unbound and unmodified states) is used as a starting point. Once 
the “no-ligand” attractor is reached, its first state is selected, modified such that the 
ligand is present in its unbound state, and then simulated until reaching an initial “with-
ligand” attractor.

2. Attractor simulation rounds. Subsequent “no-ligand” and “with-ligand” attractors 
are determined as follows: each state within the “with-ligand” attractor (or the only state 
in the case of a single-state attractor) is modified such that all ligand nodes are off (if 
the ligand was in a complex with another component, the second component’s unbound 
state is also turned on to ensure that said component remains within the system). The 
network is then simulated using these initial states until reaching their corresponding 
attractors. If these attractors are not identical (which may occur if the “with-ligand” 
attractor was cyclic), the simulation rounds are stopped and several outputs representing 
the inconsistent attractors and traversed state space are written to file along with a warn-
ing to the user. Attractor identity/similarity is measured using the Hamming distance, 
accounting for potential phase shifts between the cyclic attractors as described in [29]. If 
all “no-ligand” attractors reached from the initial states of the “with-ligand” attractor are 
identical, this process is repeated to determine the next “with-ligand” attractor(s). Each 
state within the new “no-ligand” attractor is modified such that the ligand is present in 
its unbound state, and the corresponding “with-ligand” attractors and their similarities 
are determined.

3. Meta-attractor determination. After each round of attractor simulation, the newly 
generated “with-ligand” and “no-ligand” attractors are compared to those generated in 
previous simulation rounds. If both attractors are identical to previously determined 
attractors, the simulation rounds end as a meta-attractor has been found: this is because 
the simulation is deterministic. All trajectories and attractors are written to file in both 
CSV and RData formats for inspection by the user, and a graph representing the trajec-
tory through state space traversed during simulation is written in XGMML format (see 
Results for examples).

(Pseudo‑)quantitative comparison of a rxncon model to experimental data: ScoreNet.R

ScoreNet.R is the heart of the rxncon model validation pipeline in kboolnet. Its goal 
is to systematically compare the outputs of the model to experimental data obtained 
with different sets of stimuli and perturbations. The overall workflow of ScoreNet.R is 
shown in Fig. 1, and the key components described below.

Cloud-enabled MIDAS-formatted experimental database. To facilitate the storage 
of experimental data in a single cloud-enabled database, we defined a modified version 
of the MIDAS (Minimum information for data analysis in systems biology) format origi-
nally created for DataRail [30]. This modified format is machine- and human-readable 
and allows for the storage of experimental data from heterogeneous sources in a single 
Excel or Google Sheets file. In our implementation, data is organized into “sub-tables”, 
each of which describes an experiment, including the treatments applied, data acqui-
sition timepoints, and responses. Mapping of treatments to rxncon network nodes is 
accomplished through a TreatmentDefs sheet, which defines the name of a treatment, 
the effect of the treatment (stimulation, inhibition, or knockout/knockdown), and the 
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rxncon nodes affected by the treatment. As the database is intended to include data from 
various sources, it must be normalized so that data values lie between 0 and 1; such nor-
malization is the responsibility of the user.

Experimental data pre-processing.  ScoreNet.R first merges all “sub-tables” in the 
provided experimental data file into a single table of all experimental perturbations and 
the resulting data measurements. To enable comparison with rxncon Boolean networks 
that are not time-resolved and can only predict the (pseudo-)steady state of a system, 
the merged data must then be collapsed to two timepoints: pre- and post-stimulation. It 
is assumed that all data values acquired at t = 0 are pre-stimulation. The user can select 
all other data points (i.e. t > 0) as post-stimulation data points or only data points lying 
within specific time bins via the script configuration file. After this, all pre-stimulation 
data values and post-stimulation data values for each output and combinations of stim-
uli/inhibitor are averaged, resulting in two data points for each output/perturbation 
combination.

