
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Kunzmann et al. BMC Bioinformatics (2023) 24:236
https://doi.org/10.1186/s12859-023-05345-6

BMC Bioinformatics

Biotite: new tools for a versatile Python
bioinformatics library
Patrick Kunzmann1*, Tom David Müller2, Maximilian Greil3, Jan Hendrik Krumbach1, Jacob Marcel Anter1,
Daniel Bauer1, Faisal Islam1 and Kay Hamacher1

Abstract

Background: Biotite is a program library for sequence and structural bioinformatics
written for the Python programming language. It implements widely used computa-
tional methods into a consistent and accessible package. This allows for easy combina-
tion of various data analysis, modeling and simulation methods.

Results: This article presents major functionalities introduced into Biotite since its
original publication. The fields of application are shown using concrete examples. We
show that the computational performance of Biotite for bioinformatics tasks is com-
parable to individual, special purpose software systems specifically developed for the
respective single task.

Conclusions: The results show that Biotite can be used as program library to either
answer specific bioinformatics questions and simultaneously allow the user to write
entire, self-contained software applications with sufficient performance for general
application.

Keywords: Open source, Python, Structural bioinformatics, Sequence analysis

Background
Python is a general purpose programming language that is popular for its easy usage
and rapid development. However that ease of usage comes at the cost of computational
speed: Due to Python’s code interpretation at runtime and its convenient features such
as dynamic typing and garbage collection, the execution requires significant overhead
compared to most compiled programming languages.

One way of mitigation is to run code written in C using a pythonic foreign-language
interface. This feature has been harnessed by the Numerical Python (NumPy) package
[1], which introduced n-dimensional arrays, or ndarrays in short, to store numerical
data. Numerical operations on an ndarray are vectorized, i.e. they are applied to each of
the array’s elements using underlying extension modules, which renders the computa-
tion speed on large datasets orders of magnitude faster than in pure Python.

The combination of the advantages of Python with these fast vectorized numerical
operations has lead to an increasing attention by various areas of science: Today the

*Correspondence:
patrick.kunzm@gmail.com

1 Computational Biology
and Simulation, Technical
University of Darmstadt,
Schnittspahnstraße 2,
64287 Darmstadt, Germany
2 Department of Computer
Science, Eberhard Karls
University of Tübingen, Sand 14,
72076 Tübingen, Germany
3 Independent Researcher,
Heidelberg, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05345-6&domain=pdf

Page 2 of 19Kunzmann et al. BMC Bioinformatics (2023) 24:236

Python scientific computing ecosystem comprises program libraries1 from quantum
mechanics calculations [2] to astronomical applications [3].

The open-source package Biotite (https:// www. bioti te- python. org/) aims to fill this role
for the realm of computational molecular biology. It provides editing and analysis tools
for sequences and 3D molecular models. In contrast to other comparable bioinformatics
libraries like Biopython [4], which originally dates back to the time prior to the release
of NumPy, Biotite integrates NumPy arrays directly into its data model for sequences
and structures. The vectorization substantially accelerates operations like geometric
measurements on structure models or DNA sequence translation into protein. Where
vectorization with NumPy is not applicable, Biotite employs extension modules written
in Cython [5] to speed up time-consuming computations. If the user is accustomed to
NumPy, handling objects in Biotite is intuitive: filtering for particular atoms in a struc-
ture or regions in a sequence accepts the same indexing semantics as NumPy and func-
tions return ndarrays for pure numerical values.

Since its initial publication of Biotite [6], a multitude of new functionalities have been
added. In this article we highlight the arguably most important additions of recent years.

Package organization

Biotite comprises four subpackages: biotite.database contains functions to search
in and fetch data from RCSB PDB [7], NCBI Entrez [8] and UniProt KB [9] via their
REST APIs. biotite.sequence contains methods for reading, writing, editing and
analyzing sequence data, whereas biotite.structure is the counterpart for struc-
ture data. To extend Biotite with analysis of external software biotite.applica-
tion provides seamless interfaces to programs like Clustal Omega [10] or DSSP [11].

The Biotite project follows the paradigm, that only established methods in computa-
tional molecular biology are implemented in Biotite. Functionality that is tailored for
rather uncommon tasks, uses novel algorithms or requires additional dependencies is
therefore released as an extension package. The functionalities in these packages inte-
grate tightly with the data model used by Biotite, but are developed and distributed
independently.

Data model

As already outlined, Biotite uses ndarrays to store data where possible. Hence, a
Sequence object internally uses an ndarray to store its symbols. Although in the
biological context the set of allowed symbols in the sequence, the alphabet, comprises
typically ASCII characters representing nucleobases or amino acids, Biotite defines
sequences in a broader sense, by allowing any object to be part of an alphabet. To
make this decision compatible with the numerical nature of ndarrays, Biotite har-
nesses the fact, that most alphabets are relatively short: Each symbol is translated
into a unambiguous integer, its symbol code, based on the position in the underly-
ing alphabet. For example in the alphabet {A,C ,G,T } , A would be translated into 0,
C into 1, etc. This approach yields performance advantages in accessing substitution

1 These libraries usually revolve around the ndarrays from NumPy, making costly computations feasible in realistic time.

https://www.biotite-python.org/

Page 3 of 19Kunzmann et al. BMC Bioinformatics (2023) 24:236

matrices and indexing k-mers. The symbol codes for each symbol in a sequence are
stored in an internal ndarray of the Sequence.

A sequence alignment depicts which positions in one sequence correspond to posi-
tions in one or multiple other sequences. Alignment objects in Biotite fulfill this
purpose. They store the Sequence objects corresponding to the aligned sequences
and a trace: a 2-dimensional ndarray, where each row contains the respective
sequence positions in the alignment column.

Macromolecular structures can be thought of as a list of atoms, where each atom is
defined by its position and further annotations, like its name, its element, the residue
it is part of, etc. The straightforward solution to represent structure data as such a list
would impede proper vectorization with NumPy. Thus Biotite implements a structure
model as collection of ndarrays, wrapped by an AtomArray object. An AtomAr-
ray contains an (n× 3)-dimensional array for the coordinates of the n atoms and one
n-dimensional array for each annotation. For multi-model structures, such as NMR
models or trajectories from molecular dynamics simulations, an AtomArrayStack
can be used, where the coordinates are (m× n× 3)-dimensional instead to account
for m models.

Implementation
Alignment searches

With the release of BLAST [12], k-mer based alignment searches became the prevalent
method for rapid identification of homologs in a sequence database. In modern soft-
ware such as DIAMOND [13] or MMseqs2 [14], alignment searches are a multi-stage
process: In each stage a number of alignment candidates are filtered out, reducing the
run time massively in the later more time consuming and sensitive stages. Biotite maps
these stages to separate functions and objects, forming a modular toolkit for alignment
searches: The user can choose between different alternatives of methods for each stage,
and can optionally introduce a custom implementation for parts of the alignment search.

In the beginning of a typical workflow, the k-mers of each sequence in a database,
i.e. all contiguous subsequences of length k are indexed into a table that maps each k-
mer to the sequence positions where it appears. For this purpose Biotite provides the
KmerTable class, which uses an internal ndarray of C-arrays for mapping k-mers to
positions.

Each k-mer is unambiguously mapped into a code d =
k−1
i=0 qici , using it symbol

codes ci . q is the length of the sequence alphabet. This mapping is performed for each
k-mer in a sequence, resulting in another sequence containing the values for d. Spaced
k-mers including ‘don’t care’ positions [15] can be used here as alternative to continu-
ous ones. A KmerTable is created in two passes [14]: In the first pass the ndarray
counts the number of occurrences of each possible d, resulting in qk elements. In the
second pass, the ndarray replaces each count with a pointer to a new C-array contain-
ing the sequence positions. As the size of each C-array is known from the first pass,
time consuming array resizing is prevented. In addition, the ability of a KmerTable
to be combined from multiple KmerTable instances and to be serialized, makes the
class suitable for multiprocessing on multiple cores.

