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methods are susceptible to high false-positive rates [2–4]. Peak callers utilize various 
methods to lower the false-positive rate. For instance, MACS (Model-based Analysis of 
ChIP-Seq, [2]) uses negative controls such as IgG (non-speci�c antibody-targeted ChIP-
seq), and Ritornello [3] uses peak shape to di�erentiate between artifactual and “true” 
binding sites.

A common consensus suggests that “true” binding sites are reproducible across rep-
licated samples (i.e., colocalized within a certain distance), whereas non-overlapping 
peaks are categorized as either of the following: (a) Characterizing “true” biological vari-
ability when studying biological replicates [5]; or (b) Artifactual binding or noise, par-
ticularly when studying technical replicates. Accordingly, replicated samples remain a 
reliable source of information to identify “true” binding sites [6]. However, calling such 
binding sites across replicated samples lacks gold standards, and it is associated with 
several open challenges, in particular for studying samples with low variability and high 
signal-to-noise ratio (technical replicates) and high variability with a low signal-to-noise 
ratio (biological replicates with heterogeneous cell populations [7]).

Multiple Sample Peak Calling (MSPC [8, 9]) and Irreproducible Discovery Rate (IDR 
[10]) are among the post-processing methods which can be applied to any peak caller 
results to identify reproducible peaks across replicated samples, representing “true” 
binding sites. IDR uses a copula mixture model to estimate the reproducibility of each 
pair of peaks in two replicates and to compute the expected rate of irreproducible dis-
coveries [10]; it is considered the state-of-the-art for identifying reproducible peaks, 
being employed by the ENCODE consortium in their ChIP-seq processing pipeline. 
MSPC uses replicates to improve the sensitivity and speci�city of peak calling on each 
sample. MSPC rescues weak peaks; in other words, it di�erentiates the weak binding 
sites which are reproducible across replicated samples from background signals (i.e., 
artifactual binding sites), taking into consideration if the replicates are biological or tech-
nical [8]. In this paper we perform an extensive evaluation of the biological relevance of 
the weak binding sites rescued by an extended version of MSPC, which greatly improves 
the computational e�ciency of the original MSPC methodology, making it scalable and 
hence able to handle a very large number of replicates and a very large set of ChIP-seq 
experiments as the one considered in this study (a performance benchmark is given in 
Additional �le�1: Results and Figs.�S1–S2).

�e binding sites that are highly reproducible across all the replicated samples are 
commonly referred to as consensus regions, and both MSPC and IDR can identify them. 
IDR ranks pairs of peaks in the two replicates based on their irreproducible discovery 
rate and combines those peaks with rates below a threshold. MSPC improves the sensi-
tivity and speci�city of each replicate and identi�es their true-positive peaks using the 
Benjamini–Hochberg procedure; the extended version of MSPC then identi�es consen-
sus regions by merging the true-positive peaks and assigns each a combined stringency 
score (�2 and right-tail probability).

�e present study assesses the biological validity of the peaks MSPC (extended ver-
sion) and IDR identify as “true binding sites” and the consensus regions they yield. 
Accordingly, we developed a novel feature enrichment test to prove the relevance of 
weak rescued peaks. Our results suggest that MSPC identi�es more true binding sites 
and consensus regions than IDR, encompassing the IDR-identi�ed regions in large. 
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Additionally, our results show that the identi�ed regions are enriched in biologically 
meaningful annotations and fully encompass essential information needed to under-
stand genomic regulatory networks. For instance, using data from K562 cell line, we 
show the recovery of a large-scale enhancer regulatory network, depending on HDAC2 
and GATA1 rescued peaks, whose components are involved in Chronic Myeloid Leuke-
mia (CML) and several cancer-associated processes [11–16].

Identifying “true” binding sites (in noisy samples in particular) and consensus regions 
have a signi�cant impact on studying high-throughput sequencing data [17, 18] with 
numerous applications spanning from improving sensitivity and speci�city of peak call-
ers to studying spatial dependency regulations and combinatorial transcription factor 
binding in di�erent chromatin states [19–21]. �e high-throughput sequencing data are 
available from public repositories such as ENCODE [22], Roadmap Epigenomics [23], 
and GEO [24], and are widely adopted for numerous biomedical studies. �e quantity 
and quality of the reproducible regions identi�ed in these samples can profoundly a�ect 
any downstream inferences. For instance, the high throughput sequencing data have 
been used for studying transcription factor regulatory networks [25–29], where identi-
�ed peaks can vastly in�uence the topology and connectivity of the regulatory networks, 
including the inferred causal relationships [1]. �erefore, the results of the present study 
motivate utilizing methods such as MSPC and IDR to increase the speci�city and sensi-
tivity of peak callers and identify consensus regions.

Material and methods
In the following, we �rst provide a brief literature review on the peak callers, we then 
discuss the characteristics of IDR and of the original version of MSPC, we describe the 
improvements implemented in the extended version of MSPC, and �nally we de�ne a 
novel functional enrichment test to assess the biological validity of the MSPC- and IDR-
identi�ed peaks.

Characteristics of�peak callers

A plethora of peak calling methods has been developed (reviewed in [1, 30–32]). In gen-
eral, they di�er in their statistical model and the number of input signals they operate 
on.

Statistical model

Peak callers identify binding a�nities by either scanning the entire genome using a slid-
ing window and test for di�erential binding between ChIP and control samples at each 
window based on the Poisson model or its extensions (e.g., MACS [2], PePr [33], and 
csaw [34]), or using a Hidden Markov Model approach (HMM, e.g., HPeak [35], ODIN 
[36], histoneHMM [37], and THOR [7]). �e sliding window-based methods are sen-
sitive to the window size, where large windows may fail to detect putative peaks (e.g., 
transcription factor binding sites) while narrow windows may generate severely frag-
mented peaks on wider binding sites (e.g., histone modi�cations). In general, methods 
using HMM can better detect subtle changes as they partition the signal into windows of 
varying sizes [7].
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Number of input samples

Concerning the number of input samples, peak callers are generally divided into two 
groups. First group models binding a�nity based on the signal of a single ChIP-seq assay 
(e.g., MACS). �e second group jointly models binding a�nities across replicated sam-
ples to identify combinatorial enrichment patterns (e.g. [19, 20, 33, 38–40]), they do so 
either by building models based on single samples then combine them (e.g., jMOSA-
iCS relies on MOSAiCS [38]), or based on HMM (e.g. [7, 37, 41]), or sliding window-
based approaches (e.g., [33, 42–44]). In general, most di�erential peak calling methods 
are implemented using the sliding window approach, while a very few HMM-based 
approaches support replicated samples (e.g., THOR [7]). A possible shortcoming of the 
HMM-based approaches is that they model a ChIP-seq signal using a limited number 
of hidden states, which may result in less sensitivity to quantitative changes in signals of 
closely related conditions [45].

