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Abstract 

Background: RNA sequencing (RNA-Seq) is a technique that utilises the capabilities 
of next-generation sequencing to study a cellular transcriptome i.e., to determine the 
amount of RNA at a given time for a given biological sample. The advancement of RNA-
Seq technology has resulted in a large volume of gene expression data for analysis.

Results: Our computational model (built on top of TabNet) is first pretrained on an 
unlabelled dataset of multiple types of adenomas and adenocarcinomas and later fine-
tuned on the labelled dataset, showing promising results in the context of the estima-
tion of the vital status of colorectal cancer patients. We achieve a final cross-validated 
(ROC-AUC) Score of 0.88 by using multiple modalities of data.

Conclusion: The results of this study demonstrate that self-supervised learning meth-
ods pretrained on a vast corpus of unlabelled data outperform traditional supervised 
learning methods such as XGBoost, Neural Networks, and Decision Trees that have 
been prevalent in the tabular domain. The results of this study are further boosted by 
the inclusion of multiple modalities of data pertaining to the patients in question. We 
find that genes such as RBM3, GSPT1, MAD2L1, and others important to the computa-
tion model’s prediction task obtained through model interpretability corroborate with 
pathological evidence in current literature.
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Background
Cancer is a leading cause of deaths worldwide, accounting for nearly 10 million 
deaths in 2020, or nearly one in six deaths. In a multi-stage process that often goes 
from a pre-cancerous lesion to a malignant tumour, cancer develops when normal 
cells undergo a transition into tumour cells. According to research, it is presently 
possible to prevent between 30 and 50% percent of cancers by avoiding risk factors 
and using proven evidence-based preventative methods. Many cancers have a high 
chance of cure if diagnosed early and treated appropriately [1–4]. Fortunately, recent 
advancements in sequencing techniques in bio-informatics have gained traction and 
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have given rise to studies pertaining to the identification of cancer biomarkers and 
quicker diagnosis of the disease. However, very little research has been done on esti-
mating the vital status of patients diagnosed with cancer. In this study, we analyse 
the gene expression dataset obtained from the TCGA website, to estimate the vital 
status of patients in the context of colorectal cancer [5]. The vital status property is a 
binary variable that indicates whether the patient survived cancer. A vital status value 
of 0 represents a patient that survived; a vital status value of 1 represents a patient 
that succumbed to cancer. The outcome of this study could not only help determine 
a suitable course of treatment but also help in a better understanding of the disease 
through a study of the bio-markers that are identified as important predictors by the 
computational models we have built.

Owing to the tabular nature of the gene expression dataset, applications of self-
supervised learning techniques on gene expression data (tabular data here) have not 
made it to the limelight as much as they have in the domains of Computer Vision 
and Natural Language Processing. This is mainly because tabular models must be able 
to accommodate features from different discrete and continuous distributions and 
uncover correlations without relying on the positional information.

So why is self-supervised learning worth exploring in the context of gene expression 
tabular data? Apart from the increase in performance that comes with deep learning 
models, it also enables fusion with multiple other modalities of data (say copy number 
variation and clinical data) – eliminating the need for feature engineering, represen-
tation learning, and end-to-end compositional multi-task models.

With this line of thought, our work can be summarised as follows:

• Initially, RNA Sequencing gene expression data pertaining to 519 entries is pro-
cured from The Cancer Genome Atlas (TCGA). Owing to the high dimensional 
nature of the dataset, we have proposed a variety of feature selection techniques 
to mitigate the effects of the curse of dimensionality. The features chosen are used 
to train classical machine learning models (such as XGBoost, and Logistic Regres-
sion) without the self-supervised learning objective.

• Subsequently, the efficacy of self-supervised learning methods in this domain is 
explored via TabNet. This requires the procurement of additional unlabelled data 
to be used for pretraining, also obtained from TCGA across various cancer pro-
jects, with the unifying factor being the type of cancer, which was selected to be 
“Adenomas and Adenocarcinomas”.

• The TabNet model is first pretrained on the unlabelled corpus, after which the 
pretrained model is fine-tuned on the labelled dataset.

• The explainability of the best-performing computational model is demonstrated by 
plotting its feature importance mapping. Additionally, majority of the genes deemed 
as important by the prediction task are in agreement with existing literature.