Page 4 of 19Kunzmann et al. BMC Bioinformatics (2023) 24:236

To prevent the appearance of spurious homologies, low-complexity regions can be
masked in the KmerTable creation. Low-complexity regions are typically identified
using the tantan program [16], interfaced in the TantanApp for convenience.

In the first stage of an alignment search, matching k-mer positions between the data-
base and the query sequence are found by lookup in the KmerTable. The result is a
(n× 3)-dimensional ndarray containing the n matches as tuple of query sequence posi-
tion, database sequence id and database sequence position. To find matches of similar
k-mers instead of strictly equal ones, a substitution score threshold can be given to relax
the matching condition [17]. The ndarray of matches may be subjected to further cus-
tom filtering, such as a two-hit strategy [17], before it is used in downstream stages.

The fast k-mer matching is usually followed by an ungapped alignment stage and
finally a gapped alignment stage, where each remaining match position is used as
alignment seed. Local ungapped seed extensions [12] are performed with align_
local_ungapped(). In addition to the existing slow rigorous method [18, 19]
(align_optimal(), Fig. 1A), Biotite now also offers the X-drop [12, 20] (align_
local_gapped(), Fig. 1B) and band heuristics [21] (align_banded(), Fig. 1C) for
gapped alignments. Due to the typically smaller alignment search space their computa-
tion time is drastically reduced compared to the rigorous approach.

For statistical assessment of the obtained alignment scores, their E-value [22] can be
calculated using the EValueEstimator class. At initialization, the EValueEstima-
tor object samples a large number of alignment scores from randomized sequences and
uses the method of moments [23] to estimate the parameters of the score distribution.

Trees and multiple alignments

Although the multiple sequence alignment (MSA) programs interfaced in the appli-
cation subpackage [10, 24, 25] are sufficient for most applications, their flexibility
with respect to scoring schemes and supported sequence alphabets is limited and they
are usually only available on Unix-based operating systems. As alternative Biotite offers
the align_multiple() function, that implements the simple original progressive

Fig. 1 Gapped sequence alignment methods. Each plot shows a schematic dynamic programming
table for a local alignment method. The gray area depicts the explored portion table, i.e. the part that is
actually computed. The ‘+’ marks a k-mer match position. The red line indicates the best alignment. A
Rigorous sequence alignment. The complete table is explored. Hence no match position is required as seed.
B Alignment with X-drop criterion. Exploration of the table is terminated at positions, where the alignment
score drops X below the score of the best alignment seen so far. In consequence, the shape of the explored
area is dependent on the sequences. C Banded alignment. Table exploration is restricted to a diagonal band,
i.e. only a certain number of gaps is allowed in either sequence. In Biotite the dynamic programming table is
indented to reduce memory requirements by removing a large part of the unexplored area

Page 5 of 19Kunzmann et al. BMC Bioinformatics (2023) 24:236

alignment algorithm [26] to align given Sequence objects, based on customizable sub-
stitution matrix and gap penalty.

The progressive alignment procedure requires a guide tree, that determines in which
order the sequences are aligned. By default, the guide tree is created using the UPGMA
hierarchical clustering method from pairwise sequence distances [27]. However, the
tree can alternatively be created using any other method or read from Newick notation.
Besides UPGMA which is available as upgma() function, Biotite provides the neighbor-
joining method [28] (neighbor_joining()) as well.

Sequence profiles

Biotite is able to create sequence profiles from multiple sequence alignments consisting
of nucleotide, protein or custom sequences. The usefulness of profiles lies in their better
representation of information than a consensus sequence or a multiple sequence align-
ment [29].

In the literature, there are a lot of ambiguous terms describing the same matrices used:
a sequence profile can be either represented as a Position Frequency Matrix (PFM), a
Position Probability Matrix (PPM) or a Probability Weight Matrix (PWM) [30]. In a
PFM, for each position the total count C of each symbol S in the used alphabet is stored.
In a PPM, the probability P of each S in the PFM is calculated for each position as

cp denotes optional pseudocounts and k the number of symbols in the alphabet. In a
PWM, for each position a log-odds score W is assigned to every symbol with

where B denotes background frequencies.
The SequenceProfile class stores information about a sequence profile of aligned

sequences. This class saves a PFM of the occurrences of each alphabet symbol at each
position using a (n× k)-dimensional ndarray, where n is the sequence length of the
aligned sequences and k is the number of symbols in the alphabet. It also saves the num-
ber of gaps at each position in an ndarray with length n. The PFM, the gaps and the
alphabet used in a SequenceProfile object are directly accessible attributes of the
class. from_alignment() can be used to create a SequenceProfile object from an
indefinite number of aligned sequences.

The method to_consensus() gives the consensus sequence of a SequencePro-
file object. In case there is more than one symbol with maximum occurrences in a
profile position, nucleotide sequence profiles use IUPAC ambiguity symbols. For other
sequence types, the first symbol with maximum count in the alphabet is chosen.
probability_matrix() gives the PPM of the profile with optional pseudocount.

This is used for sequence_probability() and sequence_score(). With the
first method, the sequence probability can be calculated. The sequence probability is the
product of the probability of the respective symbol over all sequence positions. With the

P(S) =
CS +

cp
k

∑

i Ci + cp
.

W (S) = log2

(

P(S)

BS

)

,

Page 6 of 19Kunzmann et al. BMC Bioinformatics (2023) 24:236

second one the score for a sequence can be calculated: The score is the sum of weights W
of the respective symbol over all sequence positions.

Unit cells and macromolecular assemblies

AtomArray objects have a box attribute, a (3× 3)-ndarray that represents the vec-
tors of the unit cell or, in the context of an molecular dynamics simulation, the simula-
tion box. For an AtomArrayStack the box accommodates a (m× 3× 3)-dimensional
ndarray, since each model may have a different box. The box is automatically read from
structure file, if available, and can be used for geometric measurements, that take peri-
odic boundary conditions into account. Furthermore, a number of box-related func-
tions is available, for example to reassemble chains separated by periodic boundaries
(remove_pbc()) or to add periodic copies to the structure (repeat_box()).

Macromolecular assemblies represent the putative functional form of a protein (com-
plex). However, the atom coordinates in structure files from for example the PDB are
related to the experiment: For instance, in X-ray crystal structures the coordinates
describe the asymmetric unit of the protein crystal, but not necessarily the active con-
formation of a complex. PDBx/mmCIF files provide instructions, how the coordinates of
molecular chains need to be copied and transformed, to obtain a certain macromolecu-
lar assembly. This information can be read from PDBx/mmCIF format by get_assem-
bly(), returning an AtomArray representing the respective assembly.

Partial charges

The introduction of the partial_charges() command extended Biotite’s capabili-
ties with the computation of partial charges of various molecule classes, ranging from
biological macromolecules such as proteins and nucleic acids to small molecules such
as ligands. The function represents an implementation of the Partial Equalization of
Orbital Electronegativity (PEOE) algorithm [31]. Partial charge computation is based on
the formal atom charges associated with the input AtomArray and relies on an array of
tabulated parameters originating from the original publication. Hence, it is restricted to
those elements and valence states for which parameters are available. However, the tabu-
lated parameters comprise most elements relevant in the biochemical context, includ-
ing halogens which may occur in ligands. As the underlying algorithm is iterative, the
amount of iterations can be chosen by the user depending on the desired precision of the
result. The code is written in Cython [5], to achieve fast computation.