Characteristics of�MSPC and�IDR

MSPC [8, 9] and IDR [10] are among the post-processing methods used to lower false-
positive rates and identify consensus regions between replicated samples. Table�1 high-
lights the main characteristics of the extended version of MSPC (v6) presented in this 
paper and of IDR.

IDR measures consistency between two replicates in high-throughput experiments. 
�is quantitative irreproducibility score can then be used to rank pairs of peaks in the 
two replicates, determine a cuto� for irreproducibility and combine the two replicates. 
IDR uses a copula mixture model for estimating the expected irreproducible discovery 
rate of each pair of peaks in two replicates, yielding the expected rate of irreproducible 
discoveries [10].

Calling consensus regions using IDR falls short in two areas. First, IDR is devel-
oped for conservative peak detection, where only highly reproducible peaks across 
samples are called. Hence, it fails to call peaks in samples with large variance such 
as biological replicates, where strong peaks on one replicate do not colocalize with 
peaks from other replicates with a low signal-to-noise ratio (SNR) [1, 7]. Low SNR 
may not only arise due to poor sample quality, rather it can be re�ective of true vari-
ability between biological replicates, low quantities of starting biological material, or 
antibody de�ciency [46, 47]. Second, it can only deal with two replicated samples at a 
time, although increasing the number of replicates in ChIP-seq experiments is advisa-
ble to improve the analysis of these data [6], and several replicates could be harvested 

Table 1  Characteristics of the current extended version of MSPC (v6) and of IDR

Model Multiple Hypothesis Testing Correction Replicate Count Output Score

MSPC (v6) Fisher’s 
combined 
probability 
test

False Discovery Rate (FDR, Benjamini–
Hochberg procedure)

Unlimited χ2, combined p-value

IDR Gaussian 
copula 
mixture 
model

Local irreproducible discovery rate (idr) 2 Expected irreproduc-
ible discovery rate
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from separate consistent experiments [48] large cohort studies. �ird, similar to other 
methods in this category, it relies on the candidate regions called by the peak caller, 
hence it may fail to detect subtle changes [18].

MSPC (both in its original and extended version) rescues weak peaks, addressing 
the �rst aforementioned shortcoming of IDR. It processes biological and technical 
replicates di�erently (see [8]), hence it di�erentiates between true variability between 
biological replicates and artifactual binding sites. �erefore, it lowers the false-nega-
tive rate between samples with large variance (expected in biological replicates) while 
preserving a low false-positive rate. Similarly to IDR, MSPC relies on the peak caller’s 
candidate regions; indeed, it consists in a post-processing step which can be applied 
to the results of any peak caller returning a p value for each of the peaks called. To 
alleviate this dependence, it is suggested to run MSPC on peaks called with a permis-
sive p value threshold (e.g., 1e−4 [8];). Such a setting would lead to calling a large 
number of false-positives and a very small number of false-negatives, hence mini-
mizing the probability of missing a true, yet weak binding site. MSPC uses combined 
stringency of peaks colocalized across replicated samples to di�erentiate between 
artifactual and weak binding sites, hence decreasing the number of false-negatives 
with least false-positives.

For each peak on a sample, MSPC �nds the peaks in the other samples overlapping 
with it. If the number of overlapping peaks is more than a user-de�ned threshold, it then 
combines their p values using Fisher’s combined probability test, yielding a combined 
stringency, � 2, and the corresponding combined p value. MSPC con�rms the overlapping 
peaks if the combined � 2 is larger than a user-de�ned threshold, and discards if other-
wise. A peak might be tested multiple times if it overlaps with multiple peaks on another 
sample. �erefore, a peak might be con�rmed based on one test and discarded based on 
another. When samples are biological replicates, MSPC con�rms a peak if it passes at 
least one test (heterogeneity may re�ect true biological variability), and with technical 
replicates, MSPC discards a peak if it does not pass all the tests (since more homogene-
ity is expected in this case). �e con�rmed peaks in each replicated sample are then cor-
rected for false-discovery rate using the Benjamini–Hochberg procedure [8].

One of the limitations of the original version of MSPC is that it returns a list of con-
�rmed peaks for each replicated sample, leaving the user with the problem of com-
bining replicates. �e extended version of MSPC (v6) presented in this paper calls a 
consensus region where true-positive peaks on either of the replicates suggest bind-
ing loci. �e coordinates of a consensus region are the union of overlapping true-
positive peaks across all the samples, and its stringency is determined by combining 
the p values of the overlapping peaks using the Fisher’s combined probability test (see 
Fig.�1). Finally, the original version of MSPC is not computationally e�cient, hence 
does not scale well with an increasing number of replicates. We greatly improved the 
computational aspects of the implementation of the extended version of MSPC. As a 
result, this extended version of MSPC enabled us to carry on the extensive analysis 
presented in this paper using reasonable computational resources; in addition, it can 
identify consensus regions across any number of replicates in a highly e�cient and 
scalable way, hence addressing another limitation of IDR (see Table�1). A performance 
benchmark is given in the Additional �le�1: Results and Figs.�S1–S2.
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Other post-processing methods for identifying reproducible peaks across replicates 
exist. For example, ChIP-R [48] represents an alternative to IDR which evaluates the 
reproducibility of peaks based on an adapted version of the rank-product test. A com-
parison among MSPC, IDR and ChIP-R is provided in the Additional �le�1: Results and 
Figs.�S3–S4.