• In the interest of further improvement in score, additional modalities of data, 
namely Copy Number Variation (CNV) and Clinical data pertaining to the same 
patients are obtained in the same manner as above. These modalities of data then 
undergo preprocessing in parallel and all the modalities are joined using Submitter 
ID as the join key.
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• These different modalities of data are trained using the TabNet model with a self-
supervised learning objective and encouraging results are obtained in the context of 
vital status estimation.

Related work
Predictive modelling and associated computational methods

The earliest work on the estimation of vital status using RNA-Seq data serves as the 
baseline model for this study [6]. They use the LASSO model and two variants of neural 
networks. The results from this study establish that basic neural networks are computa-
tionally expensive and do not outperform well-established simple models like LASSO 
for this problem. In the context of pure machine learning-based analysis, the work of [7] 
talks about oversampling approaches such as SMOTE to address the class imbalance in 
the dataset. Using the analysis of variance (ANOVA) test as a feature reduction strategy, 
they demonstrate the superiority of the PanClassif model in the context of both binary 
and multiclass cancer prediction.

In the domain of deep learning, the work of [8] is noteworthy as the study is based 
on the popular transformers architecture and self-attention mechanism for the classi-
fication of Lung Cancer sub-types. The major goal of this research was to develop an 
end-to-end strategy for classification tasks that could handle both binary and multi-class 
classification issues and produces state-of-the-art results. Apart from this, the work of 
[9] proposes the usage of Graph Convolution neural networks for the identification of 
tumour and non-tumour samples (of 33 cancer categories) based on gene expression 
profiles. They showed that these models can achieve accurate classification (above 94%) 
utilizing cancer-specific marker genes using data from the TCGA dataset.

On the multimodal front, the work of [10] proposes a multimodal deep learning 
method for long-term cancer survival prediction. They use different model architectures 
for different modalities, in order to optimize results from each one, before aggregating 
them to obtain a consolidated result. The metric of note used is the concordance index, 
a way to measure the risk scores obtained from the model against ground truth survival 
times.

Feature reduction of high‑dimensional data

To combat the curse of dimensionality inherent in the data, there are a variety of useful 
analyses of feature selection techniques that can be used. A comparison of 10 dimen-
sionality reduction techniques using 30 simulation datasets and 5 real datasets has been 
performed [11]. These dimensionality reduction techniques have been evaluated based 
on factors such as stability, accuracy, and computing cost [12]. Proposes a method that, 
unlike other dimension reduction strategies, employs an ensemble learning scheme and 
uses a large number of weak learners to perform an accurate similarity search for simul-
taneous reduction in dimensionality and feature gene extraction.

Self‑supervised learning

Self-supervised learning (SSL) methods have predominantly been focused on natu-
ral language processing [13, 14] and computer vision [15–17], where the concept of 
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correlation between sequential features is at the fore. Recently, however, these self-
supervised learning approaches have been introduced to work with tabular data using 
attention-based mechanisms [18] and random feature corruption [19], with these meth-
ods performing better than common industry favourite supervised learning methods 
such as XGBoost [20] and LightGBM [21, 22]. Proposes a new self-supervised learning 
method called TabNet that works on tabular data and is heavily referred to in this paper.

Methods
Problem definition

In this study, we analyse the vital status (0: survived, 1: succumbed) of those patients 
diagnosed with colon cancer. This study is performed in two settings – the unimodal 
data setting (pertaining to gene expression, hereafter referred to as the study of RNA-
Seq data) and the multimodal data setting (pertaining to gene expression, copy number 
variation, and clinical data).

For the study of RNA-Seq data, the problem can be formulated as predicting the vital 
status y ∈ {0, 1} given the sample’s gene expression value X = {x1, x2, x3, ......xm} where m 
represents the number of genes after feature selection.

For the multimodal data setting, the problem can be formulated as predicting the 
vital status y ∈ {0, 1} given the values A = {a1, a2, a3} which represent the gene expres-
sion, copy number variation, and clinical data values respectively. The fusion strategy 
employed here is that of early fusion where the three modalities of data are concatenated 
together before being passed into the computational pipeline.

Pipeline for study of RNA‑Seq sata (unimodal data setting)

The pipeline for the study of RNA-Seq data using supervised learning methods can be 
found in Fig. 1.