Small molecules

While previously Biotite focused on macromolecular structures, the support for small
molecules improved in recent releases. With the MOLFile class, small molecule struc-
tures can be read from MOL as well as SDF files [32]. Using information from the chemi-
cal components dictionary (CCD) [33], an AtomArray representing a desired small
molecule can be also created from scratch given merely the residue name using the
residue() function. The entire catalog of small molecules from the CCD is availa-
ble here, comprising all molecules that are part of any PDB entry. Furthermore, Biotite
provides an interface to AutoDock Vina [34] (VinaApp), that allows molecular docking
of small molecules to proteins. By using its own PDBQTFile reader/writer and partial

Page 7 of 19Kunzmann et al. BMC Bioinformatics (2023) 24:236

charges from PEOE, Biotite does not require an additional installation of AutoDockTools
[35] to prepare input for Vina and to parse its output.

Bond prediction

AtomArray and AtomArrayStack objects are able to store atom connectivity includ-
ing the bond order. Bonding information can be read from PDB and MMTF [36] files.
Alternatively, structures can be annotated with bonding information afterwards: If the
residues in the structure model are comprised by the CCD, bonds can be automatically
determined by connect_via_residue_names(). Otherwise, connect_via_
distances() is available as fallback, which assumes bonds for all pairs of atoms,
whose distance is within the bounds of the known bond length for the respective combi-
nation of elements [37]. However, the bond order cannot be inferred this way.

Hydrogen bonds

Hydrogen bond detection (hbond()) employs the Baker-Hubbard algorithm [38].
Possible interaction sites are identified based on the angle θ between donor (D), donor
hydrogen (HD) and acceptor (A) and the distance d H ,A between H D and A (Fig. 2). By
default, � ≥ 120◦ and dH ,A ≤ 2.5 Å, but values can be adjusted. For detection, hbond()
only considers the heavy elements O, N, S. Bonding information is used to efficiently
identify donor hydrogen atoms if available. Otherwise, possible hydrogens are identified
by a distance cutoff (dD,H ≤ 1.5 Å).

The algorithm returns a N × 3 matrix containing triplets of atom indices for D, H D
and A. When supplied with an AtomArrayStack, hbond() also returns a M × N
mask indicating the presence of interaction ni in model mi . A utility function hbond_
frequency() to obtain hydrogen bonding frequencies from the mask is provided for
convenience.

Nucleic acid secondary structures

Biotite contains a broad range of methods for nucleic acid secondary structure analysis
which generally support canonical as well as non-canonical bases and base pairings.

Mapping of non-canonical to canonical bases allows for approximation of geometric
information by superimposition of canonical structural features. For this purpose the
function map_nucleotide() is introduced to the structure subpackage. Bases
are superimposed based on matching PDB atom names and mapped to the canonical
base with the lowest RMSD. Bases are only mapped if the given PDB residue name is
classified as a DNA/RNA polymer according to the CCD, there is a match of at least
three atom names, and the RMSD is below a threshold of 0.28 Å, recommended in

Fig. 2 Hydrogen bond detection method. Hydrogen bonds are detected by an angle and distance
criterion: The angle � is formed by the donor (D), a hydrogen atom (HD) bound to D, and the acceptor (A) and
the distance dH,A between atoms A and H

Page 8 of 19Kunzmann et al. BMC Bioinformatics (2023) 24:236

the literature [41]. Given a residue, which is supplied as AtomArray, the function
returns the base that the residue was mapped to and whether the mapping was an
exact match, thus a canonical nucleotide. The minimum number of atoms necessary
as well as the RMSD threshold are customizable.

The function base_stacking() allows for the detection of aromatic base
stacking according to the following criteria [42]: Stacking is assumed if the distance
between aromatic ring centers is ≤ 4.5 Å, the angle between the ring normal vectors is
≤ 23◦ , and the angle between the distance vector connecting the ring centers and the
normal vectors of both bases is ≤ 40◦.

The function base_pairs() detects base pairs according to the DSSR crite-
ria [41]. A base pair is considered as present, if the distance between the base ori-
gins according to the standard reference frame [43] is ≤ 15 Å, the vertical separation
between the base planes is ≤ 2.5 Å, the angle between the base normal vectors is
≤ 65◦ , the bases do not exert stacking, and the bases are connected by at least one
hydrogen bond. A visualization of the base pairs detected in a fragment of the Sarcin-
Rycin loop of E. coli (PDB 6ZYB [39]) is shown in Fig. 3A.

Both base_stacking() and base_pairs() take the structure to be analyzed
(an AtomArray) as input. base_pairs() also allows constraining interactions
such that each base is only paired to one other base, preferring pairings with a higher
number of hydrogen bonds. Both functions return a N × 2 matrix, where each row
corresponds to the first indices of the interacting bases in the input AtomArray.

The dot-bracket-letter notation [44] describes secondary structures unambiguously
by assigning a pseudoknot order for nested sets of base pairs. The function pseu-
doknots() implements a dynamic programming algorithm [45], that determines all
optimal solutions for assigning the pseudoknot order such that the number of base
pairs is maximized at each level and decreases as the pseudoknot order increases. It is
also possible to set a maximum pseudoknot order to speed up calculations.

The function dot_bracket() relies on pseudoknots() to generate all opti-
mal dot-bracket-letter notations for a given sequence length and set of base pairs
referencing positions in the sequence. The function dot_bracket_from_struc-
ture() generates all dot-bracket-letter notations directly from a given AtomAr-
ray. As an example the secondary structure of a tRNA mimic from the turnip yellow
mosaic virus (PDB 4P5J [40]) visualized as an arc diagram using Matplotlib together
with the corresponding dot-bracket-letter notation is shown in Fig. 3C.

The Leontis-Westhof Nomenclature [46] distinguishes pairs of canonical bases by
the relative orientations of the glycosidic bonds (cis, trans) as well as the interacting
edges (Sugar, Watson-Crick, Hoogsteen/C-H). The functions base_pairs_glyco-
sidic_bonds() and base_pairs_edge() can be used to determine these prop-
erties, respectively, from a given AtomArray and base pairs. The relative orientation
of the glycosidic bonds is calculated as suggested by Yang et al. [47].

Furthermore, the application subpackage was extended with interfaces to the
programs RNAfold, RNAalifold and RNAplot of the ViennaRNA package [48]. The
RNAfoldApp and RNAalifoldApp classes can be used to predict RNA second-
ary structures for a given sequence using RNAfold or for a given alignment using

Page 9 of 19Kunzmann et al. BMC Bioinformatics (2023) 24:236

RNAalifold, respectively. Likewise, the RNAplotApp class can be used to generate
coordinates for a 2D plot of a given secondary structure.
plot_nucleotide_secondary_structure() takes advantage of the interface

to RNAplot to create highly customizable two dimensional plots from a given sequence
and corresponding base pair matrix. Figure 3B was generated using this function. The
sequence data at the positions of base pairings was augmented by the Leontis-Westhof
nomenclature, which enables the representation of base orientation.

Elastic network models

Springcraft (https:// sprin gcraft. bioti te- python. org/) is the dedicated Biotite extension
for normal mode analysis (NMA) with coarse-grained elastic network models (ENMs)
of proteins. In ENMs, amino acid residues are abstracted as nodes, which are commonly
assigned to positions of C α atoms, while pairwise interactions between them are modeled
as Hook’ean springs [49–51]. They allow to understand stabilization of a protein’s fold [52]

Fig. 3 Different visualizations of nucleic acid secondary structure features. The atom coordinates and
annotations of A and B are taken from PDB 6ZYB [39]. For C they are taken from PDB 4P5J [40]. Green
lines/cuboids denote canonical base pairs, while blue lines/cuboids denote non-canonical base pairs. The
base pairs were elucidated using base_pairs(). A Visualization of base pairing interactions with Pymol.
Red cuboids indicate unpaired bases. B Visualization of base pairing interactions and their Leontis-Westhof
annotations using plot_nucleotide_secondary_structure(). The first letter of the paired base
annotations indicates the relative orientation of the glycosidic bonds (c - cis, t - trans), while the second
letter encodes the interacting edges (S - Sugar, W - Watson-Crick, H - Hoogsteen/C-H). The relative glycosidic
bond orientations and interacting edges were elucidated using base_pairs_glycosidic_bonds()
and base_pairs_edge() respectively. C Visualization of base pairing interactions as an arc diagram
created with Matplotlib. The dot-bracket-letter notation was generated with dot_bracket(). Solid arcs
indicate pseudoknot order zero, dashed arcs pseudoknot order one, and dotted arcs pseudoknot order two.
Capital letters represent canonical bases, while lowercase letters represent non-canonical bases mapped
to the canonical base indicated by the respective one-letter-code. The bases were mapped using map_
nucleotide()

https://springcraft.biotite-python.org/

Page 10 of 19Kunzmann et al. BMC Bioinformatics (2023) 24:236

as well as the inference of functionally important residues and representative structural ele-
ments [53–55].

