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Abstract 

Background:  Antibiotic resistance is a major public health concern around the globe. 
As a result, researchers always look for new compounds to develop new antibiotic 
drugs for combating antibiotic-resistant bacteria. Bacteriocin becomes a promising 
antimicrobial agent to fight against antibiotic resistance, due to cases of both broad 
and narrow killing spectra. Sequence matching methods are widely used to identify 
bacteriocins by comparing them with the known bacteriocin sequences; however, 
these methods often fail to detect new bacteriocin sequences due to their high 
diversity. The ability to use a machine learning approach can help find new highly 
dissimilar bacteriocins for developing highly effective antibiotic drugs. The aim of this 
work is to develop a machine learning-based software tool called BaPreS (Bacteriocin 
Prediction Software) using an optimal set of features for detecting bacteriocin protein 
sequences with high accuracy. We extracted potential features from known bacteriocin 
and non-bacteriocin sequences by considering the physicochemical and structural 
properties of the protein sequences. Then we reduced the feature set using statistical 
justifications and recursive feature elimination technique. Finally, we built support vec-
tor machine (SVM) and random forest (RF) models using the selected features and uti-
lized the best machine learning model to implement the software tool.

Results:  We applied BaPreS to an established dataset and evaluated its prediction 
performance. Acquired results show that the software tool can achieve a prediction 
accuracy of 95.54% for testing protein sequences. This tool allows users to add new 
bacteriocin or non-bacteriocin sequences in the training dataset to further enhance 
the predictive power of the tool. We compared the prediction performance of the BaP-
reS with a popular sequence matching-based tool and a deep learning-based method, 
and our software tool outperformed both.

Conclusions:  BaPreS is a bacteriocin prediction tool that can be used to discover 
new highly dissimilar bacteriocins for developing highly effective antibiotic drugs. This 
software tool can be used with Windows, Linux and macOS operating systems. The 
open-source software package and its user manual are available at https://​github.​com/​
surai​ya14/​BaPreS.
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Background
Bacteria become antibiotic resistant due to the excessive use of drugs in healthcare and 
agriculture. In the United States, around 3-million people get infected and approximately 
35,000 individuals die because of antibiotic-resistant organisms [1]. Therefore, the resist-
ance nature of bacteria drives the need for inventing novel antimicrobial compounds to 
treat antibiotic-resistant patients. Researchers developed several approaches to extract 
natural products as antimicrobial compounds by mining the bacterial genomes [2]. 
Bacteriocin is one type of natural antimicrobial compound which is a bacterial riboso-
mal product. As bacteriocins have both broad and narrow killing spectra depending on 
their specific structure and mode of action, they became attractive choices in the dis-
covery of novel drugs that can produce less resistance in bacteria [3–5]. Current whole 
genome sequencing technology provides many genes that encode bacteriocins and these 
sequences are publicly available for future research. Researchers introduced several 
methods to identify bacteriocins from bacterial genomes based on bacteriocin precursor 
genes or context genes. For example, BAGEL [6] and BACTIBASE [7] are two publicly 
available online tools that curate experimentally validated and annotated bacteriocins. 
Like the widely used protein searching tool BLASTP [8, 9], these methods also allow 
users to identify putative bacteriocin sequences based on the homogeneity of known 
bacteriocins. However, these similarity-based approaches often fail to detect useful 
sequences that have high dissimilarity with known bacteriocin sequences; thereby, gen-
erating an undesired number of false negatives. To resolve this problem, some predic-
tion tools, such as BOA (Bacteriocin Operon Associator) [10], were developed based on 
locating conserved context genes of the bacteriocin operon, but they still rely on homol-
ogy-based genome searches.