Data pre-processing

ENCODE data preprocessing

ChIP-seq raw data on K562 cell line were downloaded from ENCODE (see Additional 
�le� 1: Table� S1); peaks on each sample were called using MACS2 with the following 
options: –mfold 5, –bw 300 –pvalue 0.0001. For each sample we used control samples 
as linked on ENCODE for each experiment; some experiments use a common control 
between multiple replicates (e.g., https://​www.​encod​eproj​ect.​org/​exper​iments/​ENCSR​
532KTI/), some experiments use di�erent control samples for each replicate (e.g., 
https://​www.​encod​eproj​ect.​org/​exper​iments/​ENCSR​121PFY/), or use two controls for 
each sample (e.g., https://​www.​encod​eproj​ect.​org/​exper​iments/​ENCSR​574XEO/).

Genomic annotations and optimal MSPC threshold set

Our functional enrichment procedure was applied to a set of 48 randomly chosen 
ENCODE transcription factors (TFs) for the cell line K562, as listed in the Additional 
�le� 1:  Table�S1. For each TF, the procedure was repeated using the extended version of 
MSPC (v6, see previous Section) and 10 di�erent sets of MSPC thresholds (see Addi-
tional �le� 1: Table�S2). �e threshold sets were chosen from conservative to permissive, 
in order to cover di�erent pools of rescued peaks. �e best thresholds were de�ned as 
the ones producing the highest enrichment score (i.e., the highest z-score of the enrich-
ment test, see details in the next Section) considering all TFs in the K562 analysis. �e 
threshold set −w 1E−04 (weak signi�cance threshold), −s 1E−08 (stringent signi�cance 
threshold), and −g 1E−06 (combined signi�cance threshold), was the one yielding the 
best enrichment score for every TF. We then veri�ed that this threshold choice leads to 
good results beyond the K562 cell line, by repeating the enrichment analysis for three 
TFs in MCF7 cell line (see Additional �le�1: Results, Table�S3, and Figs.�S3–S4). To evalu-
ate the enrichment for each TF, we selected 9 genomic annotations (genome assembly 
hg38), whose loci were downloaded from the UCSC Genome Browser database ([49] 
accessed on 2020-01-31): CpG islands, DNase clusters, enhancers, exons, introns, pro-
moters, coding RefSeq genes, noncoding RefSeq genes, and non-RefSeq transcripts. We 

Fig. 1  An illustration of processing regions on three replicated samples using the extended version of MSPC

https://www.encodeproject.org/experiments/ENCSR532KTI/
https://www.encodeproject.org/experiments/ENCSR532KTI/
https://www.encodeproject.org/experiments/ENCSR121PFY/
https://www.encodeproject.org/experiments/ENCSR574XEO/
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chose these annotations to have a straightforward measure of peak enrichment at open 
chromatin regions (DNase clusters), transcripts (exons, introns, coding RefSeq, noncod-
ing RefSeq, and non-RefSeq transcripts), and both proximal and distal regulatory ele-
ments (promoters, CpG islands, enhancers).

Functional enrichment test

�e objective of the validation procedure is to assert if MSPC-rescued peaks are 
enriched in biologically meaningful loci. Accordingly, we de�ned three types of genomic 
regions: peaks, annotations, and regions not covered by any of them; where the �rst two 
may overlap to some extent. �e higher the overlap between peaks and annotations, the 
higher the ability of the peak caller/rescuer to recall functional genomic regions. Since 
the number and coverage of a speci�c annotation is �xed for a given database, the only 
variables we need to consider are the number and position of called peaks. In particu-
lar, we de�ne the conditional probability p of a nucleotide overlapping a peak to con-
tain an annotation, and the conditional probability a of a nucleotide not overlapping a 
peak to contain an annotation (see Additional �le�1: Methods for details). �e di�er -
ence β = p− a measures the ability of the peak caller/rescuer to recall functional anno-
tations, such that if β > 0 (i.e., p > a ), there is a higher probability of observing a peak at 
a random position within an annotated region. �erefore, the greater the β value, the 
higher the genome-wide proportion of annotated nucleotides within peaks. Our objec-
tive is to assert if the MSPC-rescued peaks on a given sample are strongly enriched in 
functional annotations w.r.t a standard baseline peak set given by IDR consensus on the 
same sample.

For both MSPC-rescued and IDR consensus peaks, we computed the enrichment 
score as the ratio z = (β − β0)/σ , where β0 = 0 (i.e., p = a ) is the β value under the null 
hypothesis, and σ is the standard error, that is the standard deviation of the sampling 
distribution of β , assuming that the underlying distribution of z under the null hypoth-
esis is well approximated by a gaussian distribution with mean 0 and standard devia-
tion equal to 1 (see Additional �le�1: Methods for further details). In this way, we can 
both assess the signi�cance of annotation enrichment and directly compare the enrich-
ment scores for MSPC-rescued peaks against IDR consensus, for each annotation and 
sample (i.e., transcription factor). Note that, although our enrichment test is based on a 
standard z-test approach, the de�nition of the conditional probabilities p and a and the 
resulting z-score are novel, in the sense that—to the best of our knowledge—they have 
never been used before for functional enrichment analysis. �e scripts for the functional 
enrichment test are freely available from https://​github.​com/​Genom​etric/​MSPC/​tree/​
dev/​Valid​ation​Scrip​ts.

Overrepresentation analysis and�motif search

TF binding motif enrichment was performed using MEME-ChIP with default settings 
[50] available at https://​web.​mit.​edu/​meme_​v4.​11.4/​share/​doc/​meme-​chip.​html. Motif 
enrichment was evaluated using the threshold E-value < 1E−10.