Both gaussian network models (GNMs) and anisotropic network models (ANMs) are
implemented in Springcraft [49, 56]. A varied selection of ENM force fields is available,
ranging from the original parametrization of GNMs/ANMs with invariant force constants
to distance- (pfENM, Hinsen-Cα-parametrization) and amino acid sequence-dependent
variants (sdENM, eANM) [57–60]. Force fields are represented as ForceField base class,
with subclasses for the different preset force fields. Custom ENM force fields can be readily
defined by inheriting and modifying the ForceField base class. A granular modification
of single interactions for a given ForceField is possible with the PatchedForce-
Field subclass: Single pair contacts can be established, shut off or assigned a specific force
constant independently. This greatly improves upon previous methods to model specific
interactions [61].

With an AtomArray and a ForceField object as input for the GNM/ANM classes,
NMA is conducted with separate instance methods: It is possible to compute the covari-
ance matrices, eigenvectors and commonly derived quantities, such as residue displace-
ments, fluctuations for a given mode or dynamical cross-correlations between residues.
Another method of the ANM class allows the prediction of structural changes in proteins
upon ligand binding by applying linear response theory [62].

Molecular visualization

To create publication-ready molecular visualizations AtomArray objects can be trans-
ferred to the popular PyMOL software suite [63] with the help of the Ammolite exten-
sion package (https:// ammol ite. bioti te- python. org/). The structure migration uses the
Python API of PyMOL, eliminating the need of intermediate structure files and the asso-
ciated potential loss of information. For each transferred AtomArray, Ammolite cre-
ates a PyMOLObject that links the AtomArray to the newly created PyMOL object.
Commands, like coloring atoms and changing representations, can be called from this
PyMOLObject with the benefit, that NumPy based atom selections can be used as alter-
native to string-based PyMOL selection algebra. Finally, Ammolite provides convenience
functions to create compiled graphics objects, facilitating the addition of 3D shapes, such as
balls and cylinders, into molecular visualizations.

Miscellaneous extension packages

Further extension packages have been published in recent years: Gecos (https:// gecos. bioti
te- python. org/) [64] is a software for generating optimal color schemes for sequence align-
ment visualizations on the basis of weight or substitution matrices.

Hydride (https:// hydri de. bioti te- python. org/) [65] is a package to predict hydrogen posi-
tions for those structure models, in which hydrogen atoms could not resolved experimen-
tally. This enables hydrogen bond measurement and accurate base pair identification on a
wider range of structures.

https://ammolite.biotite-python.org/
https://gecos.biotite-python.org/
https://gecos.biotite-python.org/
https://hydride.biotite-python.org/

Page 11 of 19Kunzmann et al. BMC Bioinformatics (2023) 24:236

Results and discussion
Example application

For demonstration purposes we applied a selection of the methods described above
for the sequence and structure analysis of human hemoglobin. The corresponding
source code is found as Jupyter notebooks in Additional file 1 and at https:// github.
com/ bioti te- dev/ artic le- noteb ooks. Alternatively, the raw Python source code is avail-
able in Additional file 2. Examples for other Biotite functionalities can be viewed in
the example gallery on the Biotite documentation website.

Identification of homologous sequences

To exemplify the usage of modular alignment search toolkit, we created a workflow to
find homologs of the human hemoglobin α-subunit (α-globin) in the curated Swiss-
Prot dataset from UniProtKB [9].

First the dataset was downloaded as FASTA file and its sequences along with the
corresponding UniProt accessions and gene names were extracted. Sequences that
belong to uncharacterized proteins or have viral origin were excluded. Furthermore
the human α-globin sequence was fetched (UniProt: P69905) as query sequence.
To find homologous sequences of human α-globin in a quick manner, a k-mer based
alignment search was conducted. The spaced 6-mers of the Swiss-Prot sequences were
indexed into a KmerTable. Repeat masking was omitted, to decrease the computa-
tion time for the sake of easy and fast reproducibility on commodity hardware. The
spacing pattern was adapted from MMseqs2 [14]. Then matches between the α-globin
sequence and the KmerTable were computed. To increase alignment search sensi-
tivity, a similarity score threshold based on BLOSUM62 [66] was used for matching.
In order to filter the most promising matches, a double-hit strategy was implemented
[17]: Only Swiss-Prot sequences with at least two matches on the same diagonal were
considered in the downstream alignment search stages.

At the match position of each of the remaining hits an ungapped alignment with
X-drop [12] criterion was performed (align_local_ungapped()). Hits, where
the ungapped alignments exceeded a given threshold score, were subjected to gapped
alignment within a band (align_banded()). BLOSUM62 was used as substitution
matrix and the gap penalty was taken from the MMseqs2 default. The gapped align-
ments were sorted by their E-value, computed using an EValueEstimator and
reported (Table 1).

Sequence conservation

Based on the identified homologs, the sequence conservation in the region of the
iron-binding histidine residue was explored. For this purpose a MSA of α-globin vari-
ants was conducted: From the identified homologs, the 100 sequences with highest
similarity to human α-globin were input to align_mulitple(). The guide tree
of the MSA is shown in (Fig. 4A). The alignment was truncated to a certain number
of amino acids around the iron-binding residue and displayed using the flower color
scheme created with Gecos (Fig. 4B). Furthermore a SequenceProfile was created

https://github.com/biotite-dev/article-notebooks
https://github.com/biotite-dev/article-notebooks

Page 12 of 19Kunzmann et al. BMC Bioinformatics (2023) 24:236

from the MSA in this region and used to create a sequence logo for more simple vis-
ual analysis of sequence conservation (Fig. 4C).

As the visualization functionalities of Biotite use Matplotlib [67], the elements of a fig-
ure can be easily customized using existing functionality from Matplotlib. In this case
the subplot layout as well as the label highlighting was achieved completely using few
Python statements. Since Matplotlib allows the user to access every graphical element,
every aspect of a figure can in theory be customized.

To reduce the redundancy in the sequence selection, a clustered sequence dataset such
as UniRef [68], could have been alternatively used as foundation. However, the UniRef
datasets are orders of magnitude larger than Swiss-Prot. Thus for the purpose of this
demonstration a smaller dataset was chosen.

Structure loading

For the second part of the hemoglobin analysis a structure of human hemoglobin was
chosen (PDB: 6BB5). The structure model was fetched from the PDB in PDBx/mmCIF
format. The plain coordinates of the PDB entry correspond to the asymmetric unit of the
X-ray crystal structure, representing a heterodimer (Fig. 5A). The functional hemoglobin
tetramer, containing two α-globin and two β-globin chains, was computed from trans-
formations described by the structure file with get_assembly() (Fig. 5B).

Normal mode analysis

The normal modes of the tetramer were analyzed by means of an ANM using Springcraft.
For this purpose the C α atoms were selected from the assembly. The selected atoms as
well as a residue type dependent ForceField (sdENM) [59] were used to create an
ANM instance. The eigenvectors were computed from the ANM. The first relevant mode
is shown in Fig. 5C.