Procurement of RNA‑Seq data

The labelled data used in this study pertains to the TCGA-COAD project, focusing on 
Colon Adenocarcinoma. This data was downloaded from the GDC data portal [23], with 
filters set to obtain the vital status annotation (deceased and not-deceased) for the gene 
expression data as well. Unlabelled data is also obtained from TCGA across various pro-
jects, with the unifying factor being the type of cancer (Adenomas and Adenocarcino-
mas); this was done due to the fact that COAD was majorly comprised of that particular 
type of cancer (85.25%) (see Additional file 1: Section SM1.1 for further details on RNA-
Seq data procurement). Each of the data points in this dataset came with 3 different val-
ues for the same gene expression data: TPM, FPKM and FPKM-UQ.

TPM As first defined by [24], Transcripts Per Million (TPM) has frequently been touted 
as a normalization technique that does not employ batch adjustment. TPM normalizes 
each read during a run such that the total number of readings is exactly one million. Every 
read count is represented by TPM as a percentage of all the other reads that are mapped 
to throughout the run.
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FPKM and  FPKM‑UQ Due to technical biases such as depth of sequencing and gene 
length, the normalization of the abundance values quantified in the previous section needs 
to occur in order to make gene expression values comparable within and across samples.

The fragments per kilobase of transcript per million mapped reads (FPKM) calculation 
aims to control for transcript length and overall sequencing quantity. The upper quartile 
FPKM (FPKM-UQ) is a modified FPKM calculation in which the protein-coding gene in 
the 75th percentile position is substituted for the sequencing quantity. This is thought to 
provide a more stable value than including the noisier genes at the extremes. They are com-
puted as follows:

and

where N denotes the number of protein-coding genes, Cg denotes the count of reads 
aligned to gene g, Lg denotes the union length of exons of gene g, G denotes the number 
of protein-coding genes on autosomes and Cqtl(0.75) denotes the counts aligned to the 
gene at quantile 0.75.

Upon experimentation with the above measures, this study proceeds to use FPKM-UQ as 
its preferred unit due to better model performance with data.

The COAD dataset initially has a total of 519 data points with 60,660 features. However, 
this data is reduced to 445 data points to match submitter IDs with other modalities, in 
order to obtain a fair comparison with the multimodal workflow. This is clearly detailed in 
this section.

The most glaring inference that can be made is that the dataset suffers massively from 
the curse of dimensionality. Table 1 represents the features of the COAD dataset as per the 
interest of this study:

Feature reduction

Protein coding genes A multitude of different gene types that include coding, non-cod-
ing, and pseudo-coding exist. Based on the literature, a subset of genes known as the 
protein-coding genes, which are present in the human genome, are essential to the study 
of human biology and medicine and, as a result, have a significant impact on cancer vital 
status prediction. The original TCGA patient dataset had 60,660 gene ensemble IDs (fea-
tures), therefore the first phase of feature reduction is decreasing that number to 19,962 
protein-coding genes.

(1)FPKM =
Cg ∗ 10

9

N
i=1

Ci Lg

(2)FPKM − UQ =
Cg ∗ 10

9

Cqtl(0.75) ∗ G ∗ Lg
,

Table 1 The COAD dataset

Dataset No. data points Alive Deceased No. genes (total)

COAD 445 344 101 60,660
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Computational techniques  The second step of feature reduction is the usage of one of 
three different feature reduction techniques, namely -

• L1 / Lasso [25]
• Statistical t-test [26]
• Principal Component Analysis (PCA) [27]

The number of features filtered as important by each feature reduction technique can be 
seen in Table 2. To provide a thorough comparative study, each of these feature reduc-
tion strategies has been implemented with every machine learning and deep learning 
model, with an understanding of the inner workings of each methodology. Other statis-
tically based feature selection approaches like Laplacian Score and Autoencoders were 
also tested, however, none of them showed as much promise as the ones described above 
(see Additional file 1: Section SM2).

For Lasso, an inverse regularisation strength of 0.001 was used, with the genes with 
non-zero weights then selected as a filter. For PCA, the number of features captured cor-
responded to 99.9% of the variance across genes. For the t-test, a p-value of 0.01 was 
used as a cutoff for a feature to be selected. These values were determined experimen-
tally as the best parameter values for the respective feature reduction methods.

This feature reduction is performed on the labelled dataset, with the same features 
used as a filter (or a transform, in the case of PCA) on the unlabelled dataset.