Machine learning technique can be applied as a substitute for sequence similarity and 
context-based methods that can utilize potential peptide (protein) features of bacteri-
ocin and non-bacteriocin to make strong prediction in identifying novel bacteriocin 
sequences. Recently some machine learning-based bacteriocin prediction techniques 
were proposed that utilized the presence or absence of k-mer (i.e., subsequences of 
length k) as potential features and represented peptide sequences using word embed-
ding [11, 12]. There are also deep learning-based methods for bacteriocin prediction, 
for example RMSCNN [13] used a convolutional neural network [14, 15] for identify-
ing marine microbial bacteriocins. However, these existing approaches did not consider 
the primary and secondary structure information of peptides that are crucial to find 
highly dissimilar bacteriocins. Also, those strategies did not apply any feature evaluation 
algorithm to eliminate the unnecessary features that may reduce the achievement of a 
machine learning classifier.

In this work we present a predictive pipeline for identifying bacteriocins by generating 
features from the physicochemical and structural characteristics of peptide sequences. 
We evaluated and selected subsets of the candidate features based on Pearson correla-
tion coefficient, t − test, mean decrease Gini (MDG), and recursive feature elimination 
(RFE) analyses. The reduced feature sets called optimal feature sets are then used to pre-
dict bacteriocins using support vector machine (SVM) [16] and random forest (RF) [17] 
machine learning models. The main objective was to develop a software package called 
Bacteriocin Prediction Software (BaPreS) using the best machine learning model with a 
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simple and intuitive graphical user interface (GUI) that can generate all required optimal 
features to get prediction results for testing protein sequences. The software provides 
options to users to test multiple sequences and add new training bacteriocin or non-bac-
teriocin sequences to the machine learning model for improving the prediction capabil-
ity. BLASTP, a sequence matching tool and RMSCNN, a deep learning model were used 
to compare the performance of our software tool.

Implementation

The overall workflow of our methods is depicted in Fig.  1. The steps in our methods 
include gathering datasets of bacteriocin and non-bacteriocin protein sequences, gener-
ating potential features, performing feature evaluation and recursive feature elimination 
analyses to remove irrelevant and weakest features, and finally building machine learn-
ing models using the selecting features to compare the prediction performance with the 
sequence matching and deep learning-based approaches.

We retrieved experimentally validated and annotated bacteriocin sequences (posi-
tive sequences) from two publicly available databases BAGEL [6] and BACTIBASE [7]. 
Non-bacteriocin sequences (negative sequences) were collected from the data used in 
RMSCNN [13]. Initially, we gathered a total of 483 positive and 500 negative sequences. 
As many of these accumulated sequences are duplicate or of high similarity and a 
machine learning model can be biased because of these duplicate sequences, we utilized 
CD-HIT tool [18] to obtain the unique positive and negative sequences by removing the 
sequences having ≥ 90% similarity. Choosing a lower similarity cutoff in the CD-HIT tool 
may lessen the sequence homology bias; however, as bacteriocins are a heterogeneous 

Fig. 1  Illustrating the steps involved in the prediction of bacteriocin protein sequence
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class of bacterial peptides (proteins) and there is a possibility that various novel bacteri-
ocins have not yet been detected, we can consider a threshold of 90% sequence similarity 
to predict novel bacteriocin sequences [19–22]. Finally, we obtained 283 and 497 unique 
positive and negative sequences, respectively. To deal with the imbalanced dataset prob-
lem, we reduced the negative sequences from 497 to 283 by random sampling to make 
the number of positive and negative examples equal. We considered 80% and 20% of the 
total sequences as training and testing datasets, respectively. Positive and negative train-
ing sequences, in FASTA format, are listed in Additional file 1. The distribution of the 
training data to understand the pattern or gain insights into the relationships among the 
features is depicted in (Additional file 2: Fig. S1). Positive and negative testing sequences 
are presented in Additional file 3.

