
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Carretero Chavez et al. BMC Bioinformatics (2023) 24:246
https://doi.org/10.1186/s12859-023-05329-6

BMC Bioinformatics

kboolnet: a toolkit for the verification,
validation, and visualization
of reaction-contingency (rxncon) models
Willow Carretero Chavez1,2, Marcus Krantz3,4, Edda Klipp3 and Irina Kufareva1*

Abstract

Background: Computational models of cell signaling networks are extremely useful
tools for the exploration of underlying system behavior and prediction of response
to various perturbations. By representing signaling cascades as executable Boolean
networks, the previously developed rxncon (“reaction-contingency”) formalism and
associated Python package enable accurate and scalable modeling of signal transduc-
tion even in large (thousands of components) biological systems. The models are split
into reactions, which generate states, and contingencies, that impinge on reactions;
this avoids the so-called “combinatorial explosion” of system size. Boolean description
of the biological system compensates for the poor availability of kinetic parameters
which are necessary for quantitative models. Unfortunately, few tools are available to
support rxncon model development, especially for large, intricate systems.

Results: We present the kboolnet toolkit (https:// github. com/ Kufal ab- UCSD/ kbool net,
complete documentation at https:// github. com/ Kufal ab- UCSD/ kbool net/ wiki), an R
package and a set of scripts that seamlessly integrate with the python-based rxncon
software and collectively provide a complete workflow for the verification, validation,
and visualization of rxncon models. The verification script VerifyModel.R checks for
responsiveness to repeated stimulations as well as consistency of steady state behavior.
The validation scripts TruthTable.R, SensitivityAnalysis.R, and ScoreNet.R provide various
readouts for the comparison of model predictions to experimental data. In particular,
ScoreNet.R compares model predictions to a cloud-stored MIDAS-format experimental
database to provide a numerical score for tracking model accuracy. Finally, the visu-
alization scripts allow for graphical representations of model topology and behavior.
The entire kboolnet toolkit is cloud-enabled, allowing for easy collaborative develop-
ment; most scripts also allow for the extraction and analysis of individual user-defined
“modules”.

Conclusion: The kboolnet toolkit provides a modular, cloud-enabled workflow for the
development of rxncon models, as well as their verification, validation, and visualiza-
tion. This will enable the creation of larger, more comprehensive, and more rigorous
models of cell signaling using the rxncon formalism in the future.

Keywords: Computational modeling, Cell signaling, Network biology, Rxncon, Boolean
networks

*Correspondence:
ikufareva@ucsd.edu

1 Skaggs School of Pharmacy
and Pharmaceutical Sciences,
University of California San
Diego, 9500 Gilman Dr, La Jolla,
CA 92093, USA
2 Present Address: Massachusetts
Institute of Technology, 77
Massachusetts Ave, Cambridge,
MA 02139, USA
3 Theoretical Biophysics,
Humboldt-Universität zu Berlin,
Invalidenstr. 42, 10115 Berlin,
Germany
4 Present Address: School
of Medical Sciences
and Inflammatory Response
and Infection Susceptibility
Centre (iRiSC), Faculty
of Medicine and Health, Örebro
University, Örebro, Sweden

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05329-6&domain=pdf
http://orcid.org/0000-0001-9083-7039
https://github.com/Kufalab-UCSD/kboolnet
https://github.com/Kufalab-UCSD/kboolnet/wiki

Page 2 of 16Carretero Chavez et al. BMC Bioinformatics (2023) 24:246

Background
Modeling of cell signaling networks is a crucial tool in the development of the under-
standing of how said networks operate both normally and pathogenically, providing
information which can be used to identify possible therapeutic targets. To this end, a
variety of formalisms for describing and simulating these signaling networks have been
developed [1–4]. Among these formalisms is rxncon (“reaction-contingency”) [4–7],
which seeks to overcome two major challenges in cell signaling modeling: the poor
availability of kinetic parameters for reactions, and the “combinatorial explosion”, the
phenomenon in which the enumeration of all potential states of complexes contain-
ing multiple proteins with several possible post-translational modifications results in
unwieldy and computationally expensive models [5, 8].

The rxncon formalism separates biological signaling networks into two parts: elemen-
tal states, which represent information about the status of the system components and
reactions, which produce and consume states (see [9] for a detailed explanation of rxn-
con’s model structure and syntax). The bipartite nature of the resulting network solves
the problem of the “combinatorial explosion” by eliminating the need for enumera-
tion of all combinations of microstates. The first problem, sparse knowledge of kinetic
parameters, is addressed by allowing compilation of rxncon models into purely qualita-
tive Boolean networks. Alternatively, rxncon models can be compiled into agent- and
rule-based models, allowing for pseudo-quantitative simulation of the system [10]; how-
ever, compilation into Boolean networks allows for fast and parameter-free evaluation of
model dynamics.

In Boolean networks, a system is represented as a set of nodes which can be ON or
OFF; the Boolean vector of values of all nodes represents a state of the network. The
system’s state is updated in discrete synchronous steps where the new value of each node
is calculated as a Boolean function of existing values of other nodes. As a result of the
finite nature the state space, any simulation of a Boolean network will eventually fall into
a finite-size (one or more) loop of Boolean states that the network will indefinitely visit
in order; such loop is called an attractor and represents a steady state of a Boolean net-
work. Importantly, most Boolean networks have more than one attractor that the system
can reach, in a deterministic manner, from different initial states. Due to the enormous
size of the state space (2n where n is the number of states and reactions in a system), the
assessment of all possible system trajectories through this space is poorly scalable; how-
ever, it can provide great insight into model behavior.

The use of parameter-free Boolean logic and a bipartite network structure makes rxn-
con models efficiently scalable and allows for iterative simulations of extremely large and
complex systems (e.g. the previous published rxncon model of the cell division cycle of
Saccharomyces cerevisiae involved 357 unique components, 790 reactions, and 598 con-
tingencies [9]).

