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Abstract 

Background: Hepatocellular carcinoma (HCC) is the fifth most frequently diagnosed 
malignancy and the third leading cause of cancer death globally. T cells are significantly 
correlated with the progression, therapy and prognosis of cancer. Limited systematic 
studies regarding the role of T-cell-related markers in HCC have been performed.

Methods: T-cell markers were identified with single-cell RNA sequencing (scRNA-seq) 
data from the GEO database. A prognostic signature was developed with the LASSO 
algorithm in the TCGA cohort and verified in the GSE14520 cohort. Another three 
eligible immunotherapy datasets, GSE91061, PRJEB25780 and IMigor210, were used to 
verify the role of the risk score in the immunotherapy response.

Results: With 181 T-cell markers identified by scRNA-seq analysis, a 13 T-cell-related 
gene-based prognostic signature (TRPS) was developed for prognostic prediction, 
which divided HCC patients into high-risk and low-risk groups according to overall 
survival, with AUCs of 1 year, 3 years, and 5 years of 0.807, 0.752, and 0.708, respectively. 
TRPS had the highest C-index compared with the other 10 established prognostic 
signatures, suggesting a better performance of TRPS in predicting the prognosis of 
HCC. More importantly, the TRPS risk score was closely correlated with the TIDE score 
and immunophenoscore. The high-risk score patients had a higher percentage of SD/
PD, and CR/PR occurred more frequently in patients with low TRPS-related risk scores in 
the IMigor210, PRJEB25780 and GSE91061 cohorts. We also constructed a nomogram 
based on the TRPS, which had high potential for clinical application.

Conclusion: Our study proposed a novel TRPS for HCC patients, and the TRPS 
could effectively indicate the prognosis of HCC. It also served as a predictor for 
immunotherapy.
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Introduction
Hepatocellular carcinoma (HCC) is the fifth most frequently diagnosed malignancy 
and the third leading cause of cancer death globally [1]. A total of 905,677 million cases 
were estimated to be first diagnosed with HCC, and this disease caused 830,180 deaths 
in 2020 globally, ranking for approximately 4.7% of newly diagnosed cancer cases and 
8.3% of cancer-related deaths [2]. Characterized by a high rate of invasiveness, recur-
rence and metastasis, the prognosis of HCC is poor, and the 5-year overall survival (OS) 
is only approximately 30% [3]. Although some risk factors have been identified for HCC, 
including HBV infection and alcohol consumption, the molecular mechanism of HCC 
is far from being elucidated [4]. Although chemotherapy, targeted therapy and immu-
notherapy have been used for the treatment of HCC, limited biomarkers could be used 
for the response to these therapies and prognosis. Increasing evidence has emerged for 
novel biomarkers in the prognosis and therapy response of HCC.

The tumor microenvironment (TME) denotes the presence of noncancerous cells and 
tumor-related components, including molecules produced and released by them [5]. 
The crosstalk between the infiltrated immune cells in the tumor microenvironment and 
tumor plays a vital role in the multistep progression of cancer [6]. As a vital element 
of the tumor microenvironment, T cells are significantly correlated with the progres-
sion, therapy and prognosis of cancer [7, 8]. T cells are key mediators of tumor destruc-
tion, and their specificity for tumor-expressed antigens is of paramount importance [9]. 
The absence of T cells could lead to tumor immune escape and treatment failure [10]. 
Moreover, T-cell-related markers could serve as prognostic biomarkers for various types 
of cancer, including lung squamous cell carcinoma [10], renal cell carcinoma [11], and 
uveal melanoma [12]. Thus, it is necessary to explore the prognostic value of T cells and 
their association with therapy response in HCC.

Single-cell RNA sequencing (scRNA-seq) has provided a good approach for under-
standing the TME and immunotherapy [13]. Integrated analysis of single-cell and bulk 
RNA sequencing was also provided as a new way to identify prognostic biomarkers and 
therapeutic targets for cancer [14–18]. Herein, an integrative analysis of scRNA-seq and 
bulk RNA-seq of HCC was performed to identify T-cell marker genes and develop a 
prognostic signature, which could be used for prognostic stratification and immunother-
apy response in HCC. Our results may provide more evidence for prognostic markers 
and therapeutic targets for HCC.