After collecting the positive and negative protein sequences, we generated potential 
candidate features from the sequences. Since there are 20 natural amino acids, we gener-
ated a 20D (‘D’ indicates dimension) amino acid composition (AAC) feature vector for 
every protein sequence where each value in the vector gives the fraction of a specific 
amino acid type. We extracted 400D dipeptide composition (DC) feature vectors for the 
sequences where each value indicates the fraction of dipeptides in a protein sequence 
[23]. Pseudo amino acid composition (PseAAC) and amphiphilic pseudo amino acid 
composition (APseAAC) feature vectors of 30D and 40D, respectively, were created for 
each sequence as proposed by Chou [24, 25]. We used the composition/transition/dis-
tribution (CTD) model [26, 27] to generated 147D feature vectors for various physico-
chemical amino acid properties. Amino acids are divided into three classes in the CTD 
model. For each sequence, we obtained 3D, 3D and 15D feature vectors for each phys-
icochemical property as measurements of the composition, transition, and distribution 
of the classes, respectively. Finally, we generated 6D feature vectors from the secondary 
structure (SS) of each sequence. The SS features includes position index, spatially con-
secutive states, and segment information of the 3 structure states: alpha helices, beta 
sheets and gamma coils. Finally, we obtained a total of 643 features as listed in Table 1.

Unnecessary features may worsen the prediction performance of a machine learning 
model and it is crucial to remove those features before building the model. We evaluated 
features solely on the training data to prevent information leakage in handling unseen 
values in the testing dataset. We performed statistical analyses on the training data to 
identify the optimal or best feature sets to build our machine learning models. At first, 
we estimated Pearson correlation coefficient ρx,y given by Eq. 1, to measure the correla-
tion values among features.

Table 1  List of features

Feature Dimension

AAC​ 20

DC 400

PseAAC​ 30

APseAAC​ 40

CTD 147

SS 6
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Here, x and y are two features, E indicates the expectation,σx and σy indicate the stand-
ard deviation, and µx and µy are mean values of x and y , respectively. High absolute the 
value of ρx,y indicates strong correlation with other features. If a feature is highly cor-
related with another feature, we can consider one of these two features and ignore the 
other one. We removed one of the two features if they have correlation value was ≥ 0.9, 
which resulted in the number of features decreasing from 643 to 590.

Then we considered two additional statistical approaches to feature reduction. First, a 
standard t-test [28, 29] was applied to each of the 590 features to see if a statistically sig-
nificant difference existed between the values of the feature in the positive and negative 
bacteriocin sequences of our dataset. We estimated the p-values for all 590 features to 
check if it was possible to discard the null hypothesis of no statistically significant differ-
ence. A low p-value for a feature indicates high importance of the feature for predicting 
bacteriocin sequences, and in that situation, we can discard the null hypothesis. We con-
sidered a threshold p-value of 0.05 and eliminated all features having p > 0.05. After fil-
tering the features based on the t-test results, our feature vector was reduced from 590D 
to 140D, and we called the resulting data the t-test-reduced feature set. The p-values of 
the selected features are shown in Fig. 2 on linear and logarithmic scales. We noticed 
that the composition and distribution features of the CTD model were the top selected 
features in the t-test-reduced feature set.

We also built the random forest (RF) model with the 590 features (obtained from the 
Pearson correlation coefficient analysis) to estimate the mean decrease Gini (MDG). In 
the RF model, MDG corresponds to the feature importance that indicates each feature’s 
contribution to the homogeneity of the nodes and leaves [30, 31]. Equation 2, where Pi 
is the probability of being in class i (positive or negative), was used to calculate the Gini 
index. A node is purer when its Gini index is closer to 0.

Gini index of 0 and 1 corresponds to complete homogeneity and heterogeneity of 
the data, respectively. MDG is computed from the mean of all the drop of Gini indices 

(1)ρx,y =
E (x − µx) y− µy

σxσy

(2)G = 1−
2

∑

i=1

P2
i

Fig. 2  Trends of the p-values of the reduced feature set: a p-value vs. selected features and b − log10(p-value) 
vs. selected features
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across the whole of the trees built in the RF model. Greater MDG value indicates a 
more important feature, and with consideration of MDG values for the features, we 
reduced the dimension of the feature set to 44D and named it the MDG-reduced fea-
ture set. Features of the CTD model, PseAAC, and SS were identified as top selected 
features in the MDG-reduced feature set.