Molecular docking

Next, molecular docking with AutoDock Vina [34] was used to find putative binding
modes, so called poses, of heme in α-globin. In case of the structure model at hand,
the conformation of the ligand heme is already resolved. However, for the purpose of

Table 1 Top 10 of identified sequences homologous to human α-globin

Rank Gene ID E-value Identity (%) Coverage (%)

1 HBA_HUMAN P69905 0.83× 10−72 100.0 100.0

2 HBA_PANTR P69907 0.83× 10−72 100.0 100.0

3 HBA_PANPA P69906 0.83× 10−72 100.0 100.0

4 HBA_GORGO P01923 0.64× 10−71 99.3 99.3

5 HBA1_HYLLA Q9TS35 0.11× 10−70 98.6 100.0

6 HBA_PONPY P06635 0.29× 10−70 97.9 100.0

7 HBA_SEMEN P01924 0.81× 10−70 97.9 99.3

8 HBA_ATEGE P67817 0.17× 10−69 96.5 100.0

9 HBA_MACFU P63107 0.17× 10−69 97.2 100.0

10 HBA_MACMU P63108 0.17× 10−69 97.2 100.0

Page 13 of 19Kunzmann et al. BMC Bioinformatics (2023) 24:236

this example it was assumed that it is unknown, particularly as this docking protocol
can be easily adapted to predict binding poses in other cases.

The structure model of heme was obtained from the CCD [33] and docked to α-glo-
bin in vicinity of the binding pocket via the interface to AutoDock Vina. Since the
correct binding mode is known, the suggested poses were assessed in terms of the
root-mean-square deviation (RMSD) between the respective pose and the binding
mode from the crystal structure (Fig. 6A). As assumed, the pose with the lowest pre-
dicted binding energy is also the one with the least RMSD (Fig. 6B).

Fig. 4 MSA of α-globin variants. The MSA comprises the 100 identified sequences with highest similarity
to the human variant. A Guide tree for the MSA. The human variant is highlighted. B MSA in vicinity to
iron-binding histidine residue. The order of sequences is the same as in the tree. C Sequence logo in vicinity
to iron-binding histidine residue, as highlighted in gray

Page 14 of 19Kunzmann et al. BMC Bioinformatics (2023) 24:236

AutoDock Vina does not include nonpolar hydrogen atoms in the calculated binding
poses and polar hydrogen atoms are in an arbitrary orientation. To obtain a complete
structural model nevertheless, the hydrogen atom positions for heme were predicted
with Hydride. Eventually, hydrogen bonds between heme and α-globin were identified
with hbond() (Fig. 6C).

Computational performance

As Biotite aims to solve common questions in bioinformatics, also dedicated programs
for many of these problems have been invented, often using the same or similar algo-
rithm as Biotite. In order to be a flexible alternative to these programs, Biotite requires at
least a similar computational performance to fulfill the respective tasks. If Biotite would
require orders of magnitude larger computation time, its application would not be feasi-
ble in many cases.

In order to assess the performance, different tasks were chosen and computed with
both, Biotite and one other representative software for the respective task. In case of
Python libraries, including Biotite and its extension packages, file input and output
was not included, to simulate the situation that multiple tasks would be performed in
the same script without intermediate files. These benchmarks were conducted on a

Fig. 5 Asymmetric unit and macromolecular assembly. The atom coordinates and annotations are taken
from PDB 6BB5. A Asymmetric unit of X-ray crystal structure. B Macromolecular assembly describing the
functional tetramer of hemoglobin. C Normal mode with largest amplitude. The arrows depict the atom
movement in this mode. The absolute arrow length is arbitrary

Fig. 6 Molecular docking of heme to α-globin. A Predicted binding energy and RMSD to experimentally
determined conformation of heme binding poses suggested by AutoDock Vina. B The structure of the
lowest energy binding pose. The experimentally determined conformation is shown in transparent red for
comparison. C The lowest energy binding pose after hydrogen addition. The measured hydrogen bond to
the protein is shown as dashed line

Page 15 of 19Kunzmann et al. BMC Bioinformatics (2023) 24:236

Intel® Core™ i7-8565U CPU (1.80 GHz). The Snakemake [73] workflow for the bench-
marks is deposited in Additional file 3. The measured run times are shown in Fig. 7.
Running the same benchmarks on different hardware showed similar trends (Addi-
tional file 4).

Note that in case of alignment search, MSA computation and hydrogen predic-
tion, the compared implementations use different methods for the same problem
and hence comparability is limited in terms of computation time and output of the
software. Still, the benchmarks show that Biotite and its extension packages exhibit a
computational performance on a similar time scale as dedicated popular software for
the respective task. Solely the MSA computation is an order of magnitude slower than
via Clustal W [69]. Since, there is a range of MSA software available, that have both
sufficient flexibility and a command line interface, Biotite focuses on seamlessly inter-
facing to them and only provides a simple fallback solution for cases where the use of
such software is not applicable.

An advantage of a program library compared to standalone programs in terms of
performance becomes evident in cases were the workflow comprises multiple meth-
ods with little run time. Chaining multiple programs for such a workflow requires
file input and output at the start and end of each program. In addition to the sys-
tem-dependent read/write operation time the internal data representation needs to
be converted into the respective file format and back again, which can take a notable
portion of run time, if the remaining task is relatively fast. In contrast, when using
a program library, the data can be kept in memory for multiple workflow steps. The
additional file input and output operations may be a reason for the slower computa-
tion time of MMseqs2 and Gromacs for alignment search and hydrogen bond identifi-
cation, respectively.

Fig. 7 Computational performance for different tasks. Biotite and its extension packages are compared
to other software in terms of computation time for selected tasks. The respective software is given on top
of each bar. Each task was run 100 times and the average was taken, if not specified otherwise. k-mer index:
KmerTable instantiation vs. mmseqs createindex for Swiss-Prot dataset. Repeat masking was omitted.
Computations were performed using a single thread. Due to the high run time, this task was run only once.
Alignment search: The workflow from ‘Identification of homologous sequences’ vs. mmseqs easy-search.
k-mer indexing was not included in the time measurement. Computations were performed using a single
thread. Instead of running mmseqs easy-search multiple times, it was run once with the according number
of query sequence copies, to get a more realistic application scenario. MSA: align_multiple() versus
clustalw -align [69] for 200 sequences from SCOP [70] globin family. Calculation of pairwise sequence
distances and the guide tree is included. The task was run ten times. Hydrogen prediction: Hydride add_
hydrogen() and relax_hydrogen() vs. gmx pdb2gmx [71] for a hemoglobin tetramer. Hydrogen
bonds: hbond() vs. gmx hbond for a hemoglobin tetramer. ANM: Hessian calculation of an ANM in
Springcraft vs. ProDy [72] for a hemoglobin tetramer

Page 16 of 19Kunzmann et al. BMC Bioinformatics (2023) 24:236

Conclusion
Biotite’s flexibility can be harnessed to tackle a wide range of problems, without the need
to write ‘glue’ code for communication between different programs. For most tasks the
implementation in Biotite performs similar or is even faster than dedicated software.

For some of the implemented methods, the implementation of the original publica-
tion is not (freely) available anymore, installation is cumbersome on modern architec-
ture and operating systems, or the method description was purely theoretic. Here Biotite
offers a modern alternative to apply such methods to current biological questions, that
can be easily installed using the pip and Conda package managers.

Availability and requirements
Project name: Biotite. Project home page: http:// www. bioti te- python. org/. Operating
system(s): Windows, OS X, Linux. Programming language: Python. Other require-
ments: At least Python 3.8 and the packages requests, numpy, msgpack and net-
workx need to be installed. For plotting purposes matplotlib and for molecular
visualization PyMOL is additionally required. License: BSD 3-Clause. Any restrictions
to use by non-academics: None

Abbreviations
ANM Anisotropic network model
API Application programming interface
CCD Chemical components dictionary
ENM Elastic network model
GNM Gaussian network model
MSA Multiple sequence alignment
NMA Normal mode analysis
PEOE Partial equalization of orbital electronegativity
PDB Protein data bank
PFM Position frequency matrix
PPM Position probability matrix
PWM Probability weight matrix
RMSD Root-mean-square deviation

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 023- 05345-6.