Maintaining rxncon models of this size presents its own host of challenges. Using cur-
rently available software, consistency checks of the model behavior under various combi-
nations of perturbations must be performed manually. A previously developed interface
which provided tools for exploration of a model’s topology and Boolean state space is
unfortunately no longer available [4]. The published versions of the rxncon software
provide only limited means for visualizing the model behavior, and no tools to verify

Page 3 of 16Carretero Chavez et al. BMC Bioinformatics (2023) 24:246

it automatically [6]. Furthermore, there is no systematic method of comparing simula-
tion output to pre-existing experimental data or of generating predictions and targets for
experimental validation once a final model has been developed. Inspired by CellNOptR
[11], we present kboolnet, a collection of R and Python scripts which serve as a toolkit
for the verification, validation, and visualization (VVV) of rxncon models. The kboolnet
toolkit enables separation of full models into smaller, more easily analyzable modules,
iterative and collaborative development, and comparison to a manually curated database
of responses to various combinations of experimental stimuli and inhibitors.

Implementation
Recap of rxncon

The rxncon (“reaction-contingency”) formalism [4–7] describes a signaling network as a
bipartite directed network with nodes of two types: states and reactions. States represent
the specific state of a protein at a certain domain or residue level (i.e. what other pro-
tein is bound at said domain or a specific covalent modification applied at said residue).
Reactions represent uni- or bi-molecular interactions which produce and/or consume
states (indicated by directed edges of respective types in the network). States in turn
serve as contingencies which either positively or negatively regulate reactions, also indi-
cated by directed edges. By creating a bipartite structure that separates reactions from
states, as well as making the states of individual domains/residues on a protein inde-
pendent of each other, rxncon avoids the “combinatorial explosion” often found in rule-
based models.

The reactions and states are entered, usually semi-manually, in an MS Excel spread-
sheet (the primary input format accepted by the rxncon software) in accordance with
syntactic rules specified in the original publication [5]. Published software [7], written
in Python, then parses the spreadsheet and generates either a Boolean model in a format
compatible with the Boolean network-based BoolNet simulator [12] or the agent- and
rule-based pseudo-quantitative NFsim simulator [10]. Published software [5] also offers
several ways of visualizing the network and the resulting simulation trajectories. For
example, the so-called regulatory graph is a static representation of the bipartite network
with nodes and edges color-coded by their types (a small prototype is shown in Fig. 1).
Following a Boolean simulation, the trajectory (including the attractor) can be visualized
as a matrix where nodes are listed vertically and time ticks horizontally; at each tick, the
node can be either on or off as illustrated by the color of the matrix entry (an example in
Fig. 1).

Kboolnet implementation overview

kboolnet is a system of independent scripts; each script performs a single standalone task
and relies on user-provided arguments. Most of the scripts are developed in R (v4.0.2)
[13] with RStudio (v1.2.5001) [14], to capitalize on R’s versatile network and data analysis
tools. However, the extract_modules.py and reaction_mapping.py scripts are developed
in Python (v3.8.3) to provide an interface with the original implementation of rxncon [6,
7, 15].

The R scripts require the packages ggplot2 (v3.3.2) [16], dplyr (v1.0.5) [17], openxlsx
(v4.2.3) [18], googledrive (v1.0.1) [19], tidyr (v1.1.3) [20], numbers (v0.7.5) [20, 21], xml2

Page 4 of 16Carretero Chavez et al. BMC Bioinformatics (2023) 24:246

(v1.3.2) [20–22], BoolNet (v2.1.5) [12], egg (v0.4.5) [23], optparse (v1.6.6) [23, 24], igraph
(v1.4.2) [25], rappdirs (v0.3.3) [26], and RCy3 (v2.8.0) [27]. The Python scripts require the
packages rxncon (v2.0b18) [6, 7, 15], and openpyxl (v3.0.2). Visualizations were gener-
ated using Cytoscape (v3.7.1) [28]. The package and its documentation can be found in a
GitHub repository located at https:// github. com/ Kufal ab- UCSD/ kbool net/. Installation
instructions are located in the repository wiki. Once the kboolnet R package is installed,
the setupKboolnet() function must be run from an interactive R terminal. Afterward the
scripts (and accompanying example files) will be available in a user-determined direc-
tory, and can be executed using RStudio’s built-in “sourcing” functionality or from the
system command line. A summary of the available scripts can be found in Table 1. Fur-
ther details of the implementation for VerifyModel.R, TruthTable.R, and ScoreNet.R can
be found below.

Evaluation of the attractor space of a rxncon model in the presence and absence of stimuli

and perturbations: VerifyModel.R

The VerifyModel.R script enables visualization and exploration of the attractors in
the state space that the rxncon model visits in response to the addition and removal
of ligands, starting from a specified initial state and with an option of forcing selected
nodes (states and reactions) to be permanently on or off (to simulate the effect of inhibi-
tors, gene knockdowns, etc.). The script follows a three-step workflow:

1. Initial simulation round. The network is first simulated from the provided initial
state, with all ligand nodes off, until reaching an initial “no-ligand” attractor. If no initial

Fig. 1 Overall workflow of ScoreNet.R. The ScoreNet.R script’s workflow takes two main inputs: a rxncon
model, here pictured by its regulatory graph (reactions [light-red nodes] produce [blue arrows] states
[light-blue nodes]; these states serve as positive [green arrow] or negative [red arrows, not shown] regulators
of reactions, and as inputs [black arrows] to Boolean gates [white diamonds]) and a database of experimental
data. The model is compiled to a Boolean network and simulated under the same stimulus/inhibitor
combinations as applied in the experiments in the database. This produces a set of response predictions
which is then compared to the experimental database to give a score for the model