Materials and methods
scRNA‑seq data and transcriptome data acquisition

All the datasets used in this study are public/open access datasets. The scRNA-seq data 
of HCC tumor samples were downloaded from the GSE162616 dataset via the GEO 
database (https:// www. ncbi. nlm. nih. gov/ geo/). The details of scRNA-seq data of HCC 
tumor samples are provided in Additional file 1: Table S1. The bulk transcriptome RNA-
seq data and corresponding clinical data of HCC (n = 371) were obtained from The 
Cancer Genome Atlas (TCGA, https:// portal. gdc. cancer. gov/). We chose the GSE14520 
(n = 221) dataset as the test cohort for the validation of the subtype and prognostic sig-
nature. The clinical information of TCGA and GSE14520 were shown in Additional 
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file 2: Table S2. Those cases histologically diagnosed with HCC with valid information 
about age, gender and overall survival were included in our study while those cases that 
were metastatic HCC were excluded from our study. Another three eligible immuno-
therapy datasets, GSE91061 (n = 39, anti-CTLA4 and anti-PD1 therapy), PRJEB25780 
(n = 78, anti-PD1 therapy) and IMigor210 (n = 298, anti-PD1 therapy), were used to ver-
ify the role of the risk score in immunotherapy response.

Single‑cell RNA‑seq analysis

The scRNA-seq data were processed with the Seurat R package (version 4.0), an R toolkit 
for single-cell genomics [19]. Genes detected in fewer than 3 cells and cells with fewer 
than 50 detected genes were excluded, and the mitochondrial proportion was limited 
to less than 5%. After data normalization with the LogNormalize method, we per-
formed principal component analysis (PCA) and UMAP analysis for unsupervised clus-
tering, with which we could visualize cell populations on a two-dimensional map [20]. 
Cell annotation was performed using the SingleR package with reference data from the 
Human Primary Cell Atlas [21]. To identify marker genes of each cluster, we selected the 
“FindAllMarkers” function and fold change (FC) ≥ 1 and the minimum cell population 
fraction in either of the two populations of 0.4 as threshold values. T-cell-related mark-
ers were defined as the markers of corresponding T-cell clusters.

Genetic mutation and prognostic value analysis

The single nucleotide variation (SNV) and copy number variation (CNV) atlas of T-cell-
related markers was generated with GSCALite, a web tool for gene set cancer analysis 
based on the TCGA dataset [22]. Seven types of mutation were included in this analysis: 
Missense_Mutation, Nonsense_Mutation, Frame_Shift_Ins, Splice_Site, Frame_Shift_
Del, In_Frame_Del, In_Frame_Ins. CNV nanlysis was processed through GISTIC2.0 
[23]. To identify T-cell-related markers with prognostic significance in HCC, univariate 
Cox regression analysis was performed.

Nonnegative matrix factorization (NMF) clustering

To explore whether T-cell-related markers with prognostic significance could distinguish 
different types of HCC, we performed NMF clustering with the nmf R package. Genes 
with a median absolute deviation (MAD) value > 0.5 were chosen for sample clustering. 
A cluster heatmap was generated with the “pheatmap” package. The survival curve of 
different clusters was drawn with the Kaplan‒Meier method.