Additional file 1. Application example Juypter notebooks.

Additional file 2. Application example Python scripts.

Additional file 3. Benchmark workflow.

Additional file 4. Supplementary benchmarks.

Acknowledgements
We would like to express our thanks to all people, who contributed new features and bug fixes to Biotite. Furthermore,
we thank the Biotite users, who suggested new ideas and spotted errors in the library.

Author contributions
The presented functionalities were developed by the following authors: Alignment searches: PK. Trees and multiple
alignments: PK. Sequence profiles: MG. Unit cells and macromolecular assemblies: PK. Partial charges: JA and PK. Small
molecules: PK. Bond prediction: PK. Hydrogen bonds: DB and PK. Nucleic acid secondary structures: TM and PK. Elastic
network models: JK, FI and PK. Molecular visualization: PK. KH guided the development process. PK created the applica-
tion example and performed the benchmarks. PK, TM, JK, MG, JA, DB and KH wrote the manuscript. All authors read and
approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. The contributions of JK were funded by the Deutsche
Forschungsgemeinschaft under grant no. HA5261/6-1.

http://www.biotite-python.org/
https://doi.org/10.1186/s12859-023-05345-6

Page 17 of 19Kunzmann et al. BMC Bioinformatics (2023) 24:236

Availability of data and materials
The source code for Biotite and its extension packages is available at https:// github. com/ bioti te- dev/. The distributions
of Biotite, Ammolite, Hydride and Springcraft used for creating the examples and benchmarks are available as archive
[74].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 24 November 2022 Accepted: 18 May 2023

References
 1. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ,

Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del Río JF, Wiebe M, Peterson P, Gérard-Marchant
P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE. Array programming with NumPy. Nature.
2020;585(7825):357–62. https:// doi. org/ 10. 1038/ s41586- 020- 2649-2.

 2. Johansson JR, Nation PD, Nori F. QuTiP: an open-source Python framework for the dynamics of open quantum
systems. Comput Phys Commun. 2012;183(8):1760–72. https:// doi. org/ 10. 1016/j. cpc. 2012. 02. 021.

 3. Robitaille TP, Tollerud EJ, Greenfield P, Droettboom M, Bray E, Aldcroft T, Davis M, Ginsburg A, Price-Whelan AM, Ker-
zendorf WE, Conley A, Crighton N, Barbary K, Muna D, Ferguson H, Grollier F, Parikh MM, Nair PH, Günther HM, Deil
C, Woillez J, Conseil S, Kramer R, Turner JEH, Singer L, Fox R, Weaver BA, Zabalza V, Edwards ZI, Bostroem KA, Burke
DJ, Casey AR, Crawford SM, Dencheva N, Ely J, Jenness T, Labrie K, Lim PL, Pierfederici F, Pontzen A, Ptak A, Refsdal
B, Servillat M, Streicher O. Astropy: a community Python package for astronomy. Astron Astrophys. 2013;558:33.
https:// doi. org/ 10. 1051/ 0004- 6361/ 20132 2068.

 4. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, de Hoon
MJL. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformat-
ics. 2009;25(11):1422–3. https:// doi. org/ 10. 1093/ bioin forma tics/ btp163.

 5. Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K. Cython: The Best of Both Worlds. Comput Sci Eng.
2011;13(2):31–9. https:// doi. org/ 10. 1109/ MCSE. 2010. 118.

 6. Kunzmann P, Hamacher K. Biotite: a unifying open source computational biology framework in Python. BMC Bioin-
form. 2018;19(1):346. https:// doi. org/ 10. 1186/ s12859- 018- 2367-z.

 7. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank.
Nucleic Acids Res. 2000;28(1):235–42. https:// doi. org/ 10. 1093/ nar/ 28.1. 235.

 8. Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, Connor R, Funk K, Kelly C, Kim S, Madej T, Marchler-
Bauer A, Lanczycki C, Lathrop S, Lu Z, Thibaud-Nissen F, Murphy T, Phan L, Skripchenko Y, Tse T, Wang J, Williams R,
Trawick BW, Pruitt KD, Sherry ST. Database resources of the national center for biotechnology information. Nucleic
Acids Res. 2022;50(D1):20–6. https:// doi. org/ 10. 1093/ nar/ gkab1 112.

 9. The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):480–
9. https:// doi. org/ 10. 1093/ nar/ gkaa1 100.

 10. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD,
Higgins DG. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega.
Mol Syst Biol. 2011;7:539. https:// doi. org/ 10. 1038/ msb. 2011. 75.

 11. Kabsch W, Sander C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geo-
metrical features. Biopolymers. 1983;22(12):2577–637. https:// doi. org/ 10. 1002/ bip. 36022 1211.

 12. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
https:// doi. org/ 10. 1016/ S0022- 2836(05) 80360-2.

 13. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60.
https:// doi. org/ 10. 1038/ nmeth. 3176.

 14. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets.
Nat Biotechnol. 2017;35(11):1026–8. https:// doi. org/ 10. 1038/ nbt. 3988.

 15. Ma B, Tromp J, Li M. PatternHunter: faster and more sensitive homology search. Bioinformatics. 2002;18(3):440–5.
https:// doi. org/ 10. 1093/ bioin forma tics/ 18.3. 440.

 16. Frith MC. A new repeat-masking method enables specific detection of homologous sequences. Nucleic Acids Res.
2011;39(4):23–23. https:// doi. org/ 10. 1093/ nar/ gkq12 12.

 17. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402. https:// doi. org/ 10. 1093/
nar/ 25. 17. 3389.

 18. Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence
of two proteins. J Mol Biol. 1970;48(3):443–53. https:// doi. org/ 10. 1016/ 0022- 2836(70) 90057-4.

https://github.com/biotite-dev/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1051/0004-6361/201322068
https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1186/s12859-018-2367-z
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/gkab1112
https://doi.org/10.1093/nar/gkaa1100
https://doi.org/10.1038/msb.2011.75
https://doi.org/10.1002/bip.360221211
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nbt.3988
https://doi.org/10.1093/bioinformatics/18.3.440
https://doi.org/10.1093/nar/gkq1212
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1016/0022-2836(70)90057-4

Page 18 of 19Kunzmann et al. BMC Bioinformatics (2023) 24:236

 19. Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol. 1981;147(1):195–7. https://
doi. org/ 10. 1016/ 0022- 2836(81) 90087-5.

 20. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7(1–
2):203–14. https:// doi. org/ 10. 1089/ 10665 27005 00814 78.

 21. Chao K-M, Pearson WR, Miller W. Aligning two sequences within a specified diagonal band. Bioinformatics.
1992;8(5):481–7. https:// doi. org/ 10. 1093/ bioin forma tics/8. 5. 481.

 22. Altschul SF, Gish W. Local alignment statistics. Methods Enzymol. 1996;266:460–80. https:// doi. org/ 10. 1016/ S0076-
6879(96) 66029-7.

 23. Altschul SF, Erickson BW. A nonlinear measure of subalignment similarity and its significance levels. Bull Math Biol.
1986;48(5):617–32. https:// doi. org/ 10. 1007/ BF024 62327.

 24. Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res.
2004;32(5):1792–7. https:// doi. org/ 10. 1093/ nar/ gkh340.

 25. Katoh K, Misawa K, Kuma K-I, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast
Fourier transform. Nucleic Acids Res. 2002;30(14):3059–66. https:// doi. org/ 10. 1093/ nar/ gkf436.

 26. Feng D-F, Doolittle RF. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol.
1987;25(4):351–60. https:// doi. org/ 10. 1007/ BF026 03120.