Generating rxncon predictions and quantifying their agreement with experi-
ments.  A table of corresponding simulation predictions for each combination of 
perturbations is then generated as follows: the system is simulated starting from a user-
provided initial state (or if not provided, the rxncon-generated “neutral” state), with all 
knocked out and stimulated nodes for the perturbation forced off, until it reaches the 
“pre-stimulation” attractor. This attractor is then quantified for all outputs by dividing 
the number of states the output is “on” in the attractor by the total number of states in 
the attractor, resulting in a value between 0 (always “off”) and 1 (always “on”). An arbi-
trary state from the pre-stimulation attractor (if the model behavior is internally con-
sistent as determined by VerifyModel.R, state choice within the attractor does not affect 
the outcome) is used as the initial state for another simulation, with all inhibited nodes 
forced off and all stimulated nodes forced on. The resulting attractor is again quantified 
and used as the post-stimulation data point. These data points are used to calculate the 
mean square error  (MSEp,o) for each perturbation combination p and output o

where t = 0 is the pre-stimulation time point and t = 1 is the post-stimulation time point. 
The overall mean square error  MSEtot is calculated as

where n and m are the number of perturbation combinations and measured outputs, 
respectively.

Dynamic visualization of rxncon model trajectories in Boolean state space: AnimatePath.R

Animations of the paths generated using VerifyModel.R or BoolNetSim.R can be made 
using AnimatePath.R. This script functions by automatically creating stills of a regula-
tory graph of the network (nodes are colored by their ON/OFF status) using the RCy3 

MSEp,o =

1

t=0

experimentp,o − simulationp,o
2

2

MSEtot =
1

nm

n
∑

p=1

m
∑

o=1

MSEp,o
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[27] API to control Cytoscape [28]. These stills are then joined into a single GIF with 
numbered frames using the ImageMagick library. An example of such an animation may 
be found in the Additional File 1.

Results
A cloud‑enabled rxncon modeling workflow

The kboolnet package is designed to provide a variety of verification, validation, and visu-
alization (VVV) tools that together form a cloud-enabled workflow for the development 
of rxncon models (Fig.  2). The workflow extends and automates existing rxncon func-
tionality and is centered on analysis of the model once converted to a BoolNet Boolean 
network.

The verification part of the workflow consists of VerifyModel.R, a script which can 
identify and report a variety of model behaviors and responses to stimuli and perturba-
tions. The script performs formal verification of the model by checking the responsive-
ness of the system to repeated applications of stimuli, outputting the resulting trajectory 
and a graph visualizing the space of states and attractors reached.

The model validation, which involves the assessment of the model’s agreement with 
either experimental data or general (experimentally-informed) expectations about the 
behaviors of its components, is implemented in the form of three scripts: TruthTable.R, 
SensitivityAnalysis.R, and ScoreNet.R. TruthTable.R can be used for quick analysis of 
the behavior of the model (or portions thereof ) by outputting a “truth-table” like graph 
which shows the response of the system to all possible combinations of a given set of 
stimuli and inhibitors. SensitivityAnalysis.R examines the effect of inhibiting all reac-
tions and knocking out all components individually on a certain set of output nodes 
under with- and no-ligand conditions. The final script, ScoreNet.R, compares behavior of 
the model to a (modified) MIDAS-format experimental database, outputting both visual 
and numerical metrics that can serve as benchmarks of model quality.

Fig. 2 Overall workflow for the kboolnet package. A cloud-stored rxncon model can be iteratively developed 
using the three portions of the kboolnet workflow: verification of the model’s behavior (responsiveness 
to ligands and consistency between attractors representing the same biological state), validation against 
experimental data, and visualization of model trajectories and topology
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Model visualization is handled by four scripts: PlotPath.R, PlotPathComparison.R, 
PlotModules.R, and AnimatePath.R. PlotPath.R outputs a 2D plot of a trajectory 
where columns represent timepoints and rows represent nodes in the Boolean net-
work, with blue squares indicating “on” states and white squares indicating “off” states. 
PlotPathComparison.R generates a similar visualization after aligning and overlaying two 
such trajectories, showing their similarities and differences. PlotModules.R extracts all 
user-defined modules from a rxncon model file and outputs reaction-contingency graphs 
for each of them in the XGMML format, allowing for fast visualization of the topology 
of each module. Finally, AnimatePath.R can animate regulatory or state graphs of a rxn-
con network using a trajectory or attractor produced by VerifyModel.R or BoolNetSim.R. 
This provides a dynamic representation of the flow of information through the model, 
potentially providing novel insights about model behavior (an example animation may 
be found in the Additional File 1).