Overrepresentation analysis against the KEGG pathways [51] and ChEA TF [52] data-
bases was done using the Enrichr online tool [53] available at https://​maaya​nlab.​cloud/​
Enric​hr.

https://github.com/Genometric/MSPC/tree/dev/ValidationScripts
https://github.com/Genometric/MSPC/tree/dev/ValidationScripts
https://web.mit.edu/meme_v4.11.4/share/doc/meme-chip.html
https://maayanlab.cloud/Enrichr
https://maayanlab.cloud/Enrichr
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HDAC2-GATA1 enhancer regulatory network reconstruction

For each of the 48 TFs considered in this study, we obtained the list of transcrip-
tion factor binding (TFB) motifs enriched at MSPC rescued enhancers (enrich-
ment E-value < 1E−04; Additional �le� 2: Table�S4). HDAC2 was the TF showing the 
strongest motif enrichment for another TF in the set of 48: GATA1. �is means that 
HDAC2 rescued peaks at known enhancers are enriched in GATA1 binding motifs 
and, therefore, these enhancers are common HDAC2-GATA1 targets. Moreover, 
since the enrichment in GATA1 motifs is exactly at HDAC2 rescued peaks, common 
target enhancers should bind HDAC2-GATA1 simultaneously.

To further investigate the impact of this rescued regulatory network, we consid-
ered HDAC2 rescued enhancer peaks overlapping GATA1 rescued enhancer peaks, 
and considered the set of closest transcription start site (TSS) within 100� kb from 
these peaks, referred to as the HDAC2-GATA1 target gene set. We chose a 100�kb 
maximum distance to reduce enhancer-TSS false-positive associations, in accordance 
with recent literature [29, 54]. To evaluate the importance of the rescued HDAC2-
GATA1 targets, we performed overrepresentation analysis (ORA) with three goals: (i) 
assess disease and pathway enrichment of the HDAC2-GATA1 target genes through 
the KEGG database (Additional �le�3: Table� S5 [51];); (ii) check if HDAC2-GATA1 
target genes are enriched in transcriptional master regulators, and (iii) evaluate if 
these genes are regulatory targets in speci�c cell lines [52, 55]. We performed over-
representation analysis (ORA) using the online enrichment analysis tool Enrichr [56].

In addition, we generated a graph of the portion of the rescued HDAC2-GATA1 
regulatory network that can be con�rmed through experimental evidence, co-expres-
sion analysis, and/or curated databases. Protein–protein connections were fetched 
from the STRING interaction database and retained only if the con�dence score was 
at least 0.4. �ese �lters allowed us to highlight strength and density of the known 
regulatory network underlying MSPC-rescued peaks.

Results and discussion
MSPC enrichment-based assessment

To have a reference set of reproducible peaks for each transcription factor, we run 
IDR 2.0.4 (available at https://​github.​com/​nboley/​idr) with a global IDR threshold 
of 0.05 from the output consensus regions. �is assessment has two goals: (i) Verify 
the number of reference IDR peaks that are also detected by MSPC, and (ii) Assert 
if those MSPC-rescued peaks that are not in the IDR set are enriched in function-
ally important genomic regions (i.e., annotations). Notably, for every TF, the extended 
version of MSPC was able to �nd all the reproducible IDR peaks; we name them as 
the common set of peaks. Reproducible IDR peaks obtained with higher thresholds 
were also included in MSPC peaks (we performed an analysis experimenting with 
various IDR thresholds on a subset of three TFs from MCF7 cells; Additional �le�4: 
Table� S6). �is result is explained by the fact that IDR aims to �nd a set of highly 
reliable peaks which are consistent among replicates, while MSPC aims to retain all 
strong peaks and rescue weak peaks based on the combined evidence coming from 

https://github.com/nboley/idr
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di�erent replicates. �e scripts to reproduce the performed analysis are available 
from https://​github.​com/​Genom​etric/​MSPC/​tree/​dev/​Valid​ation​Scrip​ts.

Rescued MSPC peaks not present in the common peak set are referred to as MSPC-
speci�c peaks set. To assess the biological relevance of speci�c peaks, we compared their 
functional enrichment score (i.e., the z score of the enrichment test) to the score of the 

Fig. 2  Enrichment score distribution (y-axis) for peaks retained by both MSPC and IDR (i.e., common 
peaks; cyan boxes) and rescued by MSPC but discarded by IDR (i.e., MSPC-specific peaks set; yellow boxes), 
aggregated by 48 ENCODE TFs in K562 cell line (x-axis). Note that there were no peaks retained by IDR and 
discarded by MSPC (i.e., MSPC always included IDR results). Among the 48 TFs analyzed, 44 showed higher 
median genomic annotation enrichments for MSPC-specific peaks (yellow boxes). The remaining 4/48 TFs 
(MYC, NRF1, THRAP3, and TRIP13) showed significant enrichment in genomic annotations (yellow boxes), 
although not higher than common peaks (cyan boxes). Note that a few outliers with enrichment scores 
greater than 8000 are included in the plot

Fig. 3  Enrichment score distribution (x axis) for MSPC discarded peaks (cyan box), MSPC rescued peaks 
discarded by IDR (i.e., MSPC-specific peaks set; yellow box), and peaks retained by both MSPC and IDR (i.e., 
common peaks; green box), aggregated by 9 hg38 annotations (y axis). For each of the 48 TFs analyzed in 
the K562 cell line, there were no peaks retained by IDR and discarded by MSPC (i.e., MSPC always included 
IDR results). The 9 hg38 annotations include: CpG islands (n = 31,144), Enhancers (n = 393,964), DNase 
clusters (n = 2,107,358), Promoters (n = 34,996), Exons (n = 313,276), RefSeq coding transcripts (n = 67,635), 
RefSeq non-coding transcripts (n = 17,271), Introns (n = 172,751). Coordinates for hg38 annotations were 
downloaded from the UCSC Genome Browser (accessed on: 2020-01-31) [49]

https://github.com/Genometric/MSPC/tree/dev/ValidationScripts
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common set of peaks (Figs.�2 and 3). For every annotation, MSPC-speci�c peaks showed 
higher enrichment than common ones (Fig.�3). Accordingly, MSPC con�rms reproduc-
ible peaks and rescues peaks whose functional role is not negligible. Notably, the most 
signi�cant MSPC enrichments against common peaks were at enhancers, promoters, 
and DNase clusters, denoting MSPC’s best performances in rescuing critical regula-
tory and accessible chromatin regions. At the TF level, MSPC showed higher median 
enrichment in 44/48 TFs with respect to common peaks, meaning that it rescues criti-
cal genome-wide TF enrichments that would be lost otherwise. In addition, Additional 
�le� 5: Table�S7 shows how MSPC generally retains much more peaks than IDR (median 
MSPC/IDR peak number ratio: 6.87), yet showing high enrichment for functional 
genomic elements (see the next sections for further examples and details), without alter-
ing peak length distribution (see Additional �le�1: Fig.�S5). �is implies that the high 
stringency of IDR might hamper discovery, that is instead enabled by MSPC.