We further filtered features from the t-test-reduced and MDG-reduced feature sets 
using the recursive feature elimination (RFE) technique where a machine learning 
model is fitted, and features were ranked based on the evaluation of the training per-
formance of the model. We considered two machine learning models RF and SVM 
in the RFE analyses. SVM maps data into a high dimensional space and identifies the 
hyperplane to separate the data of positive and negative classes. It considers a ker-
nel function for the transformation of the data and a set of weights is used to define 
the hyperplane. There is a set of data points nearest to the hyperplane (called sup-
port vectors) that plays the crucial role in computing the decision boundary. RF is an 
ensemble model consisting of several decision trees where each tree is trained using 
a subset of the data. All decision trees independently make prediction on the data, 
and the final prediction is made by the RF by taking the majority votes of the decision 
trees. We applied 5 times repeated 10 fold cross-validation to assess the capability of 
the SVM and RF in the training phase in the RFE analyses. We obtained 42 (RF with 
MDG-reduced feature sets), 57 (RF with t-test-reduced feature sets), 44 (SVM with 
MDG-reduced feature sets) and 131 (SVM with t-test-reduced feature sets) features.

We trained SVM and RF models with different feature subsets obtained after RFE 
analyses. To find the best optimal feature set, we measured test performance of our 
tuned models, SVM and RF, for the reduced feature sets. We evaluated the predic-
tion performance using Eqs. 3, 4, 5, 6 and 7, where TP, TN, FP, and FN correspond 
to true positives (correctly classified as positives values), true negatives (correctly 
classified as negative values), false positives (incorrectly classified as positive values), 
and false negatives (incorrectly classified as negative values), respectively. TestAcc , 
TestMCC , Testrecall , Testprecision , and TestF1 indicate the accuracy, Matthews correlation 
coefficient (MCC) [32, 33], recall, precision, and F1 score, respectively, on the testing 
dataset. The MCC is considered to measure the effectiveness of our classifiers, with 
a value range of − 1 to + 1. The larger the MCC value, the better prediction is. The 
recall is used to measure how well a machine learning model can correctly predict 
positive examples with respect to all positive examples inputted to the model. The 
precision is used to measure the proportion of correct positive examples in the list 
of all predicted positive examples returned by the model. We calculated F1 score by 
taking the weighted average of precision and recall where the score of 1 and 0 indicate 
strong and poor prediction performance, respectively. We also estimated the confi-
dence interval for the prediction results that provides upper and lower bound with a 
certain degree of confidence (in our case, 95%), where the true value of the outcome 
of the model exists. The higher the confidence interval, the greater the uncertainty 
of the predictions. All scripts used for the feature extraction, feature evaluation and 
performance comparison of SVM and RF models are available at https://​github.​com/​
surai​ya14/​ML_​bacte​rioci​ns.

https://github.com/suraiya14/ML_bacteriocins
https://github.com/suraiya14/ML_bacteriocins
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Finally, we implemented the BaPreS software tool using the machine learning model 
that showed the best prediction performance. Figures 3 and 4 show the architecture and 
GUI of the tool, respectively. All the required features in the BaPreS tool were generated 
using R and the GUI was designed using Python3. In this tool, users can upload and 
save an input file that should contain all protein sequences in FASTA format. If a user 
chooses the option of predicting bacteriocin, the BaPreS software tool will consider all 
protein sequences in the input file as testing sequences and generate all required optimal 
features with their feature values for the testing protein sequences automatically, classify 
them as bacteriocin or non-bacteriocin sequences and save the classification results with 
probability scores in two output files. Users can add new bacteriocin or non-bacteriocin 
protein sequences to the training dataset and return to the original training dataset sup-
plied with this tool, if desired. The tool has a textbox in the GUI where users can see 

(3)TestAcc =
TP + TN

TP + TN + FP + FN

(4)TestMCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

(5)Testrecall =
TP

TP + FN

(6)Testprecision =
TP

TP + FP

(7)TestF1 = 2×

(

Testprecision × Testrecall
)

(

Testprecision + Testrecall
)

Fig. 3  Architecture of the BaPreS software tool
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probability and classification results. The software package and the manual to use this 
software can be found at https://​github.​com/​surai​ya14/​BaPreS.