 27. Feng D-F, Doolittle RF. Progressive alignment of amino acid sequences and construction of phylogenetic trees from
them. Methods Enzymol. 1996;266:368–82. https:// doi. org/ 10. 1016/ S0076- 6879(96) 66023-6.

 28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol.
1987;4(4):406–25. https:// doi. org/ 10. 1093/ oxfor djour nals. molbev. a0404 54.

 29. Stormo GD. DNA binding sites: representation and discovery. Bioinformatics. 2000;16(1):16–23. https:// doi. org/ 10.
1093/ bioin forma tics/ 16.1. 16.

 30. Stormo GD, Schneider TD, Gold L, Ehrenfeucht A. Use of the ‘Perceptron’ algorithm to distinguish translational initia-
tion sites in E. coli. Nucleic Acids Res. 1982;10(9):2997–3011. https:// doi. org/ 10. 1093/ nar/ 10.9. 2997.

 31. Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges.
Tetrahedron. 1980;36(22):3219–28. https:// doi. org/ 10. 1016/ 0040- 4020(80) 80168-2.

 32. Dalby A, Nourse JG, Hounshell WD, Gushurst AKI, Grier DL, Leland BA, Laufer J. Description of several chemical
structure file formats used by computer programs developed at Molecular Design Limited. J Chem Inf Comput Sci.
1992;32(3):244–55. https:// doi. org/ 10. 1021/ ci000 07a012.

 33. Westbrook JD, Shao C, Feng Z, Zhuravleva M, Velankar S, Young J. The chemical component dictionary: Complete
descriptions of constituent molecules in experimentally determined 3D macromolecules in the Protein Data Bank.
Bioinformatics (Oxford, England). 2015;31(8):1274–8. https:// doi. org/ 10. 1093/ bioin forma tics/ btu789.

 34. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function,
efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61. https:// doi. org/ 10. 1002/ jcc. 21334.

 35. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4:
automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91. https:// doi. org/ 10.
1002/ jcc. 21256.

 36. Bradley AR, Rose AS, Pavelka A, Valasatava Y, Duarte JM, Prlić A, Rose PW. MMTF—an efficient file format for the
transmission, visualization, and analysis of macromolecular structures. PLoS Comput Biol. 2017;13(6):1005575.
https:// doi. org/ 10. 1371/ journ al. pcbi. 10055 75.

 37. Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R. Tables of bond lengths determined by X-ray and
neutron diffraction. Part 1. Bond lengths in organic compounds. J Chem Soc Perkin Trans. 1987;2(12):1–19. https://
doi. org/ 10. 1039/ P2987 00000 S1.

 38. Baker EN, Hubbard RE. Hydrogen bonding in globular proteins. Prog Biophys Mol Biol. 1984;44(2):97–179. https://
doi. org/ 10. 1016/ 0079- 6107(84) 90007-5.

 39. Himmelstoß M, Erharter K, Renard E, Ennifar E, Kreutz C, Micura R. 2′-O-Trifluoromethylated RNA—a powerful modi-
fication for RNA chemistry and NMR spectroscopy. Chem Sci. 2020;11(41):11322–30. https:// doi. org/ 10. 1039/ D0SC0
4520A.

 40. Colussi TM, Costantino DA, Hammond JA, Ruehle GM, Nix JC, Kieft JS. The structural basis of transfer RNA mimicry
and conformational plasticity by a viral RNA. Nature. 2014;511(7509):366–9. https:// doi. org/ 10. 1038/ natur e13378.

 41. Lu X-J, Bussemaker HJ, Olson WK. DSSR: an integrated software tool for dissecting the spatial structure of RNA.
Nucleic Acids Res. 2015;43(21):142–142. https:// doi. org/ 10. 1093/ nar/ gkv716.

 42. Gabb HA, Sanghani SR, Robert CH, Prévost C. Finding and visualizing nucleic acid base stacking. J Mol Gr.
1996;14(1):6–11. https:// doi. org/ 10. 1016/ 0263- 7855(95) 00086-0.

 43. Olson WK, Bansal M, Burley SK, Dickerson RE, Gerstein M, Harvey SC, Heinemann U, Lu X-J, Neidle S, Shakked Z,
Sklenar H, Suzuki M, Tung C-S, Westhof E, Wolberger C, Berman HM. A standard reference frame for the description
of nucleic acid base-pair geometry. J Mol Biol. 2001;313(1):229–37. https:// doi. org/ 10. 1006/ jmbi. 2001. 4987.

 44. Antczak M, Popenda M, Zok T, Zurkowski M, Adamiak RW, Szachniuk M. New algorithms to represent complex
pseudoknotted RNA structures in dot-bracket notation. Bioinformatics. 2018;34(8):1304–12. https:// doi. org/ 10. 1093/
bioin forma tics/ btx783.

 45. Smit S, Rother K, Heringa J, Knight R. From knotted to nested RNA structures: a variety of computational methods
for pseudoknot removal. RNA. 2008;14(3):410–6. https:// doi. org/ 10. 1261/ rna. 881308.

 46. Leontis NB, Westhof E. Geometric nomenclature and classification of RNA base pairs. RNA. 2001;7(4):499–512.
https:// doi. org/ 10. 1017/ s1355 83820 10025 15.

 47. Yang H, Jossinet F, Leontis N, Chen L, Westbrook J, Berman H, Westhof E. Tools for the automatic identification and
classification of RNA base pairs. Nucleic Acids Res. 2003;31(13):3450–60. https:// doi. org/ 10. 1093/ nar/ gkg529.

 48. Lorenz R, Bernhart SH, Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL. ViennaRNA package 2.0. Algorithms
Mol Biol. 2011;6(1):26. https:// doi. org/ 10. 1186/ 1748- 7188-6- 26.

 49. Bahar I, Atilgan AR, Demirel MC, Erman B. Vibrational dynamics of folded proteins: significance of slow and fast
motions in relation to function and stability. Phys Rev Lett. 1998;80(12):2733–6. https:// doi. org/ 10. 1103/ PhysR evLett.
80. 2733.

https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1089/10665270050081478
https://doi.org/10.1093/bioinformatics/8.5.481
https://doi.org/10.1016/S0076-6879(96)66029-7
https://doi.org/10.1016/S0076-6879(96)66029-7
https://doi.org/10.1007/BF02462327
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1007/BF02603120
https://doi.org/10.1016/S0076-6879(96)66023-6
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1093/bioinformatics/16.1.16
https://doi.org/10.1093/bioinformatics/16.1.16
https://doi.org/10.1093/nar/10.9.2997
https://doi.org/10.1016/0040-4020(80)80168-2
https://doi.org/10.1021/ci00007a012
https://doi.org/10.1093/bioinformatics/btu789
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1371/journal.pcbi.1005575
https://doi.org/10.1039/P298700000S1
https://doi.org/10.1039/P298700000S1
https://doi.org/10.1016/0079-6107(84)90007-5
https://doi.org/10.1016/0079-6107(84)90007-5
https://doi.org/10.1039/D0SC04520A
https://doi.org/10.1039/D0SC04520A
https://doi.org/10.1038/nature13378
https://doi.org/10.1093/nar/gkv716
https://doi.org/10.1016/0263-7855(95)00086-0
https://doi.org/10.1006/jmbi.2001.4987
https://doi.org/10.1093/bioinformatics/btx783
https://doi.org/10.1093/bioinformatics/btx783
https://doi.org/10.1261/rna.881308
https://doi.org/10.1017/s1355838201002515
https://doi.org/10.1093/nar/gkg529
https://doi.org/10.1186/1748-7188-6-26
https://doi.org/10.1103/PhysRevLett.80.2733
https://doi.org/10.1103/PhysRevLett.80.2733

Page 19 of 19Kunzmann et al. BMC Bioinformatics (2023) 24:236

 50. Hayward S, de Groot BL. Normal modes and essential dynamics. In: Kukol A, editor. Molecular modeling of proteins.
Methods molecular biology. Totowa: Humana Press; 2008. p. 89–106. https:// doi. org/ 10. 1007/ 978-1- 59745- 177-2_5.