Motif enrichment at�rescued enhancers

MEME ChIP TFB motif enrichment at rescued enhancers shows the presence of sev-
eral transcription master regulators. �e most frequent enriched motif is GATA3 (20/48 
TFs), which has been recently described as a key factor in enhancer-dependent cell 
reprogramming [12] and T-cell di�erentiation [13]. �e second most frequent motif 
(19/48 TFs) is SP1, known for binding enhancers, regulating chromatin looping [57] 
and playing a key role in malignant hematopoiesis, through its interaction with GATA1 
[11]. �e critical role of chromatin looping is also demonstrated by the occurrence of 
CTCF binding site enrichments (the third-most enriched motif, with 18/48 TFs). CTCF 
is a widely studied insulator which is recognized as one of the main designers of topo-
logically associated domains (TADs). TADs insulate portions of active chromatin, deter-
mining how and when genomic DNA is processed (e.g., transcribed and/or replicated). 
Although TADs are conserved among evolutionary-related species, cancer-associated 
cell fate reprogramming is often associated with mutated TAD boundaries [58]. Other 
cancer-associated TFB motif enrichments have been found as well, including RUNX1-
RUNX3 involved in lymphoid cell di�erentiation [14, 15], and ETV6, involved in lym-
phoid malignant transformation [16]. �e complete table of TFB motif enrichments at 
rescued enhancers is reported in Additional �le�2: Table�S4.

HDAC2-GATA1 rescued regulatory network

For many transcription factors, the biological enrichment of the peaks rescued by 
MSPC is exceptionally higher than those considered as reproducible by IDR. �is shows 
how peaks discarded by IDR could participate in biological processes that are actively 
involved in cell phenotype, and was con�rmed by the over-representation analysis over 
Gene Ontology, KEGG, Reactrome, and ChEA. However, over-representation analysis 
cannot explicitly �nd which connections of the genome regulatory network are sup-
ported by MSPC-rescued elements. �erefore, we assessed the extent of the K562 reg-
ulatory network rescued by MSPC by directly reconstructing the interactions among 
annotated genomic elements.

GATA1-HDAC2 are among the most enriched transcription factors in MSPC-spe-
ci�c dataset, and are both known to be involved in leukemic transformation in chronic 
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myeloid leukemia (i.e., the K562 cells phenotype). It is also known that TFs regula-
tory networks and their impact on gene expression modulation is highly dependent on 
the 3D structure of the DNA, which is in turn deeply in�uenced by enhancer activity. 
While a deep description of these mechanisms is out of the scope of this work, we any-
how assessed the presence of enhancer-related regulatory networks within the pool of 
MSPC-speci�c results, further highlighting the biological importance of MSPC-rescued 
peaks.

We identi�ed 26,514 HDAC2 and 2,513 GATA1 enhancers (see Material and Meth-
ods, and Additional �le�1: Methods) at MSPC-rescued binding loci (after removing 
peaks shorter than 200�bp); among them, 1627 peaks are in the common set. Over-rep-
resentation analysis against the KEGG database (see Additional �le�3: Table� S5 [51];) 
con�rmed Chronic Myeloid Leukemia (CML) as the most enriched pathway (adjusted 
P value = 1.37E−03), with 25 CML genes as targets of rescued enhancers. Other leuke-
mia-related pathways were signi�cantly enriched, including: VEGF signaling (19 target 
genes; adjusted P value = 5.19E−03), Calcium reabsorption (17 target genes; adjusted 
P value = 5.23E−03), Cell cycle (31 target genes; adjusted P value = 5.26E−03), Rap1 
signaling (43 target genes; adjusted P value = 0.0186), Cellular senescence (35 tar-
get genes; adjusted P value = 0.0201), Platelet activation (28 target genes; adjusted P 
value = 0.0313), Leukocyte transendothelial migration (26 target genes; adjusted P 
value = 0.0314). In addition, GATA1 and GATA2 binding in K562 cells were the top 
overrepresented terms (adjusted P value: 9.04E−97 and 1.61E−86, respectively; Addi-
tional �le� 6: Table�S8) among target genes, against the ChEA TF database [52], indicating 
how both rescued enhancers and their associated genes are targets of GATA1 regulatory 
network. Additional �le� 1: Fig.�S6 shows the HDAC2-GATA1 portion of the network 
that is either experimentally proven or supported by curated databases, as well as the 
proteins known to be expressed in leukemic cells (which tend to occupy hubs and cen-
tral nodes of the network). �e resulting network consists of 464 nodes and 309 edges, 
showing an enriched connectivity (STRING PPI enrichment P value = 1.21e−09), indi-
cating a non-random set of interacting nodes. Edges have a minimum STRING con-
�dence score of 0.4 (the thicker the edge, the higher the score). In addition, leukemic 
genes showed signi�cant enrichment in the regulatory network, with respect to the 
whole genome (58/949 known leukemia genes, STRING enrichment FDR = 5.63e−08).