Development and validation of the prognostic signature and predictive nomogram

Based on T-cell-related markers with prognostic significance in HCC, we conducted 
least absolute shrinkage and selection operator (LASSO) analysis via the glmnet R pack-
age to identify candidates for the prognostic signature. Based on the coefficient value of 
each candidate, we calculated the risk score of each HCC sample. After that, we could 
distinguish HCC samples into high- and low-risk groups with the medium value as the 
cutoff. The clinical outcome of different HCC groups was analyzed with the log-rank 
test. The survivalROC and rms R packages were applied to construct a time‐dependent 
ROC curve and C-index to evaluate the predictive power of the prognostic signature. 
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Moreover, all independent prognostic risk factors were identified with univariate and 
multivariate Cox analyses. We then compared our signature with 10 other prognostic 
signatures that have been developed for HCC. More specifically, a total of 468 items 
about prognostic signature for HCC were identified by searching for “TCGA” and 
“prognostic signature” AND “HCC” in Pubmed (https:// pubmed. ncbi. nlm. nih. gov/) on 
December 25, 2022. We used Excel to generate 10 random numbers from 1 to 468, and 
these 10 random numbers corresponding to the items were selected for further compar-
ison with our prognostic signature. This was followed by the construction of a predictive 
nomogram based on all independent prognostic risk factors to predict the 1-, 3-, and 
5-year overall survival of HCC patients. Decision curve analysis (DCA) was performed 
using the ggDCA R package to evaluate the potential of the predictive nomogram for 
clinical application.

Immune landscape, gene set enrichment and therapeutic response analysis

The ESTIMATE method was used to explore the TME score (immunoscore, stromas-
core and ESTIMATEScore) of HCC [24]. The abundance of immune cells in HCC was 
estimated with the CIBERSORT method [25]. The “ggpubr” or “vioplot” R package 
was used to compare the expression of human leukocyte antigen (HLA)-related genes 
and immune checkpoints in different groups. To clarify the potential mechanisms 
of the high- and low-risk groups, we conducted GSEA using gene sets of c2kegg, and 
the threshold value was normalized enrichment score (NES)|> 1 and nominal (NOM) 
p value < 0.05. The tumor immune dysfunction and exclusion (TIDE) score and immu-
nophenoscore (IPS) were used to evaluate the performance of the prognostic signature 
in the immune response [26]. These two scores could guide doctors in selecting patients 
who are more suitable for immune checkpoints. Moreover, the oncoPredict R pack-
age was used to predict drug sensitivity to common chemotherapy and targeted ther-
apy drugs. Drug sensitivity was obtained from Genomics of Drug Sensitivity in Cancer 
(https:// www. cance rrxge ne. org/). Drug sensitivity was detected by measuring the area 
under the concentration‒response curve value, and a high AUC indicated low sensitivity.

Results
Single‑cell analysis reveals cell subtypes and T‑cell‑related markers

HCC scRNA-seq data were preprocessed with stringent quality control metrics, and we 
obtained 34,170 high-quality cell samples from two HCC tissues (Fig. 1A). There was a 
strong positive correlation between the number of genes detected and the sequencing 
depth, with a Pearson correlation coefficient of 0.91 (Fig. 1B). These samples could be 
divided into 17 clusters (Fig. 1C). Using the UMAP technique to annotate acknowledged 
cell types, we obtained a total of 6 types of cells, including NK cells, T cells, monocytes, 
B cells, hepatocytes, and macrophages (Fig. 1D). Moreover, we also obtained 181 T-cell-
related genes (Fig. 1D, Additional file 3: Table S3).

The genetic mutation atlas of T‑cell‑related genes in HCC.

The CNV landscape of T-cell-related genes in HCC is presented in Additional file  4: 
Figure S1, revealing that more than half of T-cell-related genes had widespread CNV 
amplification, while DOK2, DUSP4, SARAF, LEPROTL1 and NSD3 had a significant 

https://pubmed.ncbi.nlm.nih.gov/
https://www.cancerrxgene.org/
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homozygous deletion. SNV analysis suggested that ANKRD12 ranked the highest fre-
quency of SNVs, and missense mutations were the most common variant classification 
(Additional file 5: Figure S2A-2B).

NMF identifies two subtypes in HCC

A total of 55  T-cell-related genes with significant prognostic value were screened out 
using Cox univariate analysis (Additional file  5: Figure S2C). To clarify whether these 
55 T-cell-related genes could cluster HCC into subtypes, we performed NMF analysis 
(Fig. 2A). As a result, HCC samples were divided into two distinct modification pattern 
clusters, including 183 cases in cluster C1 and 117 cases in cluster C2 (Fig.  2B). Fur-
ther results showed that HCC patient cluster 2 was correlated with poor OS compared 
with HCC patients in cluster 1 (Fig. 2C, p = 0.003). We also verified our result using the 
GSE14520 cohort, and similar results were obtained (Fig. 2D–E).