This workflow is cloud enabled, allowing for the storage of the rxncon model and 
modified MIDAS-format experimental data as a Google Sheets file. The above verifica-
tion and validation scripts, as well as PlotModules.R, download the latest version of the 
model (and experimental database, if necessary). This simplifies iterative and collabora-
tive development of the model.

Modular tagging and validation of rxncon rules

The model-building process can often result in the definition of large numbers of 
reaction rules and contingencies (e.g. a model of Saccharomyces cerevisiae’s cell cycle 
included 790 reaction rules and 598 contingencies [9, 30]). This can lead to challenges 
when attempting to maintain, visualise, and evaluate a large-scale model, prompting us 
to implement tagging of rxncon reactions and contingencies by user-defined module and 
a numerical quality score. This allows for the extraction of modules for easier analysis as 
well as inclusion and exclusion of individual reactions/contingencies on the fly (Fig. 3A, 
B). To implement module tagging, we expanded the format of the original MS Excel (the 
primary input format for rxncon scripts) by adding a new “!Module” column; tagging 
is implemented using a comma-separated list of module names in this column. Quality 
tagging exploits the existing “!Quality” column and filters out any reaction or contin-
gency below a given score threshold.

To rapidly and comprehensively characterize the behavior of the extracted modules 
under various combinations of stimuli and inhibitors, we created the TruthTable.R 
utility. It is inspired by capso’s “global truth tables” [31], validation figures presented 
in previous versions of rxncon [6], and truth tables from propositional logic. Given 
a list of n stimuli and inhibitors, the chosen module is simulated for all  2n stimulus/
inhibitor combinations beginning from an initial user-provided state (or the rxncon-
defined “neutral” state). This approach would be impractical for the entire model 
due to the large number of inputs and output; however, it is very beneficial for the 
small-size modules. In each simulation, selected stimuli nodes are fixed “on” and all 
inhibited nodes fixed “off”, the simulation is performed until reaching an attractor, 
and the output node values are averaged across the attractor states. This results in a 
score between 0 (always off ) and 1 (always on) for each output node; these scores are 
combined in a matrix-type visualization (Fig. 3C). The output can be used to quickly 



Page 10 of 16Carretero Chavez et al. BMC Bioinformatics          (2023) 24:246 

identify which combinations of stimuli are necessary to activate certain output nodes 
and which inhibitors abrogate said outputs. The script attempts to “compress” the 
visualization vertically; that is, if addition of a certain stimulus or inhibitor results in 
insensitivity of the model to other perturbations, all combinations with said stimulus 
or inhibitor are combined into a single row. To summarize, TruthTable.R facilitates 
validation of a module against existing knowledge of responses of selected output 
nodes to combinatorial perturbations.

Whole‑model formal verification

The VerifyModel.R script has been designed to facilitate evaluation of dynamic prop-
erties of the model as a whole, especially when it is complex and involves elements 
such as feedback loops. The properties in question are loosely related to those for-
mulated for Petri Nets (a different type of discrete event dynamic systems [32]): 
reachability and liveliness. Through VerifyModel.R, we empirically evaluate attractor 
reachability for the subgraph of the state graph that is reachable from the given initial 
state(s) upon the addition and removal of the given set of stimuli or inhibitors.

We conceptualize a “meta-attractor” as a certain cyclic trajectory through the space 
of all possible attractors of a Boolean network, with transitions between attractors 