To assess location and enrichment of GATA1 binding within these enhancers we ran 
Centrimo and Fimo (from the MEME-ChIP suite�[59]) on a region of 1�kb surrounding 
each enhancer center, to show the whole motif enrichment probability pro�le. GATA1 
resulted to be the top enriched motif within 100�bp (best Jaspar motif ID: MA0035.3, 
E-value = 1.5E−234, adjusted P value = 7.9E−238; Additional �le�8: Table�S10). Among 
14,370 GATA1-enriched HDAC2 rescued enhancers, 3826 (26.6%) of them included 
this GATA1 motif (Additional �le� 9: Table�S11). �is percentage increases to 37% if we 
consider all motifs associated with GATA1 (Jaspar motifs ID: MA0035.3 and MA0140.2; 
MA0140.2 E-value = 2.5E−134; MA0140.2 adjusted P value = 1.3E−137). �ese per-
centages correspond roughly to those of GATA1 motif in HDAC2 peaks (9862 HDAC2 
peaks with GATA1 motifs over 37,399 consensus peaks; E-value = 3.4E−898, adjusted P 
value = 1.6E−901). �e percentage increases to 40% (i.e., 14,891/37,399) if we consider 
all enriched GATA1 motifs in HDAC2 peaks (Additional �le�9: Table�S11). To further 
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validate the capability of MSPC to rescue GATA1 enriched peaks, we ran Centrimo and 
Fimo on GATA1 rescued peaks themselves, yielding 3827 GATA1-positive peaks over 
9306 total consensus peaks (35.3%, E-value = 3.4E−898, adjusted P value = 1.6E−901; 
Additional �le� 9: Table�S11). Also in this case, the percentage strongly increases (54%; 
i.e., 5014/9306) if we consider all GATA1 motifs (see Additional �le�9: Table�S11 for all 
frequencies and signi�cance). For each of the above mentioned cases, GATA1 peaks are 
always centrally enriched within 100�bp from the peak center (Additional �le�1: Figs. S7–
S8 for GATA1 motifs in GATA1 peaks, and Additional �le�1: Figs.�S9–S10 for GATA1 
motifs in HDAC2 peaks).

Collectively, these results show how MSPC may successfully recover genome-wide 
enrichments (i.e., peaks) that are part of the K562 CML regulatory networks, coherently 
with the sample cell line and phenotype.

Conclusion
We argue the signi�cant impact of improving the sensitivity and speci�city while iden-
tifying binding a�nities on high-throughput sequencing data by discussing the bio-
logical characteristics unveiled using weak but reproducible binding sites. Speci�cally, 
our main contribution is proving that these rescued peaks are enriched in biologically 
meaningful sites. �is information emerges from the results provided by our novel func-
tional enrichment test, which show overrepresentation of genomic elements, including 
promoters, CpG islands, enhancers, and DNase clusters (regions of open chromatin), 
suggesting that these weak but reproducible elements are part of large-scale active chro-
matin networks (e.g., active enhancers and transcribed genes). We showed how one of 
these largest rescued regulatory networks is represented by the enhancers enriched in 
HDAC2-GATA1 peaks, which neighboring genes are involved in chronic myeloid leuke-
mia-associated processes and K562-speci�c regulation.

We discuss two methods for di�erentiating between weak and artifactual binding sites 
and calling consensus regions across replicated samples: MSPC and IDR. �e MSPC 
method discussed here extends the �rst public release [8] in multiple facets. Speci�cally, 
it generalizes to assays beyond ChIP-seq while maintaining high precision and recall 
ration; it improves the computational performance and minimizes resource require-
ments, such that it scales e�ciently to large cohorts of single-cell assays (e.g., Assay 
for Transposase-Accessible Chromatin using sequencing ATAC-seq). Additionally, the 
MSPC version presented here yields a single set of consensus regions for a set of input 
replicates, where the signi�cance of each region is computed as the combined stringency 
of colocalized binding sites. An R package was also implemented and released on Bio-
conductor for this extended version of MSPC.

Our analysis over K562 and MCF7 ENCODE data showed that MSPC contains all 
IDR-identi�ed reproducible regions, in addition to “rescuing” many other biologically 
relevant weak regions. Although MSPC generally rescues much more peaks than IDR, 
we demonstrated that these peaks are highly enriched for functional genomic elements 
and TF binding motifs, showing how IDR approach is often too stringent, severely ham-
pering discovery.

Additionally, MSPC consensus regions that are not common to IDR show a larger 
enrichment by annotation (8/8 genomic annotations; Fig.�3) and by TF (45/48 TFs; 
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Fig.�2). Accordingly, the consensus regions identi�ed by MSPC provide a more appropri-
ate set of informative genomic regions, favoring discovery over conservativeness, while 
controlling false positives. Since MSPC is applied at post-peak calling, it can be used to 
produce a single set of peaks from multiple replicates, as well as from multiple sets of 
peaks obtained by applying di�erent peak calling methods [60].

Both MSPC and IDR operate on regions called using peak callers. Hence, their can-
didate sites are limited to the regions identi�ed by the peak caller. To alleviate this limi-
tation, a recommended practice for MSPC is to call peaks using a permissive p-value 
threshold to minimize the probability of missing weak binding sites at the cost of 
increasing false-positive rate; our assessment shows that MSPC can distinguish between 
true weak binding sites and artifactual regions in an input with a high false-positive rate. 
Additionally, given that the statistical model of both methods rely on regions binding 
a�nity, they have limited application in sequencing protocols where there is not su�-
cient evidence to reason about the statistical signi�cance of binding a�nity (e.g., single-
cell protocols such as ATAC-seq).
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in leukemia cellsor not. The combined score only considers the contribution of experimental evidence, coexpres-
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GATA1.

Additional �le�9. Supplementary�Table�11. Summary of Fimo results for GATA1 in K562 cells. The table contains 
three blocks of rows: GATA1 peaks, HDAC2 peaks, and HDAC2 enhancers. In all these cases the table reports the 
number of total peaks, the number of regions containing GATA1-associated motifs, Jaspar motifs ID, motif enrich-
ment E-value and adjusted P-value.

Acknowledgements
We thank Meriem Bahda for implementing the R package rmspc.

Author contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.

Funding
Marzia A. Cremona acknowledges the support of the Natural Sciences and Engineering Research Council of Canada 
(NSERC) and of the Faculty of Business Administration of Université Laval.

Availability of data and materials
An implementation of the proposed extended methodology and the scripts to reproduce the performed analysis are 
freely available at https://​genom​etric.​github.​io/​MSPC/, MSPC is distributed as a command-line application, an R package 
available from Bioconductor (https://​doi.​org/​doi:​10.​18129/​B9.​bioc.​rmspc), and a C# library.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 9 June 2022   Accepted: 16 May 2023

References
	1.	 Nakato R, Shirahige K. Recent advances in ChIP-seq analysis: from quality management to whole-genome annota-

tion. Brief Bioinform. 2017;18:279–90.
	2.	 Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). 