 51. Sanejouand Y-H. Elastic network models: theoretical and empirical foundations. In: Monticelli L, Salonen E, editors.
Biomolecular simulations: methods and protocols. Methods in molecular biology. Totowa: Humana Press; 2013. p.
601–16. https:// doi. org/ 10. 1007/ 978-1- 62703- 017-5_ 23.

 52. Hamacher K. Efficient quantification of the importance of contacts for the dynamical stability of proteins. J Comput
Chem. 2011;32(5):810–5. https:// doi. org/ 10. 1002/ jcc. 21659.

 53. Schmidt M, Schroeder I, Bauer D, Thiel G, Hamacher K. Inferring functional units in ion channel pores via relative
entropy. Eur Biophys J. 2021;50(1):37–57. https:// doi. org/ 10. 1007/ s00249- 020- 01480-7.

 54. Gross C, Saponaro A, Santoro B, Moroni A, Thiel G, Hamacher K. Mechanical transduction of cytoplasmic-to-trans-
membrane-domain movements in a hyperpolarization-activated cyclic nucleotide-gated cation channel. J Biol
Chem. 2018;293(33):12908–18. https:// doi. org/ 10. 1074/ jbc. RA118. 002139.

 55. Hoffgaard F, Kast SM, Moroni A, Thiel G, Hamacher K. Tectonics of a K+ channel: the importance of the N-terminus
for channel gating. Biochim Biophys Acta (BBA) Biomembr. 2015;1848(12):3197–204. https:// doi. org/ 10. 1016/j.
bbamem. 2015. 09. 015.

 56. Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I. Anisotropy of fluctuation dynamics of proteins with
an elastic network model. Biophys J. 2001;80(1):505–15. https:// doi. org/ 10. 1016/ S0006- 3495(01) 76033-X.

 57. Yang L, Song G, Jernigan RL. Protein elastic network models and the ranges of cooperativity. Proc Natl Acad Sci.
2009;106(30):12347–52. https:// doi. org/ 10. 1073/ pnas. 09021 59106.

 58. Hinsen K, Petrescu A-J, Dellerue S, Bellissent-Funel M-C, Kneller GR. Harmonicity in slow protein dynamics. Chem
Phys. 2000;261(1):25–37. https:// doi. org/ 10. 1016/ S0301- 0104(00) 00222-6.

 59. Dehouck Y, Mikhailov AS. Effective harmonic potentials: insights into the internal cooperativity and sequence-speci-
ficity of protein dynamics. PLoS Comput Biol. 2013;9(8):1003209. https:// doi. org/ 10. 1371/ journ al. pcbi. 10032 09.

 60. Hamacher K, McCammon JA. Computing the amino acid specificity of fluctuations in biomolecular systems. J Chem
Theory Comput. 2006;2(3):873–8. https:// doi. org/ 10. 1021/ ct050 247s.

 61. Hoffgaard F, Weil P, Hamacher K. BioPhysConnectoR: connecting sequence information and biophysical models.
BMC Bioinform. 2010;11(1):199. https:// doi. org/ 10. 1186/ 1471- 2105- 11- 199.

 62. Ikeguchi M, Ueno J, Sato M, Kidera A. Protein structural change upon ligand binding: linear response theory. Phys
Rev Lett. 2005;94(7):078102. https:// doi. org/ 10. 1103/ PhysR evLett. 94. 078102.

 63. Schrödinger: The PyMOL Molecular Graphics System, Version 2.0. 2017. https:// pymol. org
 64. Kunzmann P, Mayer BE, Hamacher K. Substitution matrix based color schemes for sequence alignment visualization.

BMC Bioinform. 2020;21(1):209. https:// doi. org/ 10. 1186/ s12859- 020- 3526-6.
 65. Kunzmann P, Anter JM, Hamacher K. Adding hydrogen atoms to molecular models via fragment superimposition.

Algorithms Mol Biol. 2022;17(1):7. https:// doi. org/ 10. 1186/ s13015- 022- 00215-x.
 66. Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci.

1992;89(22):10915–9. https:// doi. org/ 10. 1073/ pnas. 89. 22. 10915.
 67. Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9(3):90–5. https:// doi. org/ 10. 1109/ MCSE.

2007. 55.
 68. Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH. The UniProt Consortium: UniRef clusters: a comprehensive and

scalable alternative for improving sequence similarity searches. Bioinformatics. 2015;31(6):926–32. https:// doi. org/
10. 1093/ bioin forma tics/ btu739.

 69. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence align-
ment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.
1994;22(22):4673–80. https:// doi. org/ 10. 1093/ nar/ 22. 22. 4673.

 70. Andreeva A, Kulesha E, Gough J, Murzin AG. The SCOP database in 2020: expanded classification of representative
family and superfamily domains of known protein structures. Nucleic Acids Res. 2020;48(D1):376–82. https:// doi.
org/ 10. 1093/ nar/ gkz10 64.

 71. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS: high performance molecular simula-
tions through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. https:// doi. org/
10. 1016/j. softx. 2015. 06. 001.

 72. Bakan A, Meireles LM, Bahar I. ProDy: protein dynamics inferred from theory and experiments. Bioinformatics.
2011;27(11):1575–7. https:// doi. org/ 10. 1093/ bioin forma tics/ btr168.

 73. Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V, Forster J, Lee S, Twardziok SO, Kanitz A,
Wilm A, Holtgrewe M, Rahmann S, Nahnsen S, Köster J. Sustainable data analysis with Snakemake. F1000Research.
2021;10:33. https:// doi. org/ 10. 12688/ f1000 resea rch. 29032.1.

 74. The Biotite Contributors: Biotite 0.35.0 repository snapshot. Zenodo 2022. https:// doi. org/ 10. 5281/ zenodo. 72493 97

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-1-59745-177-2_5
https://doi.org/10.1007/978-1-62703-017-5_23
https://doi.org/10.1002/jcc.21659
https://doi.org/10.1007/s00249-020-01480-7
https://doi.org/10.1074/jbc.RA118.002139
https://doi.org/10.1016/j.bbamem.2015.09.015
https://doi.org/10.1016/j.bbamem.2015.09.015
https://doi.org/10.1016/S0006-3495(01)76033-X
https://doi.org/10.1073/pnas.0902159106
https://doi.org/10.1016/S0301-0104(00)00222-6
https://doi.org/10.1371/journal.pcbi.1003209
https://doi.org/10.1021/ct050247s
https://doi.org/10.1186/1471-2105-11-199
https://doi.org/10.1103/PhysRevLett.94.078102
https://pymol.org
https://doi.org/10.1186/s12859-020-3526-6
https://doi.org/10.1186/s13015-022-00215-x
https://doi.org/10.1073/pnas.89.22.10915
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1093/bioinformatics/btu739
https://doi.org/10.1093/bioinformatics/btu739
https://doi.org/10.1093/nar/22.22.4673
https://doi.org/10.1093/nar/gkz1064
https://doi.org/10.1093/nar/gkz1064
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1093/bioinformatics/btr168
https://doi.org/10.12688/f1000research.29032.1
https://doi.org/10.5281/zenodo.7249397

	Biotite: new tools for a versatile Python bioinformatics library
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Package organization
	Data model

	Implementation
	Alignment searches
	Trees and multiple alignments
	Sequence profiles
	Unit cells and macromolecular assemblies
	Partial charges
	Small molecules
	Bond prediction
	Hydrogen bonds
	Nucleic acid secondary structures
	Elastic network models
	Molecular visualization
	Miscellaneous extension packages

	Results and discussion
	Example application
	Identification of homologous sequences
	Sequence conservation
	Structure loading
	Normal mode analysis
	Molecular docking

	Computational performance

	Conclusion
	Availability and requirements
	Anchor 32
	Acknowledgements
	References