Results and discussion
We mentioned earlier that SVM and RF machine learning models were used in the RFE 
approach to measure the training performance in terms of area under the receiver oper-
ating characteristic curve (AUC) by recursively considering subsets of the t-test-reduced 
and MDG-reduced feature sets independently. Figure 5(a) and (b) show the AUC values 
for the subset of the features in the RFE approach where RFE-MDG-RF and RFE-MDG-
SVM depict the RFE analyses with the MDG-reduced feature sets for RF and SVM 
machine learning models, respectively. Similarly, Fig. 5(c) and (d) are RFE analyses with 
the t-test-reduced feature sets for RF and SVM machine learning models, respectively. 
We noticed gradual decreasing of AUC values with the elimination of the features from 
the machine learning models. Table 2 lists the maximum AUC values obtained from the 
machine learning models in the RFE analyses. We obtained the highest AUC value in 
the RF model for the MDG-reduced feature set. The top-5 features obtained from the 
RFE analyses are listed in Table 3. Features of the CTD model and PseAAC features are 
among the top ranked features for all models. More specifically, distribution (first res-
idue) for secondary structure (group 1), distribution (first residue) for hydrophobicity 
(group 3) and distribution (first residue) for normalized van der Waals Volume (group 
3) of the CTD model were found common in the top-5 features of all RFE analyses. It 
is known that most of the bacteriocins are cationic molecules having hydrophobic or 
amphiphilic characteristics and adopt diverse secondary structures, including alpha-hel-
ices, beta-sheets, and coils [19]. Therefore, the top-ranked features identified in the RFE 
analyses should play a critical role in predicting novel bacteriocins.

For our reduced feature sets, we trained SVM and RF models with different feature 
subsets obtained after RFE analyses. We tuned the SVM model with radial basis func-
tion (RBF) and set of cost values C = {4, 8, 16, 32, 64, 128} to find the best parameters. 

Fig. 4  Graphical user interface (GUI) and various service menus of the BaPreS software tool

https://github.com/suraiya14/BaPreS
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Fig. 5  Performance of the RF and SVM machine learning models for the training data in the RFE approach

Table 2  Highest AUC values obtained from RF and SVM for different feature sets

Feature set Machine learning model AUC​

MDG-reduced RF 0.9873

SVM 0.9809

t-test-reduced RF 0.9864

SVM 0.9794

Table 3  Top ranked features found from RF and SVM models in the RFE analyses

Feature rank Feature for RFE-
MDG-RF

Feature for RFE-
MDG-SVM

Feature for RFE-t-
test-RF

Feature for RFE-t-test-
SVM

1 Distribution (first resi-
due) for hydrophobic-
ity (group 3)

PseAAC for the amino 
acid Leucine (L)

Distribution (first 
residue) for charge 
(group 2)

PseAAC for the amino 
acid Leucine (L)

2 Distribution (first 
residue) for secondary 
structure (group 1)

PseAAC for the amino 
acid Arginine (R)

Distribution (first resi-
due) for hydrophobic-
ity (group 3)

PseAAC for the amino 
acid Arginine (R)

3 Distribution (first 
residue) for charge 
(group 2)

Distribution (first resi-
due) for hydrophobic-
ity (group 3)

Distribution (first 
residue) for solvent 
accessibility (group 3)

Distribution (first resi-
due) for hydrophobicity 
(group 3)

4 Distribution (first 
residue) for solvent 
accessibility (group 3)

Distribution (first 
residue) for secondary 
structure (group 1)

Distribution (first 
residue) for secondary 
structure (group 1)

Distribution (first 
residue) for secondary 
structure (group 1)

5 Distribution (first resi-
due) for normalized 
van der Waals Volume 
(group 3)

Distribution (first resi-
due) for normalized 
van der Waals Volume 
(group 3)

Distribution (first resi-
due) for normalized 
van der Waals Volume 
(group 3)