Genome Biol. 2008;9:R137.
	3.	 Stanton KP, Jin J, Lederman RR, Weissman SM, Kluger Y. Ritornello: high fidelity control-free chromatin immunopre-

cipitation peak calling. Nucleic Acids Res. 2017;45: e173.
	4.	 Ashoor H, Hérault A, Kamoun A, Radvanyi F, Bajic VB, Barillot E, et al. HMCan: a method for detecting chromatin 

modifications in cancer samples using ChIP-seq data. Bioinformatics. 2013;29:2979–86.
	5.	 Andreani T, Albrecht S, Fontaine J-F, Andrade-Navarro MA. Computational identification of cell-specific variable 

regions in ChIP-seq data. Nucleic Acids Res. 2020;48: e53.
	6.	 Yang Y, Fear J, Hu J, Haecker I, Zhou L, Renne R, et al. Leveraging biological replicates to improve analysis in ChIP-seq 

experiments. Comput Struct Biotechnol J. 2014;9: e201401002.
	7.	 Allhoff M, Seré K, F Pires J, Zenke M, G Costa I. Differential peak calling of ChIP-seq signals with replicates with THOR. 

Nucleic Acids Res. 2016;44:e153.
	8.	 Jalili V, Matteucci M, Masseroli M, Morelli MJ. Using combined evidence from replicates to evaluate ChIP-seq peaks. 

Bioinformatics. 2015;31:2761–9.
	9.	 Jalili V, Matteucci M, Morelli MJ, Masseroli M. MuSERA: multiple sample enriched region assessment. Brief Bioinform. 

2017;18:367–81.
	10.	 Li Q, Brown JB, Huang H, Bickel PJ. Measuring reproducibility of high-throughput experiments. Ann Appl Stat. 

2011;5:1752–79.
	11.	 Wang P, Wang Z, Liu J. Role of HDACs in normal and malignant hematopoiesis. Mol Cancer. 2020;19:1–21.
	12.	 Bi M, Zhang Z, Xue P, Hernandez K, Wang H, Fu X, et al. Coordinate enhancer reprogramming by GATA3 and AP1 

promotes phenotypic plasticity to achieve breast cancer endocrine resistance. bioRxiv. 2019. https://​doi.​org/​10.​
1101/​767871.

https://doi.org/10.1101/767871
https://doi.org/10.1101/767871


Page 15 of 16Jalili et al. BMC Bioinformatics          (2023) 24:240 	

	13.	 Lentjes MH, Niessen HEC, Akiyama Y, de Bruïne AP, Melotte V, van Engeland M. The emerging role of GATA transcrip-
tion factors in development and disease. Expert Rev Mol Med. 2016. https://​doi.​org/​10.​1017/​erm.​2016.2.

	14.	 Kojo S, Yasmin N, Muroi S, Tenno M, Taniuchi I. Runx-dependent and silencer-independent repression of a matura-
tion enhancer in the Cd4 gene. Nat Commun. 2018;9:1–11.

	15.	 Gunnell A, Webb HM, Wood CD, McClellan MJ, Wichaidit B, Kempkes B, et al. RUNX super-enhancer control 
through the Notch pathway by Epstein–Barr virus transcription factors regulates B cell growth. Nucleic Acids Res. 
2016;44:4636–50.

	16.	 Feurstein S, Godley LA. Germline ETV6 mutations and predisposition to hematological malignancies. Int J Hematol. 
2017;106:189–95.

	17.	 Lai X, Stigliani A, Lucas J, Hugouvieux V, Parcy F, Zubieta C. Genome-wide binding of SEPALLATA3 and AGAMOUS 
complexes determined by sequential DNA-affinity purification sequencing. Nucleic Acids Res. 2020;48:9637–48.

	18.	 Luo X, Li H, Liang J, Zhao Q, Xie Y, Ren J, et al. RMVar: an updated database of functional variants involved in RNA 
modifications. Nucleic Acids Res. 2021;49:D1405–12.

	19.	 Bao Y, Vinciotti V, Wit E, ’t Hoen PA. Joint modeling of ChIP-seq data via a Markov random field model. Biostatistics. 
2014. https://​doi.​org/​10.​1093/​biost​atist​ics/​kxt047.

	20.	 Banerjee S, Zhu H, Tang M, Feng W-C, Wu X, Xie H. Identifying transcriptional regulatory modules among different 
chromatin states in mouse neural Stem cells. Front Genet. 2018;9:731.

	21.	 Cremona MA, Sangalli LM, Vantini S, Dellino GI, Pelicci PG, Secchi P, et al. Peak shape clustering reveals biological 
insights. BMC Bioinform. 2015;16:349.

	22.	 Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, et al. The Encyclopedia of DNA elements (ENCODE): 
data portal update. Nucleic Acids Res. 2018;46:D794–801.

	23.	 Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al. The NIH roadmap epig-
enomics mapping consortium. Nat Biotechnol. 2010;28:1045–8.

	24.	 Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics 
data sets—update. Nucleic Acids Res. 2012;41:D991–5.

	25.	 Yang J, Ma A, Hoppe AD, Wang C, Li Y, Zhang C, et al. Prediction of regulatory motifs from human Chip-sequencing 
data using a deep learning framework. Nucleic Acids Res. 2019;47:7809–24.

	26.	 Lundberg SM, Tu WB, Raught B, Penn LZ, Hoffman MM, Lee S-I. ChromNet: learning the human chromatin network 
from all ENCODE ChIP-seq data. Genome Biol. 2016;17:82.

	27.	 Zhou J, Troyanskaya OG. Global quantitative modeling of chromatin factor interactions. PLoS Comput Biol. 2014;10: 
e1003525.

	28.	 Lasserre J, Chung H-R, Vingron M. Finding associations among histone modifications using sparse partial correlation 
networks. PLoS Comput Biol. 2013;9: e1003168.

	29.	 Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan K-K, Cheng C, et al. Architecture of the human regulatory net-
work derived from ENCODE data. Nature. 2012;489:91–100.

	30.	 Wilbanks EG, Facciotti MT. Evaluation of algorithm performance in ChIP-seq peak detection. PLoS ONE. 2010;5: 
e11471.