https://github.com/Kufalab-UCSD/kboolnet/

Page 5 of 16Carretero Chavez et al. BMC Bioinformatics (2023) 24:246

Ta
bl

e
1

D
es

cr
ip

tio
n

of
 k

bo
ol

ne
t t

oo
lk

it
sc

rip
ts

, t
he

ir
in

pu
ts

, a
nd

 th
ei

r o
ut

pu
ts

Ty
pe

N
am

e
D

es
cr

ip
tio

n
In

pu
ts

O
ut

pu
ts

Si
m

ul
at

io
n

en
gi

ne
Bo

ol
N

et
Si

m
.R

U
se

d
by

 a
ll

th
e

VV
V

m
od

ul
es

 b
el

ow
. S

im
ul

at
es

 a

m
od

el
 u

si
ng

 th
e

Bo
ol

N
et

 p
ac

ka
ge

 [2
1]

 g
iv

en
 a

n
in

iti
al

 s
ta

te
 a

nd
 s

et
 o

f n
od

es
 to

 in
hi

bi
t/

ac
tiv

at
e

M
od

el
 fi

le
, i

ni
tia

l s
ta

te
, o

n-
lis

t,
off

-li
st

Re
su

lti
ng

 s
im

ul
at

io
n

tr
aj

ec
to

ry
 a

nd
 a

tt
ra

ct
or

 a
s

a
C

SV
 a

nd
 a

 P
D

F

Ve
rifi

ca
tio

n
Ve

rif
yM

od
el

.R
Si

m
ul

at
es

 a
 m

od
el

 u
nd

er
 a

 s
et

 o
f a

ct
iv

at
or

s
an

d
in

hi
bi

to
rs

 w
hi

le
 re

pe
at

ed
ly

 to
gg

lin
g

a
gi

ve
n

lig
an

d
on

 a
nd

 o
ff

to
 c

he
ck

 c
on

si
st

en
cy

 o
f t

he

re
su

lti
ng

 a
tt

ra
ct

or
s

M
od

el
 fi

le
, s

et
 o

f r
un

s
w

ith
 li

st
 in

cl
ud

in
g

in
iti

al

st
at

e,
 o

n-
lis

t,
off

-li
st

, a
nd

 to
gg

le
d

lig
an

d
fo

r e
ac

h
ru

n

RD
at

a
fil

e
ho

ld
in

g
tr

aj
ec

to
rie

s
an

d
at

tr
ac

to
rs

 fo
r a

ll
ro

un
ds

 o
f s

im
ul

at
io

n,
 C

SV
s

an
d

PD
Fs

 o
f c

on
so

li-
da

te
d

tr
aj

ec
to

rie
s,

an
d

XG
M

M
L

gr
ap

hs
 o

f t
he

 s
ta

te

sp
ac

es

Va
lid

at
io

n
Tr

ut
hT

ab
le

.R
Si

m
ul

at
es

 a
 m

od
el

 u
nd

er
 a

ll
po

ss
ib

le
 c

om
bi

na
-

tio
ns

 o
f g

iv
en

 in
hi

bi
to

rs
 a

nd
 a

ct
iv

at
or

s
an

d
se

es

th
ei

r e
ffe

ct
 o

n
a

se
t o

f o
ut

pu
t n

od
es

M
od

el
 fi

le
, n

od
es

 to
 a

ct
iv

at
e

or
 in

hi
bi

t,
ou

tp
ut

no

de
s,

in
iti

al
 s

ta
te

Tr
ut

h
ta

bl
e

PD
F/

C
SV

Sc
or

eN
et

.R
Si

m
ul

at
es

 a
 m

od
el

 u
nd

er
 th

e
pe

rt
ur

ba
tio

ns

en
co

de
d

in
 a

 d
at

ab
as

e
of

 e
xp

er
im

en
ta

l d
at

a
an

d
se

es
 h

ow
 c

lo
se

ly
 th

e
si

m
ul

at
io

n
re

fle
ct

s
re

al
-

w
or

ld
 o

bs
er

va
tio

ns

M
ID

A
S-

fo
rm

at
 e

xp
er

im
en

ta
l d

at
ab

as
e,

 m
od

el
 fi

le
M

ea
n

sq
ua

re
 e

rr
or

 fo
r m

od
el

, P
D

Fs
 fo

r e
xp

er
im

en
-

ta
l r

es
ul

ts
, s

im
ul

at
io

n
re

su
lts

, a
nd

 c
om

pa
ris

on
 o

f
th

e
tw

o

Se
ns

iti
vi

ty
A

na
ly

si
s.R

M
ea

su
re

s
eff

ec
t o

f i
nd

iv
id

ua
lly

 in
hi

bi
tin

g
ev

er
y

no
de

 o
n

th
e

eff
ec

t a
 li

ga
nd

 h
as

 o
n

a
se

t o
f o

ut
pu

t
no

de
s

M
od

el
 fi

le
, l

ig
an

d
to

 to
gg

le
, i

ni
tia

l s
ta

te
, o

ut
pu

ts

to
 m

on
ito

r
PD

F
sh

ow
in

g
se

m
i-q

ua
nt

ita
tiv

e
eff

ec
t o

f i
nh

ib
iti

on

on
 li

ga
nd

 to
 o

ut
pu

t s
ig

na
l

Vi
su

al
iz

at
io

n
A

ni
m

at
eP

at
h.