Fig. 3 Example of module extraction and qualitative assessment. The full model of EGFR signaling in 
colorectal cancer cells, a bird’s-eye view of which is presented in (A), is broken down into several modules: 
EGFR-Src (green), PI3K-Akt (red), Ras-Raf-Mek-Erk (blue), and S6K (yellow). Nodes shared between two or 
more modules are left uncolored. Each of these modules can be extracted for independent visualization 
and evaluation, as shown for the S6K module in (B) and (C), using the PlotModules.R and TruthTable.R scripts, 
respectively
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being achieved by either removal or addition of the ligand (Fig. 4). For many signaling 
systems (cascades) the addition of the ligand produces changes that are reversible, i.e. 
the system returns back to its original steady state upon the removal of the ligand. For 
such systems, the meta-attractor should be simple (Fig. 4A, C): adding the ligand will 
shift the system into a “with-ligand” attractor, and removing the ligand will shift the 
system into a “no-ligand” attractor. By contrast, more complex, irreversible behav-
iors may be encountered e.g. when studying cell division or apoptosis (illustrated by 
Fig.  4B, D). Finally, some implementations may lead to an unwanted “branching “ 
behavior where the “with-ligand” attractor is dependent on the specific state within a 
“no-ligand” attractor at which the ligand is applied, or vice versa. For these scenarios, 
the “meta-attractor” cannot be defined at all because it is no longer deterministic. In 
all cases, the ability to detect that a network model becomes “stuck” within a certain 
attractor or displays a more complex meta-attractor than expected can be helpful in 
model design and optimization.

Previously, this kind of formal verification had only been possible in rxncon by man-
ually adding and removing the ligand in repeated rounds of simulation and compar-
ing the resulting (pseudo-)steady-states/attractors to ensure that the desired system 
behavior was achieved [15]. Performing verification in this manner is time consuming 
as it requires repetitive sets of steps (edit initial state, simulate, copy files, edit initial 
state, etc.). Furthermore, this method of verification only selects a single state within 
each attractor as the initial state for the next round, leaving open the possibility that 
undesired “branching” behaviors remain hidden. An improved, automated version of 
this verification process is available in VerifyModel.R (see Fig. 5 for example applica-
tion, see Implementation for more details).

Fig. 4 State and attractor spaces for two hypothetical boolean networks. State transition graphs of two 
rxncon networks (A, B) and their corresponding attractor spaces (C, D). In (A) and (B), simulation of the 
network from intermediate states (blue nodes) according to Boolean state transitions (black edges) causes 
the system to fall into a cyclic attractor (purple nodes). Addition of the ligand (green edges) or removal 
of the ligand (red edges) can cause the network to fall into a new attractor. In (A) and (C), addition of the 
ligand causes the system to fall into a single “with-ligand” attractor, and removal of the ligand causes the 
system to return to a single “no-ligand” attractor. This meta-attractor is visualized in the attractor space C as 
a self-consistent and reversible transition between two attractor nodes. In (B) and (D), removal of the ligand 
at different timepoints in the “with-ligand” attractor causes the system to fall into two distinct “no-ligand” 
attractors; this “branching” behavior is visualized in the attractor space (D) as a possible transition from a 
single attractor node to two different (a.k.a. Inconsistent with each other) attractor nodes both corresponding 
to the same “no-ligand” biological state of the system
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Model validation through a comparison to database of experimental data

Once the model has passed formal verification, it is ready for comparison to experimen-
tal data. The ScoreNet.R script simulates the network under all combinations of stimuli, 
inhibitors, and knockouts present in a cloud-stored experimental database. The pre-
dicted responses and experimental data are compared and the mean square error (MSE) 
between the two is calculated (see Implementation for details). The calculated MSE 
ranges from 0 (perfect agreement) to 1 (perfect disagreement) and provides an easily 
interpretable metric to track progress as a model is iteratively developed. For example, 
comparing the model presented in Fig. 3A to experimental data collected in SW48 and 
HT-29 colorectal adenocarcinoma cells [33, 34] resulted in an MSE of 0.092. After the 
addition of a putative Akt→Cot→RSK edge [35], the MSE dropped to 0.081, a small but 
measurable improvement (Fig. 6 shows the full output from ScoreNet.R).

A note on performance and scalability

Because kboolnet is designed to facilitate the exploration of the overall behavior and 
state space of a rxncon model, its speed and performance are strongly dependent on the 
size and connectivity of the model. By design, kboolnet fully utilizes the performance 
improvement mechanisms of the rxncon formalism (the bipartite graph representa-
tion of the network) and its published implementation [6, 7] that compiles models into 
Boolean networks and takes advantage of the C-accelerated simulation engine of the 
BoolNet R package [12]. Despite these optimizations, we recognize the possibility of 