	31.	 Rye MB, Sætrom P, Drabløs F. A manually curated ChIP-seq benchmark demonstrates room for improvement in cur-
rent peak-finder programs. Nucleic Acids Res. 2011;39: e25.

	32.	 Thomas R, Thomas S, Holloway AK, Pollard KS. Features that define the best ChIP-seq peak calling algorithms. Brief 
Bioinform. 2017;18:441–50.

	33.	 Zhang Y, Lin Y-H, Johnson TD, Rozek LS, Sartor MA. PePr: a peak-calling prioritization pipeline to identify consistent or 
differential peaks from replicated ChIP-Seq data. Bioinformatics. 2014;30:2568–75.

	34.	 Lun ATL, Smyth GK. csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding 
windows. Nucleic Acids Res. 2016;44:e45–e45.

	35.	 Qin ZS, Yu J, Shen J, Maher CA, Hu M, Kalyana-Sundaram S, et al. HPeak: an HMM-based algorithm for defining read-
enriched regions in ChIP-Seq data. BMC Bioinform. 2010;11:1–13.

	36.	 Allhoff M, Seré K, Chauvistré H, Lin Q, Zenke M, Costa IG. Detecting differential peaks in ChIP-seq signals with ODIN. 
Bioinformatics. 2014;30:3467–75.

	37.	 Heinig M, Colomé-Tatché M, Taudt A, Rintisch C, Schafer S, Pravenec M, et al. histoneHMM: Differential analysis of 
histone modifications with broad genomic footprints. BMC Bioinform. 2015;16:1–15.

	38.	 Zeng X, Sanalkumar R, Bresnick EH, Li H, Chang Q, Keleş S. jMOSAiCS: joint analysis of multiple ChIP-seq datasets. 
Genome Biol. 2013;14:R38.

	39.	 Mahony S, Edwards MD, Mazzoni EO, Sherwood RI, Kakumanu A, Morrison CA, et al. An integrated model of 
multiple-condition ChIP-Seq data reveals predeterminants of Cdx2 binding. Research in Computational Molecular 
Biology. Springer, Cham; 2014. pp. 175–176.

	40.	 Wong K-C, Li Y, Peng C, Zhang Z. SignalSpider: probabilistic pattern discovery on multiple normalized ChIP-Seq 
signal profiles. Bioinformatics. 2015;31:17–24.

	41.	 Ernst J, Kellis M. Chromatin-state discovery and genome annotation with ChromHMM. Nat Protoc. 2017;12:2478–92.
	42.	 Lun ATL, Smyth GK. De novo detection of differentially bound regions for ChIP-seq data using peaks and windows: 

controlling error rates correctly. Nucleic Acids Res. 2014;42:e95–e95.
	43.	 Ibrahim MM, Lacadie SA, Ohler U. JAMM: a peak finder for joint analysis of NGS replicates. Bioinformatics. 

2015;31:48–55.
	44.	 Müller L, Gerighausen D, Farman M, Zeckzer D. Sierra platinum: a fast and robust peak-caller for replicated ChIP-seq 

experiments with visual quality-control and -steering. BMC Bioinform. 2016;17:1–13.
	45.	 Tu S, Shao Z. An introduction to computational tools for differential binding analysis with ChIP-seq data. Quant Biol. 

2017;5:226–35.
	46.	 Singh AA, Schuurman K, Nevedomskaya E, Stelloo S, Linder S, Droog M, et al. Optimized ChIP-seq method facilitates 

transcription factor profiling in human tumors. Life Sci Alliance. 2019. https://​doi.​org/​10.​26508/​lsa.​20180​0115.
	47.	 Koh PW, Pierson E, Kundaje A. Denoising genome-wide histone ChIP-seq with convolutional neural networks. Bioin-

formatics. 2017;33:i225–33.

https://doi.org/10.1017/erm.2016.2
https://doi.org/10.1093/biostatistics/kxt047
https://doi.org/10.26508/lsa.201800115


Page 16 of 16Jalili et al. BMC Bioinformatics          (2023) 24:240 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	48.	 Newell R, Pienaar R, Balderson B, Piper M, Essebier A, Bodén M. ChIP-R: assembling reproducible sets of ChIP-seq and 
ATAC-seq peaks from multiple replicates. Genomics. 2021;113:1855–66.

	49.	 Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. 
Genome Res. 2002;12:996–1006.

	50.	 Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics. 2011;27:1696–7.
	51.	 Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein anno-

tation. Nucleic Acids Res. 2016;44:D457–62.
	52.	 Lachmann A, Xu H, Krishnan J, Berger SI, Mazloom AR, Ma’ayan A. ChEA: transcription factor regulation inferred from 

integrating genome-wide ChIP-X experiments. Bioinformatics. 2010;26:2438–44.
	53.	 Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene set knowledge discovery with enrichr. 

Curr Protoc. 2021;1: e90.
	54.	 Chen H, Levo M, Barinov L, Fujioka M, Jaynes JB, Gregor T. Dynamic interplay between enhancer–promoter topology 

and gene activity. Nat Genet. 2018;50:1296–303.
	55.	 Sloan CA, Chan ET, Davidson JM, Malladi VS, Strattan JS, Hitz BC, et al. ENCODE data at the ENCODE portal. Nucleic 

Acids Res. 2016;44:D726–32.
	56.	 Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list 

enrichment analysis tool. BMC Bioinformatics. 2013;14:1–14.
	57.	 Nolis IK, McKay DJ, Mantouvalou E, Lomvardas S, Merika M, Thanos D. Transcription factors mediate long-range 

enhancer–promoter interactions. Proc Natl Acad Sci U S A. 2009;106:20222–7.
	58.	 Ji X, Dadon DB, Powell BE, Fan ZP, Borges-Rivera D, Shachar S, et al. 3D Chromosome regulatory landscape of human 

pluripotent cells. Cell Stem Cell. 2016;18:262–75.
	59.	 Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME Suite: tools for motif discovery and search-

ing. Nucleic Acids Res. 2009;37:W202–8.
	60.	 Zheng Y, Nie P, Peng D, He Z, Liu M, Xie Y, et al. m6AVar: a database of functional variants involved in m6A modifica-

tion. Nucleic Acids Res. 2018;46:D139–45.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