Distribution (first 
residue) for normalized 
van der Waals Volume 
(group 3)
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Similarly, we tuned the RF model with setting ntree = {400, 500} and mtree = {5, 6}. The 
RBF-kernel SVM with cost values of 4, 4, 4 and 8, and RF with ntree values of 500, 400, 
500 and 400 and mtree values of 6, 5, 6 and 6 were found as best parameters for RFE-
MDG-RF, RFE-MDG-SVM, RFE-t-test-RF and RFE-t-test-SVM feature sets, respec-
tively. The prediction results of the models with corresponding best parameters for the 
testing dataset are shown as confusion matrices in Tables S1–S8 (Additional file 4) where 
‘1’ and ‘−  1’ indicate positive (bacteriocin) and negative (non-bacteriocin) sequences, 
respectively. The diagonal entries in the confusion matrices show the correctly classified 
test sequences. The testing MCC, accuracy values, and confidence intervals of the RF 
and SVM models for different feature subset after RFE analyses are listed in Table 4. We 
found that the SVM machine learning model provides the best prediction values (based 
on MCC and accuracy values) for the RFE-t-test-SVM feature set, and prediction prob-
ability values and the predicted bacteriocin sequences obtained from this model for the 
testing dataset are presented in Table S9 (Additional file 5) and Additional file 6, respec-
tively. We found that the best model identified 55 protein sequences as bacteriocins, of 
which the number of true positives is 53. We performed paired t-test on the probability 
values of positive and negative testing data for the best model (i.e., SVM with RFE-t-test-
SVM feature set) and the second-best model (RF with RFE-MDG-SVM feature set). The 
prediction strength (based on the probability of 56 positive sequences) of SVM is higher 
than the RF model by 0.042 (p -value of 0.016). Thus, we obtained a more confident pre-
diction in SVM model compared to the RF model and it is statistically significant if we 
consider p-value threshold of 0.05. For negative samples in the testing set, the mean of 
the probabilistic values of SVM is higher than the RF by 0.051 which is statistically sig-
nificant as well (p -value of 0.007 < 0.05).

We implemented BaPreS software tool using the best classifier i.e., the SVM model 
with RFE-t-test-SVM feature set. Our BaPreS’s prediction performance was compared 
to the sequence matching tool BLASTP (https://​blast.​ncbi.​nlm.​nih.​gov/​Blast.​cgi?​
PAGE=​Prote​ins) [8, 9]. To identify bacteriocins sequences, BLASTP takes positive 
sequences of the training set as subject sequences and positive sequences of the test-
ing set as query sequences and estimates the sequence similarity (percent identity) for 
each query sequence by aligning them with the subject sequences. Similarly, to detect 
non-bacteriocin sequences from BLASTP, we considered all negative sequences of the 
training and testing sets as subject and query sequences, respectively. Figure 6 shows 

Table 4  MCC and accuracy values obtained from RF and SVM for testing data for different RFE 
feature subsets

Feature set after RFE Machine learning 
models

TestMCC TestAcc Confidence interval

RFE-MDG-RF RF 0.8763 0.9464 (0.887, 0.9801)

RFE-MDG-SVM RF 0.8934 0.9464 (0.887, 0.9801)

RFE-MDG-RF SVM 0.8219 0.9107 (0.8419, 0.9564)

RFE-MDG-SVM SVM 0.8219 0.9107 (0.8419, 0.9564)

RFE-t-test-RF RF 0.8763 0.9375 (0.8755, 0.9745)

RFE-t-test-SVM RF 0.8593 0.9286 (0.8641, 0.9687)

RFE-t-test-RF SVM 0.7862 0.8929 (0.8203, 0.9434)

RFE-t-test-SVM SVM 0.9109 0.9554 (0.8989, 0.9853)

https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins
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the number of true positives and negatives with respective percent identity threshold 
for BLASTP tool. According to Table S8 (Additional file 4), our best classifier SVM 
model with RFE-t-test-SVM feature set has 53 true positives and 54 true negatives. 
BLASTP can identify a similar number of true positives and true negatives as our 
BaPreS if we set the percent identify threshold of BLASTP lower than 30 and 20 for 
finding the true positives and true negatives, respectively. However, setting such a low 
percent identify threshold in BLASTP is very unrealistic and will increase false posi-
tive and false negative results.