Construction and validation of the T‑cell‑related prognostic signature (TRPS) for HCC

As 55 T-cell-related genes could cluster HCC into two subtypes with distinct progno-
ses, we then constructed a prognostic signature based on these genes. After perform-
ing LASSO regression analysis, a total of 13 T-cell-related genes were selected for the 
prognostic signature, and the coefficient of the candidate gene is shown in Additional 
file 6: Figure S3A-3B. The risk score of each HCC sample was calculated with the fol-
lowing formula: Risk score = ( − 0.197070704 * expression of IL7R) + (0.032065529 * 
expression of BATF) + (0.06105135 * expression of PRDX1) + (0.02338793 * expres-
sion of HSPA8) + (0.114580331 * expression of AHSA1) + (0.062159747 * expres-
sion of RGS2) + (0.037404701 * expression of DYNLL1) + (0.282509962 * expression 

Fig. 1 Analysis of single-cell RNA sequencing from two HCC samples. A Post quality control filtering of each 
sequenced cell. B Correlation analysis between nFeature and nCount. C A total of 20 clusters of all cells were 
identified. D The UMAP dimensionality reduction algorithm identified 6 subtypes of cells
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of CHORDC1) + (0.109884375 * expression of NUDC) + (0.054986533* expression 
of OAZ1) + ( − 0.073910694 * expression of PER1) + (0.211991659 * expression of 
ZC3HAV1) + (0.058564557 * expression of CDV3). HCC cases could be divided into 
low- and high-risk groups in light of their median risk score in the training (TCGA) 
cohort and test (GSE14520) cohort. The number of deaths in the high-risk group was 
much greater than that in the low-risk group in the training cohort and test cohort 
(Additional file  6: Figure S3C-3D). Kaplan‒Meier curves suggested that the high-risk 
group was correlated with unfavorable survival outcomes versus the low-risk group in 
the TCGA cohort (Fig.  3A, p < 0.001). Further ROC analysis suggested that the AUCs 
at 1  year, 3  years, and 5  years were 0.807, 0.752, and 0.708, respectively, demonstrat-
ing the good performance of this prognostic in risk evaluation in HCC (Fig.  3A). We 
also compared the predictive value of this TRPS with other clinical parameters. Inter-
estingly, the ROC curve and C-index suggested that TRPS had the best performance in 
risk evaluation in HCC compared with age, sex and clinical stage (Fig. 3A). To verify our 
results, we also verified these results using the GSE14520 dataset. HCC patients with a 
high risk score had a poor OS rate, with AUCs at 1 year, 3 years, and 5 years of 0.644, 
0.657, and 0.655, respectively (Fig. 3B). However, the performance of TRPS in risk evalu-
ation in HCC was better than that of age and sex but not clinical stage (Fig. 3B), which 
was different from the results of the TCGA dataset. Thus, it would be better to verify 
these results using more datasets. Moreover, univariate and multivariate Cox analyses 
suggested TRPS and clinical stage as independent risk factors for the prognosis of HCC 

Fig. 2 Nonnegative matrix factorization (NMF) identifies two subtypes in HCC. A Cophenetic correlation 
from NMF analysis of HCC tumors. B Heatmap displaying consensus clustering with robust classification in 
the TCGA cohort (k = 2). C Overall survival curve of the two clusters in the TCGA cohort. D–E Heatmap and 
overall survival curve of the two clusters in the GSE14520 cohort
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(Fig. 3C–D). We also compared our signature with 10 other established prognostic sig-
natures, including the Zhao signature [27], Liu signature [28], Fu signature [29], Wang 
signature[30], Zhigang signature [31], Yang signature [32], Liang signature [33], Tang 
signature [34], Li signature [35], and Tian signature [36]. Interestingly, our TRPS had the 
highest C-index compared with these 10 established prognostic signatures, suggesting 
that our TRPS had a relatively better performance in predicting the prognosis of HCC 
than some of the other signatures (Fig.  3E). Our TRPS had better performance when 
predicting overall survival of more than 5 years (Fig. 3F).