R
A

ni
m

at
es

 th
e

re
gu

la
to

ry
 g

ra
ph

 o
f a

 m
od

el
 u

si
ng

 a

gi
ve

n
tr

aj
ec

to
ry

 C
SV

Re
gu

la
to

ry
 g

ra
ph

, t
ra

je
ct

or
y

C
SV

A
ni

m
at

io
n

G
IF

Pl
ot

M
od

ul
es

.R
M

ak
es

 in
di

vi
du

al
 re

gu
la

to
ry

 g
ra

ph
s

of
 e

ac
h

of

m
od

ul
es

 s
to

re
d

in
 a

 m
od

el
 fi

le
M

od
el

 fi
le

, l
is

t o
f m

od
ul

es
 to

 p
lo

t
Re

gu
la

to
ry

 g
ra

ph
 X

G
M

M
L

fo
r e

ac
h

m
od

ul
e

Pl
ot

Pa
th

.R
Pl

ot
s

a
tr

aj
ec

to
ry

 C
SV

Tr
aj

ec
to

ry
 C

SV
Pl

ot
 a

s
PD

F

Pl
ot

Pa
th

Co
m

pa
ris

on
.R

A
lig

ns
 tw

o
tr

aj
ec

to
rie

s/
at

tr
ac

to
rs

 a
nd

 p
lo

ts

an
 o

ve
rla

y
of

 th
e

tw
o

sh
ow

in
g

(d
is

)s
im

ila
rit

ie
s

be
tw

ee
n

th
e

tw
o

Tw
o

tr
aj

ec
to

ry
/a

tt
ra

ct
or

 C
SV

s
Co

m
pa

ris
on

 p
lo

t a
s

PD
F

Page 6 of 16Carretero Chavez et al. BMC Bioinformatics (2023) 24:246

state is provided, the default “neutral” state as defined by rxncon (all reactions off, all
components in their unbound and unmodified states) is used as a starting point. Once
the “no-ligand” attractor is reached, its first state is selected, modified such that the
ligand is present in its unbound state, and then simulated until reaching an initial “with-
ligand” attractor.

2. Attractor simulation rounds. Subsequent “no-ligand” and “with-ligand” attractors
are determined as follows: each state within the “with-ligand” attractor (or the only state
in the case of a single-state attractor) is modified such that all ligand nodes are off (if
the ligand was in a complex with another component, the second component’s unbound
state is also turned on to ensure that said component remains within the system). The
network is then simulated using these initial states until reaching their corresponding
attractors. If these attractors are not identical (which may occur if the “with-ligand”
attractor was cyclic), the simulation rounds are stopped and several outputs representing
the inconsistent attractors and traversed state space are written to file along with a warn-
ing to the user. Attractor identity/similarity is measured using the Hamming distance,
accounting for potential phase shifts between the cyclic attractors as described in [29]. If
all “no-ligand” attractors reached from the initial states of the “with-ligand” attractor are
identical, this process is repeated to determine the next “with-ligand” attractor(s). Each
state within the new “no-ligand” attractor is modified such that the ligand is present in
its unbound state, and the corresponding “with-ligand” attractors and their similarities
are determined.

3. Meta-attractor determination. After each round of attractor simulation, the newly
generated “with-ligand” and “no-ligand” attractors are compared to those generated in
previous simulation rounds. If both attractors are identical to previously determined
attractors, the simulation rounds end as a meta-attractor has been found: this is because
the simulation is deterministic. All trajectories and attractors are written to file in both
CSV and RData formats for inspection by the user, and a graph representing the trajec-
tory through state space traversed during simulation is written in XGMML format (see
Results for examples).

(Pseudo‑)quantitative comparison of a rxncon model to experimental data: ScoreNet.R

ScoreNet.R is the heart of the rxncon model validation pipeline in kboolnet. Its goal
is to systematically compare the outputs of the model to experimental data obtained
with different sets of stimuli and perturbations. The overall workflow of ScoreNet.R is
shown in Fig. 1, and the key components described below.

Cloud-enabled MIDAS-formatted experimental database. To facilitate the storage
of experimental data in a single cloud-enabled database, we defined a modified version
of the MIDAS (Minimum information for data analysis in systems biology) format origi-
nally created for DataRail [30]. This modified format is machine- and human-readable
and allows for the storage of experimental data from heterogeneous sources in a single
Excel or Google Sheets file. In our implementation, data is organized into “sub-tables”,
each of which describes an experiment, including the treatments applied, data acqui-
sition timepoints, and responses. Mapping of treatments to rxncon network nodes is
accomplished through a TreatmentDefs sheet, which defines the name of a treatment,
the effect of the treatment (stimulation, inhibition, or knockout/knockdown), and the

Page 7 of 16Carretero Chavez et al. BMC Bioinformatics (2023) 24:246

rxncon nodes affected by the treatment. As the database is intended to include data from
various sources, it must be normalized so that data values lie between 0 and 1; such nor-
malization is the responsibility of the user.

Experimental data pre-processing. ScoreNet.R first merges all “sub-tables” in the
provided experimental data file into a single table of all experimental perturbations and
the resulting data measurements. To enable comparison with rxncon Boolean networks
that are not time-resolved and can only predict the (pseudo-)steady state of a system,
the merged data must then be collapsed to two timepoints: pre- and post-stimulation. It
is assumed that all data values acquired at t = 0 are pre-stimulation. The user can select
all other data points (i.e. t > 0) as post-stimulation data points or only data points lying
within specific time bins via the script configuration file. After this, all pre-stimulation
data values and post-stimulation data values for each output and combinations of stim-
uli/inhibitor are averaged, resulting in two data points for each output/perturbation
combination.

Generating rxncon predictions and quantifying their agreement with experi-
ments. A table of corresponding simulation predictions for each combination of
perturbations is then generated as follows: the system is simulated starting from a user-
provided initial state (or if not provided, the rxncon-generated “neutral” state), with all
knocked out and stimulated nodes for the perturbation forced off, until it reaches the
“pre-stimulation” attractor. This attractor is then quantified for all outputs by dividing
the number of states the output is “on” in the attractor by the total number of states in
the attractor, resulting in a value between 0 (always “off”) and 1 (always “on”). An arbi-
trary state from the pre-stimulation attractor (if the model behavior is internally con-
sistent as determined by VerifyModel.R, state choice within the attractor does not affect
the outcome) is used as the initial state for another simulation, with all inhibited nodes
forced off and all stimulated nodes forced on. The resulting attractor is again quantified
and used as the post-stimulation data point. These data points are used to calculate the
mean square error (MSEp,o) for each perturbation combination p and output o

where t = 0 is the pre-stimulation time point and t = 1 is the post-stimulation time point.
The overall mean square error MSEtot is calculated as

where n and m are the number of perturbation combinations and measured outputs,
respectively.