Supervised learning methods

A variety of predictive analyses have been conducted on the data. These, in combination 
with the different feature reduction techniques used, resulted in a set of methods used 
from start to finish to model the vital status of the patient. The workflow for the same has 
been elucidated in Fig. 1. The methods of predictive analysis used are described below.

Fig. 1 Workflow used for the supervised approaches in this study

Table 2 Number of features selected by each computational method

Feature reduction No. features

Lasso 80

PCA 199

T-test 230
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Logistic regression  Logistic regression is one of the most common and useful classifica-
tion algorithms in machine learning. It is a supervised machine learning algorithm that 
can be used to evaluate the probability of a certain target value or class. In this case, it 
is used to model the probability of the vital status of the patient as either 0 or 1. Logistic 
Regression is thought to be a baseline in this work owing to its simplicity [28]. The model 
used an l2 penalty, with an inverse regularisation strength (i.e. inverse lambda) value of 
0.001.

Artificial neural network (Feedforward MLP)  ANNs are nonlinear models which dis-
cover complex relationships between the input and targets to discover inherent patterns. 
An artificial neural network has three or more layers; the first layer consists of input neu-
rons; which send data into the intermediate layers, which in turn consolidate and send the 
final output data to the output layer. While more complicated than most other methods, 
the capturing of complex relationships between features is better done by the neural net-
work. A network of 4 layers with hidden layer sizes as (64, 32, 128, and 64) respectively, 
and ReLU activation performed the best on this data.

KNN  KNN is a non-parametric and lazy learning algorithm. In short, the algorithm 
entails a (usually) weighted distance calculated between the target and the learned data. 
The best k points are the basis for the class chosen. In the classification phase, k is a user-
defined constant, and an unlabelled data point is classified by assigning the label which is 
most frequent among the k training samples nearest to that query point.

The inferior results obtained using PCA as a feature reduction technique was an indi-
cation that the eigenspace was a bad representation of the feature set which implies the 
lack of correlation within the data. This in turn spurred us to consider using KNN in 
order to obtain better results. Training with the 25 nearest neighbours yielded the best 
results.

Explainable boosting machines  A Generalized Additive Model with automated interac-
tion detection, Explainable Boosting Machine (EBM) is tree-based and boosts gradients 
in a cyclic fashion. The boosting process is carefully constrained to train on a single fea-
ture at a time in round-robin form with a very low learning rate, making the order of the 
features irrelevant. Second, pairwise interaction is automatically found and included by 
EBM, increasing accuracy while maintaining intelligibility. Apart from the default param-
eter set, tweaking the parameters max leaves (3), and max bins (40) yielded better results. 
This has been implemented using the Interpret ML package.

XGBoost  XGBoost is a decision-tree-based ensemble Machine Learning algorithm that 
uses a gradient-boosting framework.

In gradient boosting, each predictor improves on its predecessor’s error; It relies on 
the fact that the best possible model, when combined with previously trained models, 
minimizes the overall prediction error. The key idea is to set the target values for the 
coming model in order to minimize the error. XGBoost has been used extensively with 
RNA-Seq data due to its tabular nature [29]. The model performed the best with features 
extracted by the t-test, tweaking the model with 120 estimators and a maximum depth 
of 3 gave better results.
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Self‑supervised learning methods

Self-supervised learning (SSL) is a machine learning technique developed to solve the 
challenges posed by the over-dependence of labelled data, either due to the complexities 
involved in finding it or simply due to the unavailability of labelled data.

The aim of this technique is to capture subtle nuances in data that do not require the 
presence of labels. This allows the subsequent training done on the labelled data to be 
more useful in the prediction task itself, as opposed to learning structures within data.

Data procurement  The procurement of the labelled dataset follows the same workflow 
as detailed in the section above. Additionally, an unlabelled dataset consisting of the same 
gene IDs, with a total size of 4801 samples from various types of adenomas and adeno-
carcinomas is also procured by the same means for self-supervised learning purposes.

TabNet  TabNet is a neural network designed to handle tabular data well as it also allows 
for pretraining on unlabelled data. TabNet uses sequential attention to choose features at 
each decision step, enabling interpretability and better learning as the learning capacity is 
used for the most useful features.