Correlation analysis between TRPS and the immune microenvironment

As T cells play a vital role in the immune microenvironment, we then explored the cor-
relation between TRPS and the immune microenvironment. As shown in Fig. 4A, low 
risk was correlated with a higher score for most immune-related components, includ-
ing B cells, CD8 + T cells, cytolytic activity, mast cells, NK cells, costimulation T cells, 

Fig. 3 Construction and validation of a T-cell-related prognostic signature (TRPS) for HCC. A Survival curve, 
ROC curve, and C-index of TRPS in the TCGA cohort. B Survival curve, ROC curve, and C-index of TRPS in the 
GSE14520 cohort. C–D Univariate and multivariate Cox regression considering the risk score and clinical 
characteristics in the TCGA cohort. The C-index (E) and RMS curve (F) of TRPS and the other eight developed 
risk models
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Th2 T cells and type II IFN response. Moreover, the expression of approximately half 
of the HLA-related genes was higher in the low-risk group than in the high-risk group 
(Fig. 4B). As shown in Fig. 4C, a significant difference in the expression of CTLA4 and 
HAVCR2 was obtained between the high-risk group and the low-risk group. Moreover, 
HCC patients in the low-risk group had a higher stromal score, immune score and ESTI-
MAE score than those in the high-risk score group (Fig.  4D). These results suggested 
that the low-risk subgroup may be an immune-hot subtype.

The difference between the two groups in functional enrichment

GSEA revealed that the high-risk group was correlated with basal cell carcinoma, cell 
cycle, ECM-receptor interaction, neuroactive ligand‒receptor interaction and hyper-
trophic cardiomyopathy (HCM) (Fig. 4E). The low-risk group was correlated with gly-
cine, serine and threonine metabolism, beta-alanine metabolism, fatty acid metabolism, 
and tryptophan metabolism (Fig.  4F). These results suggested that the low-risk group 
was significantly correlated with tumor metabolism.

Fig. 4 Immune microenvironment landscape and functional enrichment of the high- and low-risk groups. 
A The score of immune-related functions and components in the high- and low-risk groups. B–C The 
expression of HLA-related genes and immune checkpoints in the high- and low-risk groups. D The stromal 
score, immune score, and ESTIMAE score in the high- and low-risk groups. E–F Functional enrichment items 
in the high- and low-risk groups. *P < 0.05, **P < 0.01, ***P < 0.001
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TRPS‑related risk score‑based treatment strategy for HCC

The above results suggested that the TRPS-related low-risk subgroup in HCC may be 
an immune-hot subtype. The TIDE score and IPS were good indicators for the predic-
tion of immunotherapy response. A higher IPS and lower TIDE score indicated better 
sensitivity to immunotherapy. In our study, HCC patients in the low risk score group 
had a higher anti-PD 1 IPS, anti-CTLA4 IPS and anti-PD 1 and CTLA4 IPS than those 
in the high risk score group (Fig. 5A, all p < 0.05). Moreover, we also found that HCC 
patients in the low risk score group had a lower TIDE score than those in the high risk 
score group (Fig. 5B, p < 0.001). Thus, HCC in the low risk score group may be more 
sensitive to immunotherapy. Owing to the relatively few cases in the HCC immuno-
therapy database (GSE140901), we selected three datasets with follow-up informa-
tion on the treatment effect to further verify the above results, including GSE91061 
(n = 39, anti-CTLA4 and anti-PD1 therapy), PRJEB25780 (n = 78, anti-PD1 therapy) 
and IMigor210 (n = 298, anti-PD1 therapy). The response subtype was divided into 
two groups, PR/CR and SD/PD. The high TRPS-related risk score patients had a 
higher percentage of SD/PD, and CR/PR occurred more frequently in patients with 