Dynamic visualization of rxncon model trajectories in Boolean state space: AnimatePath.R

Animations of the paths generated using VerifyModel.R or BoolNetSim.R can be made
using AnimatePath.R. This script functions by automatically creating stills of a regula-
tory graph of the network (nodes are colored by their ON/OFF status) using the RCy3

MSEp,o =

1

t=0

experimentp,o − simulationp,o
2

2

MSEtot =
1

nm

n
∑

p=1

m
∑

o=1

MSEp,o

Page 8 of 16Carretero Chavez et al. BMC Bioinformatics (2023) 24:246

[27] API to control Cytoscape [28]. These stills are then joined into a single GIF with
numbered frames using the ImageMagick library. An example of such an animation may
be found in the Additional File 1.

Results
A cloud‑enabled rxncon modeling workflow

The kboolnet package is designed to provide a variety of verification, validation, and visu-
alization (VVV) tools that together form a cloud-enabled workflow for the development
of rxncon models (Fig. 2). The workflow extends and automates existing rxncon func-
tionality and is centered on analysis of the model once converted to a BoolNet Boolean
network.

The verification part of the workflow consists of VerifyModel.R, a script which can
identify and report a variety of model behaviors and responses to stimuli and perturba-
tions. The script performs formal verification of the model by checking the responsive-
ness of the system to repeated applications of stimuli, outputting the resulting trajectory
and a graph visualizing the space of states and attractors reached.

The model validation, which involves the assessment of the model’s agreement with
either experimental data or general (experimentally-informed) expectations about the
behaviors of its components, is implemented in the form of three scripts: TruthTable.R,
SensitivityAnalysis.R, and ScoreNet.R. TruthTable.R can be used for quick analysis of
the behavior of the model (or portions thereof) by outputting a “truth-table” like graph
which shows the response of the system to all possible combinations of a given set of
stimuli and inhibitors. SensitivityAnalysis.R examines the effect of inhibiting all reac-
tions and knocking out all components individually on a certain set of output nodes
under with- and no-ligand conditions. The final script, ScoreNet.R, compares behavior of
the model to a (modified) MIDAS-format experimental database, outputting both visual
and numerical metrics that can serve as benchmarks of model quality.

Fig. 2 Overall workflow for the kboolnet package. A cloud-stored rxncon model can be iteratively developed
using the three portions of the kboolnet workflow: verification of the model’s behavior (responsiveness
to ligands and consistency between attractors representing the same biological state), validation against
experimental data, and visualization of model trajectories and topology

Page 9 of 16Carretero Chavez et al. BMC Bioinformatics (2023) 24:246

Model visualization is handled by four scripts: PlotPath.R, PlotPathComparison.R,
PlotModules.R, and AnimatePath.R. PlotPath.R outputs a 2D plot of a trajectory
where columns represent timepoints and rows represent nodes in the Boolean net-
work, with blue squares indicating “on” states and white squares indicating “off” states.
PlotPathComparison.R generates a similar visualization after aligning and overlaying two
such trajectories, showing their similarities and differences. PlotModules.R extracts all
user-defined modules from a rxncon model file and outputs reaction-contingency graphs
for each of them in the XGMML format, allowing for fast visualization of the topology
of each module. Finally, AnimatePath.R can animate regulatory or state graphs of a rxn-
con network using a trajectory or attractor produced by VerifyModel.R or BoolNetSim.R.
This provides a dynamic representation of the flow of information through the model,
potentially providing novel insights about model behavior (an example animation may
be found in the Additional File 1).

This workflow is cloud enabled, allowing for the storage of the rxncon model and
modified MIDAS-format experimental data as a Google Sheets file. The above verifica-
tion and validation scripts, as well as PlotModules.R, download the latest version of the
model (and experimental database, if necessary). This simplifies iterative and collabora-
tive development of the model.

Modular tagging and validation of rxncon rules

The model-building process can often result in the definition of large numbers of
reaction rules and contingencies (e.g. a model of Saccharomyces cerevisiae’s cell cycle
included 790 reaction rules and 598 contingencies [9, 30]). This can lead to challenges
when attempting to maintain, visualise, and evaluate a large-scale model, prompting us
to implement tagging of rxncon reactions and contingencies by user-defined module and
a numerical quality score. This allows for the extraction of modules for easier analysis as
well as inclusion and exclusion of individual reactions/contingencies on the fly (Fig. 3A,
B). To implement module tagging, we expanded the format of the original MS Excel (the
primary input format for rxncon scripts) by adding a new “!Module” column; tagging
is implemented using a comma-separated list of module names in this column. Quality
tagging exploits the existing “!Quality” column and filters out any reaction or contin-
gency below a given score threshold.

To rapidly and comprehensively characterize the behavior of the extracted modules
under various combinations of stimuli and inhibitors, we created the TruthTable.R
utility. It is inspired by capso’s “global truth tables” [31], validation figures presented
in previous versions of rxncon [6], and truth tables from propositional logic. Given
a list of n stimuli and inhibitors, the chosen module is simulated for all 2n stimulus/
inhibitor combinations beginning from an initial user-provided state (or the rxncon-
defined “neutral” state). This approach would be impractical for the entire model
due to the large number of inputs and output; however, it is very beneficial for the
small-size modules. In each simulation, selected stimuli nodes are fixed “on” and all
inhibited nodes fixed “off”, the simulation is performed until reaching an attractor,
and the output node values are averaged across the attractor states. This results in a
score between 0 (always off) and 1 (always on) for each output node; these scores are
combined in a matrix-type visualization (Fig. 3C). The output can be used to quickly

Page 10 of 16Carretero Chavez et al. BMC Bioinformatics (2023) 24:246

identify which combinations of stimuli are necessary to activate certain output nodes
and which inhibitors abrogate said outputs. The script attempts to “compress” the
visualization vertically; that is, if addition of a certain stimulus or inhibitor results in
insensitivity of the model to other perturbations, all combinations with said stimulus
or inhibitor are combined into a single row. To summarize, TruthTable.R facilitates
validation of a module against existing knowledge of responses of selected output
nodes to combinatorial perturbations.