We also compared the performance of our BaPreS software tool with a recent deep 
learning-based method RMSCNN (https://​github.​com/​cuizh​ensdws/​RWMSC​NN) [13] 
developed for the bacteriocin prediction. RMSCNN takes positive and negative train-
ing protein sequences in FASTA format as inputs, encodes all amino acids of each pro-
tein sequence to some numbers defined in a protein dictionary, then constructs a matrix 
of the encoded sequences. This matrix is used to train a convolutional neural network 
where a random model is used to modify the scale of the convolutional kernel. To com-
pare the prediction accuracy, recall, precision, F1 score, and runtime with our BaPreS 
software tool, we ran RMSCNN with the same training and testing datasets that we used 
in our machine learning models. The runtime of RMSCNN or BaPreS is defined as the 
total time required in training and testing phases. Both RMSCNN and BaPreS were exe-
cuted in a machine with macOS operating system, 2.3 GHz 8-Core Intel Core i9 proces-
sor, and 32 GB 2667 MHz DDR4 memory configuration. Table 5 shows the prediction 
accuracy, recall, precision, F1 score, and runtime of both methods/tools, and our BaPreS 
outperforms RMSCNN. As the input to the RMSCNN is the encoded protein sequences, 
it may suffer a similar problem like BLASTP in identifying highly dissimilar bacteriocin 

Fig. 6  Identification of test sequences using BLASTP as a function of percent identity threshold a using 
bacteriocin sequences from the training data and b using non-bacteriocin sequences from the training data

Table 5  Accuracy and runtime (in seconds) of RMSCNN and BaPreS

Method/tool TestAcc Testrecall Testprecision TestF1 Runtime (sec.)

RMSCNN 0.9375 0.9107 0.9623 0.9358 2007.86

BaPreS 0.9554 0.9464 0.9636 0.9550 217.84

https://github.com/cuizhensdws/RWMSCNN
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sequences. This could be a reason why our method showed better performance than 
RMSCNN.

We can infer from Table 5 that BaPreS was able to utilize the most important features 
to detect highly diverse bacteriocin sequences with higher accuracy and lower runtime. 
Currently, our software tool is suitable to identify single bacteriocin protein sequence 
and we plan to update it to discover protein clusters of tailocins i.e., phage tail-like bac-
teriocins [34, 35]. Also, in the future, we will examine the feasibility of using other fea-
tures such as position specific scoring matrix [36] in our tool and include a more robust 
feature selection algorithm such as partial least squares-based method to enhance the 
prediction accuracy of the tool. We plan to integrate feature stacking or ensemble tech-
niques in the BaPreS tool to improve the generalization of our model. Whenever more 
nonduplicate bacteriocin sequences are available, we will retain our tool.

Conclusions
Discovery of new bacteriocins is crucial to develop new antibiotic drugs to combat anti-
biotic resistance. In this paper, we presented a machine learning-based software tool for 
identifying novel bacteriocins. We extracted the applicant features from the primary and 
secondary attributes of protein sequences and then we analyzed all features based on 
Pearson correlation coefficient, t- test, and MDG values. We obtained two reduced fea-
ture sets of 140 and 44 features, and we further filtered out features using RFE technique. 
The final selected feature sets were considered as optimal sets of features and used to 
build the SVM and RF machine learning models. We found that SVM shows better pre-
diction performance with the RFE-t-test-SVM-reduced feature set.

We implemented a software package BaPreS based on our best model to identify bac-
teriocin sequences by integrating all necessary tools and programs required for generat-
ing the optimal set of features automatically. Using our software tool, users will be able 
to predict unseen testing data for bacteriocin detection and can include new known 
bacteriocin and non-bacteriocin sequences to train data that eventually improve the 
predictive power of the machine learning model. The performance of BaPreS is com-
pared to that of the sequence matching-based tool BLASTP. For BLASTP to obtain true 
positive as well as true negative results comparable to BaPreS requires a percent identity 
threshold so low that it is impractical. Also, our software tool showed better prediction 
accuracy with lower runtime compared to a deep learning-based method RMSCNN. 
Without having any programming knowledge, researchers can easily use our optimal 
feature-based software tool to discover novel bacteriocin sequences. Since our software 
tool is open source, they can modify our tool to fit it in similar or completely new bio-
logical applications.
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