The TabNet architecture has an encoder and decoder module wherein the former is 
inspired by top-down attention using sparse instance-wise feature selection constructed 
on top of a sequential multi-step architecture. For the self-supervised learning objective, 
a decoder architecture has been proposed for reconstructing the masked features from 
the encoded representation. To do this a binary mask S has been chosen as S ∈ {0, 1}B×D 
wherein the fully connected layer and feature transformers have to predict the masked 
feature at each decision step based on the reconstruction loss as follows:

where fb,j and f̂b,j correspond to the feature importance score and the expected feature 
importance score of the jth feature in the bth sample.

Finally, TabNet also has a built-in interpretability mechanism that quantifies the con-
tribution of each feature to the trained model across the dataset.

The workflow, as elucidated in Fig. 2, for the above is as follows:

• In the first step, feature reduction is performed on the labelled dataset as we assume 
that this captures the important features.

(3)
B
∑

b=1

D
∑

j=1

∣

∣

∣
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(f̂b,j − fb,j) · Sb,j
√
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b=1 fb,j)

2

∣

∣

∣

∣

∣

∣

2

Fig. 2 Workflow used for self-supervised learning in the unimodal data setting
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• The same subset of features selected from the labelled dataset is filtered in the unla-
belled dataset as well.

• The TabNet pretrainer is then trained on the unlabelled dataset in order to capture 
the embedding space of the gene expression data.

• The pretrained model is then trained on a training split of the labelled subset in a 
5-fold cross-validation, the average receiver operating characteristic area under the 
curve (ROC-AUC) score of which is reported in the end. (This stage also employs 
hyperparameter tuning using Optuna [30] to search for the best set of hyperparam-
eters that maximize the ROC-AUC score of the model on cross-validation)

Pipeline for study of multimodal data

The workflow integrating the usage of multimodal data with self-supervised learning in 
this study is presented in Fig. 3. The details of which are as follows:

Procurement and preprocessing

The superior results of TabNet as compared to supervised learning methods sparked 
our interest in the possibility of improving the obtained results further. Two additional 
modalities, namely Copy Number Variation (abbreviated as CNV) and Clinical data for 
the same patients were downloaded from TCGA. The manifest files for the above were 
obtained from [10], and were used to procure these modalities of data. The procure-
ment and preprocessing of RNA-Seq data follow the same pipeline as described in the 
pipeline for study of RNA-Seq Data (unimodal data setting). T-test, as discussed before, 
provides the best results among all the feature reduction techniques and is the sole fea-
ture reduction technique that is employed here.

Copy number variation  Copy Number Variation captures the variation in the number of 
copies of a certain DNA sequence across different patients. While this is also done on a per-

Fig. 3 Workflow used for the multimodal data pipeline in this study
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gene basis, this is different from gene expression (i.e., RNA-Seq). The CNV dataset consists 
of only categorical variables.

The first step of preprocessing pertaining to CNV data involves filtering only the high-
variance genes. The genes that seem to vary more across the set of patients can be assumed 
to be more important and contain more information. The top 2000 highly varying genes 
are selected. Subsequently, Chi-Squared Analysis, which is known to be effective against 
categorical data, is used as the final step of feature reduction. The 256 genes (empirical) 
deemed most important by Chi-Squared Analysis are selected in this stage. (see Additional 
file 1: Section SM1.2 for more details on preprocessing CNV data)

Clinical data  Clinical data refers to information on a patient’s exposures, demographics, 
diagnosis, family links, and laboratory testing. It provides information on influential param-
eters such as age, ethnicity, prior treatment, prior malignancy, etc.

Clinical data, as important as it may seem, unfortunately, has an abundance of missing 
values. Only features with missing values below a predefined threshold are selected and a 
variety of sanity checks are performed to finally arrive at a total of 5 features (see Additional 
file 1: Section SM1.3 for more details on preprocessing clinical data).

The final step of preprocessing involves encoding the categorical features and introducing 
a new class to represent missing values in each column.

Submitter ID matching and early fusion  As implemented previously, in each modality, the 
same set of features that are filtered using the feature reduction technique in the labelled 
dataset are selected in the unlabelled dataset as well.

As the final preprocessing step, only those patients whose records are present in all three 
modalities are considered. A patient P, whose data is missing from even one modality, is 
discarded from the other modalities as well. Post fusion, the final unlabelled dataset is of the 
size (4300, 495) and the final labelled dataset is of the size (445, 496).