Whole‑model formal verification

The VerifyModel.R script has been designed to facilitate evaluation of dynamic prop-
erties of the model as a whole, especially when it is complex and involves elements
such as feedback loops. The properties in question are loosely related to those for-
mulated for Petri Nets (a different type of discrete event dynamic systems [32]):
reachability and liveliness. Through VerifyModel.R, we empirically evaluate attractor
reachability for the subgraph of the state graph that is reachable from the given initial
state(s) upon the addition and removal of the given set of stimuli or inhibitors.

We conceptualize a “meta-attractor” as a certain cyclic trajectory through the space
of all possible attractors of a Boolean network, with transitions between attractors

Fig. 3 Example of module extraction and qualitative assessment. The full model of EGFR signaling in
colorectal cancer cells, a bird’s-eye view of which is presented in (A), is broken down into several modules:
EGFR-Src (green), PI3K-Akt (red), Ras-Raf-Mek-Erk (blue), and S6K (yellow). Nodes shared between two or
more modules are left uncolored. Each of these modules can be extracted for independent visualization
and evaluation, as shown for the S6K module in (B) and (C), using the PlotModules.R and TruthTable.R scripts,
respectively

Page 11 of 16Carretero Chavez et al. BMC Bioinformatics (2023) 24:246

being achieved by either removal or addition of the ligand (Fig. 4). For many signaling
systems (cascades) the addition of the ligand produces changes that are reversible, i.e.
the system returns back to its original steady state upon the removal of the ligand. For
such systems, the meta-attractor should be simple (Fig. 4A, C): adding the ligand will
shift the system into a “with-ligand” attractor, and removing the ligand will shift the
system into a “no-ligand” attractor. By contrast, more complex, irreversible behav-
iors may be encountered e.g. when studying cell division or apoptosis (illustrated by
Fig. 4B, D). Finally, some implementations may lead to an unwanted “branching “
behavior where the “with-ligand” attractor is dependent on the specific state within a
“no-ligand” attractor at which the ligand is applied, or vice versa. For these scenarios,
the “meta-attractor” cannot be defined at all because it is no longer deterministic. In
all cases, the ability to detect that a network model becomes “stuck” within a certain
attractor or displays a more complex meta-attractor than expected can be helpful in
model design and optimization.

Previously, this kind of formal verification had only been possible in rxncon by man-
ually adding and removing the ligand in repeated rounds of simulation and compar-
ing the resulting (pseudo-)steady-states/attractors to ensure that the desired system
behavior was achieved [15]. Performing verification in this manner is time consuming
as it requires repetitive sets of steps (edit initial state, simulate, copy files, edit initial
state, etc.). Furthermore, this method of verification only selects a single state within
each attractor as the initial state for the next round, leaving open the possibility that
undesired “branching” behaviors remain hidden. An improved, automated version of
this verification process is available in VerifyModel.R (see Fig. 5 for example applica-
tion, see Implementation for more details).

Fig. 4 State and attractor spaces for two hypothetical boolean networks. State transition graphs of two
rxncon networks (A, B) and their corresponding attractor spaces (C, D). In (A) and (B), simulation of the
network from intermediate states (blue nodes) according to Boolean state transitions (black edges) causes
the system to fall into a cyclic attractor (purple nodes). Addition of the ligand (green edges) or removal
of the ligand (red edges) can cause the network to fall into a new attractor. In (A) and (C), addition of the
ligand causes the system to fall into a single “with-ligand” attractor, and removal of the ligand causes the
system to return to a single “no-ligand” attractor. This meta-attractor is visualized in the attractor space C as
a self-consistent and reversible transition between two attractor nodes. In (B) and (D), removal of the ligand
at different timepoints in the “with-ligand” attractor causes the system to fall into two distinct “no-ligand”
attractors; this “branching” behavior is visualized in the attractor space (D) as a possible transition from a
single attractor node to two different (a.k.a. Inconsistent with each other) attractor nodes both corresponding
to the same “no-ligand” biological state of the system

Page 12 of 16Carretero Chavez et al. BMC Bioinformatics (2023) 24:246

Model validation through a comparison to database of experimental data

Once the model has passed formal verification, it is ready for comparison to experimen-
tal data. The ScoreNet.R script simulates the network under all combinations of stimuli,
inhibitors, and knockouts present in a cloud-stored experimental database. The pre-
dicted responses and experimental data are compared and the mean square error (MSE)
between the two is calculated (see Implementation for details). The calculated MSE
ranges from 0 (perfect agreement) to 1 (perfect disagreement) and provides an easily
interpretable metric to track progress as a model is iteratively developed. For example,
comparing the model presented in Fig. 3A to experimental data collected in SW48 and
HT-29 colorectal adenocarcinoma cells [33, 34] resulted in an MSE of 0.092. After the
addition of a putative Akt→Cot→RSK edge [35], the MSE dropped to 0.081, a small but
measurable improvement (Fig. 6 shows the full output from ScoreNet.R).

A note on performance and scalability

Because kboolnet is designed to facilitate the exploration of the overall behavior and
state space of a rxncon model, its speed and performance are strongly dependent on the
size and connectivity of the model. By design, kboolnet fully utilizes the performance
improvement mechanisms of the rxncon formalism (the bipartite graph representa-
tion of the network) and its published implementation [6, 7] that compiles models into
Boolean networks and takes advantage of the C-accelerated simulation engine of the
BoolNet R package [12]. Despite these optimizations, we recognize the possibility of

Fig. 5 Trap detection with VerifyModel.R. A A representative rxncon model flagged by VerifyModel.R as having
inconsistent attractors upon repeated addition and removal of the ligand. B This is confirmed by plots of the
full paths the network traverses upon the addition and removal of the ligand (attractors are striped, substrate
states colored purple). C Automatically generated comparison plots reveal that the substrate remains
phosphorylated in the first “no-ligand”attractor, but not in the second. D This “trap” behaviour is corrected by
addition of a dephosphorylation reaction to produce a network (D) with consistent no-ligand attractors as
shown in (E) and (F)

Page 13 of 16Carretero Chavez et al. BMC Bioinformatics (2023) 24:246

decreased scalability when explicitly exploring the state space of the resulting Boolean
network, as the number of possible states grows exponentially with the number of
nodes. For this reason, kboolnet focuses on analyzing only the subset of the model’s state
space that is reachable from biologically-relevant initial states. Furthermore, the module
tagging, module extraction, and modular validation functionality of kboolnet are specifi-
cally designed to facilitate the development of large models through a divide-and-con-
quer approach.