Fig. 5 T-cell-related prognostic signature (TRPS)-based treatment strategy for HCC. A The 
immunophenoscore in the high- and low-risk groups. B The TIDE score in the high- and low-risk groups. The 
percentage of SD/PD and CR/PR response subtypes in patients with different risk scores in the IMigor210 
cohort (C), PRJEB25780 cohort (D) and GSE91061 cohort (E). F The IC50 values of axitinib, cisplatin, 
dabrafenib, gemcitabine, KRAS inhibitor, oxaliplatin, selumetinib, and sorafenib in the high- and low-risk 
groups. *P < 0.05, **P < 0.01, ***P < 0.001
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low TRPS-related risk scores in the IMigor210 cohort (Fig. 5C), PRJEB25780 cohort 
(Fig.  5D) and GSE91061 cohort (Fig.  5E). These data revealed that HCC in the low 
risk score group may be more sensitive to immunotherapy than HCC in the high risk 
score group. We then compared the IC50 values of common drugs for chemotherapy 
and targeted therapy between the high- and low-risk score groups. As expected, HCC 
in the low risk score group had lower IC50 values for axitinib, cisplatin, dabrafenib, 
gemcitabine, KRAS inhibitor, oxaliplatin, selumetinib, and sorafenib (Fig. 5F). Thus, 
HCC in the low risk score group may be more sensitive to chemotherapy and targeted 
therapy than that in the high risk score group.

Construction of a nomogram based on the TRPS

Based on the results of univariate and multivariate Cox regression analyses (Fig. 3C–
D), we included clinical stage and TRPS in the construction of a nomogram (Fig. 6A). 
Calibration plots demonstrated that the actual 1-year, 3-year and 5-year survival 
times were highly consistent with the predicted survival times (Fig.  6B). Moreover, 
further ROC curve and DCA curve analyses revealed that this nomogram had high 
potential for clinical application (Fig. 6C–D).

Fig. 6 Construction of a nomogram based on the T-cell-related prognostic signature (TRPS) A A nomogram 
including clinical stage and TRPS predicting 1-year, 3-year and 5-year overall survival. B Calibration plots 
demonstrated that the actual 1-year, 3-year and 5-year survival times were highly consistent with the 
predicted survival times. C ROC curve comparing the predictive value of the nomogram, risk score and 
clinical parameters. D DCA curve revealed that this nomogram had a high potential for clinical application.
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Discussion
With the development of cancer immunotherapy, an increasing number of markers to 
predict immunotherapy response have been identified. Increasing evidence has high-
lighted the vital role of the TME in the efficacy of cancer immunotherapy [37]. The 
development of scRNA-seq technologies has provided a potential way for researchers to 
explore the molecular characteristics of tumor-infiltrating immune cells in the TME. As 
one of the important mediating cells, T cells play a vital role in tumor immunotherapy 
[38]. Moreover, T-cell-based immunotherapy has elicited promising responses in malig-
nancies, melanoma, and lung cancer [39]. However, reliable biomarkers based on T cells 
for immunotherapy response and prognosis of HCC are still rare.

In our study, scRNA-seq analysis identified 181 cell marker genes in two HCC samples. 
Further LASSO regression analysis screened 13  T-cell-related genes for the construc-
tion of a prognostic signature, including IL7R, BATF, PRDX1, HSPA8, AHSA1, RGS2, 
DYNLL1, CHORDC1, NUDC, OAZ1, PER1, ZC3HAV1, and CDV3. Many studies have 
highlighted the important role of these genes in the activity of T cells. The cytokine 
receptor IL-7R is critical for T-cell development, differentiation, generation and main-
tenance of memory T cells [40]. The cooperation of BATF and IRF4 could again exhaust 
tumor-infiltrating CAR T cells [41]. HSPA8 and ICAM-1 can act as damage-induced 
mediators of γδ T-cell activation [42]. Stress hormone signaling inhibits Th1 polariza-
tion in a CD4 T-cell-intrinsic manner via mTORC1 and PER1 [43].