In order to eliminate any bias, the RNA-Seq data obtained post submitter ID matching 
was used in all the previous experiments.

Self‑supervised learning in the multimodal data setting

As discussed above, the pipeline for the study of multimodal data follows the same work-
flow as the self-supervised workflow in unimodal data setting due to its superior results as 
compared to the supervised models.

The self-supervised pretraining step involves the TabNet model mapping the embed-
ding space of the unlabelled multimodal data from which the pretrained weights are then 
obtained. This is then followed by a fine-tuning stage, where the pretrained weights are 
used to train a TabNet Classifier that is then trained on the labelled multimodal data. The 
Optuna framework is employed for hyperparameter search for these stages. Finally, the 
optimal model is used to report the average ROC-AUC score over a 5-fold cross-validation.
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Results
Configuration and training details

All experiments carried out with the models used in this study have their scores 
reported after a 5-fold cross-validation over the TCGA-COAD (Labelled) dataset, 
using Google Colab with an NVIDIA Tesla K80 GPU.

Results with RNA‑Seq data (unimodal data setting)

This study provides a strong and thorough base on the efficacy of supervised learn-
ing approaches by combining each model with each feature reduction technique. 
Although we have tried a host of computational models, only the ones that show the 
highest scores have been enlisted below.

It can be seen in Table 3 that the Logistic Regression model that uses an l2 penalty, 
with t-test as the feature reduction technique performs the best with a final ROC-
AUC score of 0.742 among the various supervised learning approaches. The scores 
obtained by this model is also better than that obtained by [6] which serves as the 
inspiration for this study. Also, a general trend that can be observed in Fig. 4 is that, 
on average, t-test as the feature reduction technique provides the best results (the 
blue bars as seen in Fig. 4). This prompted us to extrapolate on this hypothesis and 
make use of the t-test as the sole feature reduction technique further on in the study 
for computational feasibility purposes.

Each model was also tested with a t-test p-value threshold of 0.001. In this setup, 
the best-performing model in particular did not see a stark change in the mean ROC-
AUC but did see a rise in standard deviation in the results (see Additional file 1: Sec-
tion SM3.1). This is likely due to the fact that the reduced number of features selected 
[28] were not as well-rounded of a representation of each random fold.

Table 3 ROC-AUC score as per feature reduction and supervised training approach

The RoC-AUC of the best performing model is indicated in bold

Model Feature reduction ROC‑AUC 

Lasso as per [6] – 0.57 ± 0.05

DeepNeti as per [6] T-Test 0.58 ± 0.04

Logistic regression Lasso 0.721 ± 0.059

PCA 0.512 ± 0.029

T-test 0.724 ± 0.026
Neural network Lasso 0.528 ± 0.091

PCA 0.539 ± 0.116

T-test 0.657 ± 0.089

Explainable boosting machines Lasso 0.581 ± 0.075

PCA 0.534 ± 0.06

T-test 0.700 ± 0.056

KNN Lasso 0.55 ± 0.09

PCA 0.553 ± 0.089

T-test 0.544 ± 0.051

XGBoost Lasso 0.581 ± 0.058

PCA 0.579 ± 0.055

T-test 0.692 ± 0.061
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Further on in the study, we explore the efficacy of self-supervised learning approaches 
on the prediction of vital status. TabNet was tried using both the supervised (without 
pretraining) and self-supervised approaches to clearly demonstrate the performance gain 
obtained via pretraining. Our results, as can be seen, in Table 4, conclusively prove that 
the self-supervised learning approach outperforms the supervised learning approaches. 
The TabNet model makes use of the Adam [31] optimiser with a ReduceLROnPlateau 
scheduler. The metrics reported in this study pertain to the average ROC-AUC Score of 
the model’s performance on the labelled (TCGA-COAD) dataset.

A pretrained TabNet model with the employment of t-test as a feature selection tech-
nique shows the highest score of 0.842 obtained with RNA-Seq data (unimodal data 
setting). Optuna was used to tune hyperparameters such as weight decay, learning rate, 
patience (for early stopping), and gamma (feature reuse in masks).