Conclusion
The kboolnet toolkit provides a systematic workflow for the development of rxncon mod-
els supplemented by a suite of verification, validation, and visualization (VVV) tools. By
emphasizing modularity, kboolnet simplifies the process of building large and compre-
hensive models of cell signaling networks spanning multiple biological subunits which
can be individually constructed, validated, and visualized. The kboolnet suite allows for
both qualitative assessments of model integrity and (pseudo-)quantitative comparisons
to real biological data. These features are centralized around a cloud-hosted version of
both the rxncon model and an experimental database, collectively allowing for fast, itera-
tive, and collaborative development of any kind of rxncon model. Future development of
the kboolnet toolkit will expand its capabilities to include pseudo-quantitative modes of
simulation supported by the rxncon formalism, namely the network-free stochastic sim-
ulator NFsim [10], as well as expand existing tools for the generation of novel hypotheses
and identification of potential drug targets.

Availability of Data and Materials
The code described and example models analysed in the paper are available on the pro-
ject GitHub at https:// github. com/ Kufal ab- UCSD/ kbool net/.

Project name: kboolnet.
Project home page: https:// github. com/ Kufal ab- UCSD/ kbool net/
Operating system(s): Windows, Mac, Linux.

Fig. 6 Comparison to experimental data with ScoreNet.R. Columns on the left represent output nodes,
columns on the right represent combinations of stimuli (green) and inhibitors (red). Cells are colored
according to the MSE between experimental data points (black, solid line) and predicted response (grey,
dotted line). Cells with no experimental data available are colored grey

https://github.com/Kufalab-UCSD/kboolnet/
https://github.com/Kufalab-UCSD/kboolnet/

Page 14 of 16Carretero Chavez et al. BMC Bioinformatics (2023) 24:246

Programming language: R, Python.
Other requirements: See implementation for package dependencies.
License: This software is Copyright © 2023 The Regents of the University of Califor-

nia. All Rights Reserved. Permission to copy, modify, and distribute this software and its
documentation for educational, research and non-profit purposes by non-profit organi-
zations, without fee, and without a written agreement is hereby granted, provided that
the above copyright notice, this paragraph and the following three paragraphs appear
in all copies. Permission for for-profit organizations to make commercial use of this
software may be obtained by contacting: Office of Innovation and Commercialization,
9500 Gilman Drive, Mail Code 0910, University of California La Jolla, CA 92093-0910,
(858) 534-5815, innovation@ucsd.edu. This software program and documentation
are copyrighted by The Regents of the University of California. The software program
and documentation are supplied “as is”, without any accompanying services from The
Regents. The Regents does not warrant that the operation of the program will be unin-
terrupted or error-free. The end-user understands that the program was developed for
research purposes and is advised not to rely exclusively on the program for any reason.
IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS
SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALI-
FORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE
UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
PROVIDED HEREUNDER IS ON AN “AS IS” BASIS, AND THE UNIVERSITY OF
CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS. Restrictions to use by non-
academics: Permission for commercial use by non-profit organizations must be acquired
from the UC San Diego Office of Innovation and Commercialization (see license for
more information).

Abbreviations
VVV Verification, validation, and visualization
MIDAS Minimum information for data analysis in systems biology
MSE Mean square error

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 023- 05329-6.

Additional file 1. An example of an rxncon model path animation, generated by the AnimatePath.R script.

Acknowledgements
We thank Dr. Weijun Xu for providing initial motivation for the toolkit, and Alexis Lona and other members of the
Kufareva lab for useful feedback and for testing the software. We acknowledge Prof. Tracy Handel (UC San Diego) and
members of her lab for valuable discussions. We also thank Prof. Nils Blüthgen and Bertram Klinger (Charité Universitäts-
medizin & Humboldt University, Berlin) for providing access to data on EGFR- and RAS-mediated signaling in colorectal
cancer.

https://doi.org/10.1186/s12859-023-05329-6

Page 15 of 16Carretero Chavez et al. BMC Bioinformatics (2023) 24:246

Author contributions
IK devised the project and supervised its implementation. WCC and IK jointly designed the software specifications with
input and help from MK. WCC wrote the software. WCC, MK, and IK tested the software. WCC and IK wrote the manu-
script with input from EK and MK. All authors approved the manuscript in its present form.

Funding
This work was supported by NIH grants R01 GM136202, R21 AI149369, and R21 AI156662 to IK. The funders had no role
in the design of the study, in collection, analysis, or interpretation of data, or in preparation of the manuscript.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 20 December 2021 Accepted: 9 May 2023

References
 1. Samaga R, Klamt S. Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling net-

works. Cell Commun Signal. 2013;11:1–19.
 2. Le Novère N, Hucka M, Mi H, et al. The systems biology graphical notation. Nat Biotechnol. 2009;27:735–41.
 3. Narat J, Eungdamrong RI. Modeling cell signaling networks. Biol Cell. 2004;96:355.
 4. Flöttmann M, Krause F, Klipp E, Krantz M. Reaction-contingency based bipartite Boolean modelling. BMC Syst Biol.

2013;7:1–12.
 5. Tiger C-F, Krause F, Cedersund G, Palmér R, Klipp E, Hohmann S, Kitano H, Krantz M. A framework for mapping,

visualisation and automatic model creation of signal-transduction networks. Mol Syst Biol. 2012;8:578.
 6. Romers J, Thieme S, Münzner U, Krantz M. A scalable method for parameter-free simulation and validation of

mechanistic cellular signal transduction network models. NPJ Syst Biol Appl. 2020;6:1–13.
 7. Romers JC, Krantz M. rxncon 2.0: a language for executable molecular systems biology. bioRxiv. 2017;107136
 8. Hlavacek WS, Faeder JR, Blinov ML, Perelson AS, Goldstein B. The complexity of complexes in signal transduction.