Fig. 5 Trap detection with VerifyModel.R. A A representative rxncon model flagged by VerifyModel.R as having 
inconsistent attractors upon repeated addition and removal of the ligand. B This is confirmed by plots of the 
full paths the network traverses upon the addition and removal of the ligand (attractors are striped, substrate 
states colored purple). C Automatically generated comparison plots reveal that the substrate remains 
phosphorylated in the first “no-ligand”attractor, but not in the second. D This “trap” behaviour is corrected by 
addition of a dephosphorylation reaction to produce a network (D) with consistent no-ligand attractors as 
shown in (E) and (F)
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decreased scalability when explicitly exploring the state space of the resulting Boolean 
network, as the number of possible states grows exponentially with the number of 
nodes. For this reason, kboolnet focuses on analyzing only the subset of the model’s state 
space that is reachable from biologically-relevant initial states. Furthermore, the module 
tagging, module extraction, and modular validation functionality of kboolnet are specifi-
cally designed to facilitate the development of large models through a divide-and-con-
quer approach.

Conclusion
The kboolnet toolkit provides a systematic workflow for the development of rxncon mod-
els supplemented by a suite of verification, validation, and visualization (VVV) tools. By 
emphasizing modularity, kboolnet simplifies the process of building large and compre-
hensive models of cell signaling networks spanning multiple biological subunits which 
can be individually constructed, validated, and visualized. The kboolnet suite allows for 
both qualitative assessments of model integrity and (pseudo-)quantitative comparisons 
to real biological data. These features are centralized around a cloud-hosted version of 
both the rxncon model and an experimental database, collectively allowing for fast, itera-
tive, and collaborative development of any kind of rxncon model. Future development of 
the kboolnet toolkit will expand its capabilities to include pseudo-quantitative modes of 
simulation supported by the rxncon formalism, namely the network-free stochastic sim-
ulator NFsim [10], as well as expand existing tools for the generation of novel hypotheses 
and identification of potential drug targets.

Availability of Data and Materials
The code described and example models analysed in the paper are available on the pro-
ject GitHub at https:// github. com/ Kufal ab- UCSD/ kbool net/. 

Project name: kboolnet.
Project home page: https:// github. com/ Kufal ab- UCSD/ kbool net/
Operating system(s): Windows, Mac, Linux.

Fig. 6 Comparison to experimental data with ScoreNet.R. Columns on the left represent output nodes, 
columns on the right represent combinations of stimuli (green) and inhibitors (red). Cells are colored 
according to the MSE between experimental data points (black, solid line) and predicted response (grey, 
dotted line). Cells with no experimental data available are colored grey

https://github.com/Kufalab-UCSD/kboolnet/
https://github.com/Kufalab-UCSD/kboolnet/
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Programming language: R, Python.
Other requirements: See implementation for package dependencies.
License: This software is Copyright © 2023 The Regents of the University of Califor-

nia. All Rights Reserved. Permission to copy, modify, and distribute this software and its 
documentation for educational, research and non-profit purposes by non-profit organi-
zations, without fee, and without a written agreement is hereby granted, provided that 
the above copyright notice, this paragraph and the following three paragraphs appear 
in all copies. Permission for for-profit organizations to make commercial use of this 
software may be obtained by contacting: Office of Innovation and Commercialization, 
9500 Gilman Drive, Mail Code 0910, University of California La Jolla, CA 92093-0910, 
(858) 534-5815, innovation@ucsd.edu.  This software program and documentation 
are copyrighted by The Regents of the University of California. The software program 
and documentation are supplied “as is”, without any accompanying services from The 
Regents. The Regents does not warrant that the operation of the program will be unin-
terrupted or error-free. The end-user understands that the program was developed for 
research purposes and is advised not to rely exclusively on the program for any reason. 
IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY 
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL 
DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS 
SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALI-
FORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE 
UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE 
PROVIDED HEREUNDER IS ON AN “AS IS” BASIS, AND THE UNIVERSITY OF 
CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, 
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.  Restrictions to use by non-
academics: Permission for commercial use by non-profit organizations must be acquired 
from the UC San Diego Office of Innovation and Commercialization (see license for 
more information).

Abbreviations
VVV  Verification, validation, and visualization
MIDAS  Minimum information for data analysis in systems biology
MSE  Mean square error
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