Results with multimodal data

As can be seen in Table 4, TabNet with t-test as the feature reduction technique seem-
ingly performs the best. This prompted us to make use of only this setup (t-test + Tab-
Net) in the multimodal workflow in order to reduce computational complexity. As 
can be seen, in  Fig.  4, using the t-test + TabNet setup on multimodal data results in 
yet another boost in performance. TabNet trained with the self supervised learning 

Table 4 ROC-AUC score per feature reduction technique for TabNet

The RoC-AUC of the best performing model is indicated in bold

Model Feature reduction ROC‑AUC 

TabNet without pretraining (supervised learning) Lasso 0.712 ± 0.032

PCA 0.642 ± 0.054

T-test 0.742 ± 0.042

TabNet with pretraining (self supervised learning) Lasso 0.729 ± 0.031

PCA 0.73 ± 0.047

T-test 0.842 ± 0.022

Fig. 4 Graph of ROC-AUC scores of all models
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objective on multimodal data provides an ROC-AUC score of 0.88 ± 0.019 in the con-
text of vital status prediction.

Discussion
Interpretability

This study makes use of model interpretability, which helps quantify and visualise the 
effect of features in the dataset, i.e., the gene expressions to the vital status predicted by 
the models used. As elucidated in the previous sections, TabNet is the best-performing 
model in our study with a final ROC-AUC score of 0.842 on RNA-Seq data (unimodal 
data) and 0.88 on multimodal data. The genes deemed important by TabNet are verified 
in literature to bring confidence in their predictions.

TabNet consists of an encoder which is comprised of an attentive transformer, a fea-
ture transformer and a feature mask, and a decoder which is comprised of just the fea-
ture transformer. The decoder employs a sparse feature selector at each step. Differing 
from SHAP, which uses cooperative game theory, TabNet [22] computes the feature 
importances via the aggregate feature importance mask, in the following way:

In the above equation, Mb,j[i] corresponds to feature importance of fb,j and ηb[i] weighs 
the aggregate contribution of the ith decision step via a ReLU activation [32].

Using the values in the aggregate feature mask of the best performing TabNet model 
(using the t-test feature selection technique), the feature importances as described in 
Fig. 5 was observed.

Similar to the approach used with supervised techniques, using the genes (features) 
selected in Fig. 5, a further literature survey was conducted to see if the genes deemed 
significant by the selected self-supervised TabNet model has any pathological evidence.

As observed from Table 5, 7 of the top 10 genes marked as significant by TabNet have 
pathological evidence recorded in the literature. The gene MAD2L1 has been shown 
to be a potential biomarker for colorectal cancer as per [34]. The study revealed that 
there is a higher expression of MAD2L1 in CRC cell lines and tissues. The gene RBM3 

(4)Magg−b,j

Nsteps
∑

i=1

ηb[i]Mb,j[i]/

D
∑

j=1

Nsteps
∑

i=1

ηb[i]Mb,j[i]
2

Fig. 5 Aggregate feature importances observed in TabNet
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is a well-known gene in terms of prognostication of colorectal cancer. It is described in 
that, that over-expression of RBM3 has subsequent effects on epithelial proliferation and 
stemness in colorectal cancer [35]. Interestingly, the gene PGM2 has not been shown 
to be a biomarker for colorectal cancer while the gene ASRGL1 has been shown to be 
prognostic in the prediction of endometrial cancer [41]. Therefore, the findings of this 
project may spark an interest in researching the contribution of these genes towards 
the prognosis of colorectal cancer. (See SM4 for a more comprehensive set of genes and 
their importance.)

To further understand the results, functional enrichment analysis was performed on 
full list of genes, ordered by their feature importances as determined by the TabNet 
model. The list of pathways obtained are below:

Pathway enrichment analysis

In this section, we look into the associated pathways with the important genes as 
inferred from the TabNet approach as presented above. The list of important genes with 
non-zero importances, in order, was selected as the input for GProfiler which yielded the 
results as observed in Table 6. From the aforementioned list, it is found that cell cycle 
G2/M phase transition is closely linked to colorectal cancer, as mentioned in [42]. How-
ever, further study on the association that pathways found in this study have to colorec-
tal cancer can provide valuable insight and serve as a direction for future work.