Further study revealed that our TRPS could serve as a powerful predictive tool for the 
prognosis of HCC in TCGA and GSE14520 cohorts. Many prognostic signatures have 
been developed for HCC. Zhao et al. developed an amino acid metabolism-related sig-
nature for the prediction of HCC patients [27]. Based on six genes, another signature 
was developed to predict the OS rate of HCC [28]. The pyroptosis-related signature 
could serve as a prognostic biomarker for HCC and predict immune infiltration [29]. 
Based on the metabolic rate-limiting enzyme prognostic signature, clinicians may evalu-
ate the prognosis and therapy response of HCC [30]. A novel five-gene signature could 
predict the OS rate of HCC [31]. Using the LASSO algorithm, Yang et al. developed a 
macrophage-related signature that could predict the clinical outcome of HCC [32]. To 
explore the role of ferroptosis in the prognosis of HCC, some researchers constructed 
a ferroptosis-related lncRNA signature for HCC [33]. A five-cholesterol metabolism-
related gene signature could predict the prognosis of HCC patients [34]. Due to the 
vital role of m6A methyltransferase in HCC, Li et  al. constructed a prognostic signa-
ture based on m6A methyltransferase-related lncRNAs that could predict the immu-
notherapy response of HCC [35]. Another signature constructed by CDC20, TOP2A, 
RRM2, UBE2C and AOX1 could predict the prognosis of HCC patients [36]. Compared 
with these 10 established prognostic signatures, TRPS had a higher C-index, suggesting 
a better performance of TRPS in predicting the prognosis of HCC. The data demon-
strated that low risk was correlated with higher scores for some immune cells, HLA-
related genes and immune checkpoints. Moreover, HCC patients in the low-risk group 
had a higher stromal score, immune score and ESTIMAE score than those in the high-
risk score group. These results suggested that the low-risk subgroup may be an immune-
hot subtype [44, 45]. The high score of immune cell infiltration can prevent tumor cell 
escape from immune surveillance and inhibit tumor progression, which may be one of 
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the reasons why this subtype of HCC had a better overall survival. GSEA revealed that 
the high-risk groups were significantly associated with the biological processes of the 
cell cycle pathway. Hence, the inferior prognosis of HCC patients with high risk scores 
may be partly attributed to the abnormal regulation of the cell cycle, which is intimately 
linked to tumor proliferation and progression.

Moreover, the current study may provide a treatment strategy based on the TRPS-
related risk score for HCC. We found that patients with a high TRPS risk score had a 
higher TIDE score and lower immunophenoscore. The high-risk score patients had 
a higher percentage of SD/PD, and CR/PR occurred more frequently in patients with 
low TRPS-related risk scores in the IMigor210, PRJEB25780 and GSE91061 cohorts. 
The TIDE score [46] and immunophenoscore [26] were good predictors of the immune 
response. A high score and low immunophenoscore indicated low sensitivity to immu-
notherapy. Thus, the current result may suggest that HCC patients in the low-risk group 
were more likely to benefit from immunotherapy. TRPS might act as a reliable biomarker 
for predicting immunotherapy response.

Some limitations should be mentioned in our study. Only two single-cell datasets of 
HCC were used in our study, and they could not represent all other HCC patients. The 
expression and prognosis of TRPS should be detected using clinical tissues. Moreover, 
the performance of the TRPS in risk evaluation in HCC was better than that of age and 
sex but not clinical stage, which was different from the results of the TCGA dataset. It 
would be better to verify these results using more datasets. It would be better to com-
pare our TRPS with more developed signatures for HCC.

Conclusion
Our study constructed and validated a novel T-cell-related prognostic signature by inte-
grated analysis of single-cell and bulk RNA sequencing, which could serve as a reliable 
biomarker for predicting prognosis and immunotherapy. Our study may provide novel 
insight into the role of immune cell marker genes in the prognosis and immunotherapy 
response of HCC patients.
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