Biotechnol Bioeng. 2003. https:// doi. org/ 10. 1002/ bit. 10842.
 9. Münzner U, Klipp E, Krantz M. A comprehensive, mechanistically detailed, and executable model of the cell division

cycle in Saccharomyces cerevisiae. Nat Commun. 2019;10:1–12.
 10. Sneddon MW, Faeder JR, Emonet T. Efficient modeling, simulation and coarse-graining of biological complexity with

NFsim. Nat Methods. 2010;8:177–83.
 11. Terfve C, Cokelaer T, Henriques D, MacNamara A, Goncalves E, Morris MK, van Iersel M, Lauffenburger DA, Saez-

Rodriguez J. CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms.
BMC Syst Biol. 2012;6:1–14.

 12. Müssel C, Hopfensitz M, Kestler HA. BoolNet–an R package for generation, reconstruction and analysis of Boolean
networks. Bioinformatics. 2010. https:// doi. org/ 10. 1093/ bioin forma tics/ btq124.

 13. R Core Team. The R project for statistical computing. 2020.
 14. RStudio Team. RStudio. 2020.
 15. Romers J, Thieme S, Münzner U, Krantz M. Using rxncon to develop rule-based models. In: Hlavacek WS, editor.

Modeling biomolecular site dynamics. New York: Humana Press; 2019. p. 71–118.
 16. Wickham H. ggplot2: elegant graphics for data analysis. Berlin: Springer; 2016.
 17. Wickham H, François R, Henry L, Müller K. dplyr: a grammar of data manipulation. 2021.
 18. Schauberger P, Walker A. openxlsx: read, write and edit xlsx files. 2020.
 19. D’Agostino McGowan L, Bryan J. Googledrive: an interface to google drive. 2020.
 20. Wickham H. Tidyr: tidy messy data. 2021.
 21. Borchers HW. Numbers: number-theoretic functions. 2019.
 22. Wickham H, Hester J, Ooms J. xml2: parse XML. 2020.
 23. Auguie B. Egg: extensions for “ggplot2”: custom geom, custom themes, plot alignment, labelled panels, symmetric

scales, and fixed panel size. 2019.
 24. Davis TL. optparse: command line option parser. 2020.
 25. Csardi G, Nepusz T. The igraph software package for complex network research. InterJ Complex Syst. 2006;1695:1–9.
 26. Application directories: determine where to save data, caches, and logs [R package rappdirs version 0.3.3]. 2021.
 27. Gustavsen JA, Pai S, Isserlin R, Demchak B, Pico AR. RCy3: network biology using Cytoscape from within R. F1000Re-

search. 2019;8:1774.
 28. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software

environment for integrated models of biomolecular interaction networks. Genome Res. 2003. https:// doi. org/ 10.
1101/ gr. 12393 03.

https://doi.org/10.1002/bit.10842
https://doi.org/10.1093/bioinformatics/btq124
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303

Page 16 of 16Carretero Chavez et al. BMC Bioinformatics (2023) 24:246

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 29. Trinh H-C, Kwon Y-K. RMut: R package for a Boolean sensitivity analysis against various types of mutations. PLoS
ONE. 2019;14: e0213736.

 30. Saez-Rodriguez J, Goldsipe A, Muhlich J, Alexopoulos LG, Millard B, Lauffenburger DA, Sorger PK. Flexible informatics
for linking experimental data to mathematical models via DataRail. Bioinformatics. 2008;24:840–7.

 31. Guziolowski C, Videla S, Eduati F, Thiele S, Cokelaer T, Siegel A, Saez-Rodriguez J. Exhaustively characterizing feasible
logic models of a signaling network using answer set programming. Bioinformatics. 2013;29:2320–6.

 32. Reisig W. Petri nets: an introduction. Berlin: Springer Science & Business Media; 2012.
 33. Stelniec-Klotz I, Legewie S, Tchernitsa O, Witzel F, Klinger B, Sers C, Herzel H, Blüthgen N, Schäfer R. Reverse engineer-

ing a hierarchical regulatory network downstream of oncogenic KRAS. Mol Syst Biol. 2012. https:// doi. org/ 10. 1038/
msb. 2012. 32.

 34. Hood FE, Klinger B, Newlaczyl AU, Sieber A, Dorel M, Oliver SP, Coulson JM, Blüthgen N, Prior IA. Isoform-specific Ras
signaling is growth factor dependent. Mol Biol Cell. 2019. https:// doi. org/ 10. 1091/ mbc. E18- 10- 0676.

 35. Kane LP, Mollenauer MN, Xu Z, Turck CW, Weiss A. Akt-dependent phosphorylation specifically regulates Cot induc-
tion of NF-kappa B-dependent transcription. Mol Cell Biol. 2002;22:5962–74.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/msb.2012.32
https://doi.org/10.1038/msb.2012.32
https://doi.org/10.1091/mbc.E18-10-0676

	kboolnet: a toolkit for the verification, validation, and visualization of reaction-contingency (rxncon) models
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Implementation
	Recap of rxncon
	Kboolnet implementation overview
	Evaluation of the attractor space of a rxncon model in the presence and absence of stimuli and perturbations: VerifyModel.R
	(Pseudo-)quantitative comparison of a rxncon model to experimental data: ScoreNet.R
	Dynamic visualization of rxncon model trajectories in Boolean state space: AnimatePath.R

	Results
	A cloud-enabled rxncon modeling workflow
	Modular tagging and validation of rxncon rules
	Whole-model formal verification
	Model validation through a comparison to database of experimental data
	A note on performance and scalability

	Conclusion
	Availability of Data and Materials
	Anchor 21
	Acknowledgements
	References