Future work

Survival analysis

Patients’ survival (or time to event) statistics are frequently gathered and evaluated 
in clinical studies. The information may be used to compare two or more groups in 
terms of both the overall number of occurrences and the frequency at which a par-
ticular event happens. The distribution of many other forms of data does not apply to 
survival data; they are non-negative and frequently skewed depending on how quickly 
events happen. More significantly, they frequently experience censoring (missing 
or incomplete data), which can happen for a number of different reasons. The work 
of [10] details a multimodal approach to survival analysis. The module used for the 
RNA-Seq modality is a fully connected (FC) neural network. Due to the exemplary 

Table 5 Gene ID and its pathological evidence towards colon cancer as per TabNet

Gene ID Gene name Pathological evidence [33]

ENSG00000164109 MAD2L1 Yes [34]

ENSG00000102317 RBM3 Yes [35]

ENSG00000134193 REG4 Yes [36]

ENSG00000134057 CCNB1 Yes [37]

ENSG00000163993 S100P Yes [38]

ENSG00000169299 PGM2 No evidence found

ENSG00000162174 ASRGL1 No evidence found

ENSG00000164816 DEFA5 Yes [39]

ENSG00000104626 ERI1 No evidence found

ENSG00000103342 GSPT1 Yes [40]
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performance of TabNet across this study, thought may perhaps be given to replac-
ing the FC module with TabNet instead, to yield better performance. This could also 
be augmented by adopting the further modalities of data detailed in [10] and using a 
modified version of TabNet for every other modality.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 023- 05347-4.

Additional file 1. SM1. Data Procurement and Processing. SM2. Other Feature Reduction Techniques. SM3. Other 
Results. SM4. Feature Importances. SM5. Hyperparameter Tuning.

Acknowledgements
The results shown here are in whole or part based upon data generated by the TCGA Research Network: https://www.
cancer.gov/tcga.

Author contributions
GP, MKR, OABR, and SA, have all contributed equally to Methodology, Software Programming, Validation, Formal analysis, 
Investigation, Writing - Original Draft Preparation and Visualisation. PA has contributed to Conceptualisation, Formal 
Analysis and Writing - Editing and Revision. GS has contributed to Conceptualization, Methodology, Validation, Formal 
Analysis, Writing - Editing and Revision, Supervision and Project Administration. All authors read and approved the final 
manuscript.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Availability of data and materials
The datasets analysed in the study is available at the Genomic Data Commons (GDC) Data portal (https:// portal. gdc. 
cancer. gov) as a part of the TCGA Program. Specifically, the RNA-Seq data used to pretrain the unsupervised models 
(across various projects in the TCGA program) can be found at the following link: RNA- Seq -  Adeno mas and Adeno carci 
nomas The RNA-Seq data used in the prediction task (i.e, TCGA-COAD data) can be found at the following links: RNA- Seq 
-  COAD Vital  Status:  Alive RNA- Seq -  COAD Vital  Status:  Decea sed In the interest of reproducible research, all the code 
used in the paper for both the preprocessing and cleaning of the above data, as well as for all the experiments donehas 
been made avail able online.

Table 6 Pathways obtained in order of importance, from GProfiler

Source Pathway

GO:BP Cell cycle G2/M phase transition

GO:BP Regulation of mitotic spindle checkpoint

GO:BP Regulation of mitotic cell cycle spindle assembly checkpoint

GO:BP Regulation of spindle checkpoint

GO:BP Cell cycle phase transition

GO:CC Nucleoplasm

GO:CC Organelle lumen

GO:CC Intracellular organelle lumen

GO:CC Membrane-enclosed lumen

GO:CC Mitotic spindle assembly checkpoint MAD1-MAD2 complex

GO:CC Secretory granule lumen

GO:CC Cytoplasmic vesicle lumen

GO:CC Vesicle lumen

GO:CC Nuclear lumen

GO:CC Mitotic checkpoint complex

REAC Alpha-defensins

MIRNA hsa-miR-24-3p

https://doi.org/10.1186/s12859-023-05347-4
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
https://urldefense.com/v3/__https:/portal.gdc.cancer.gov/repository?facetTab=cases%26filters=*7B*22op*22*3A*22and*22*2C*22content*22*3A*5B*7B*22op*22*3A*22in*22*2C*22content*22*3A*7B*22field*22*3A*22cases.disease_type*22*2C*22value*22*3A*5B*22adenomas*20and*20adenocarcinomas*22*5D*7D*7D*2C*7B*22op*22*3A*22in*22*2C*22content*22*3A*7B*22field*22*3A*22cases.project.program.name*22*2C*22value*22*3A*5B*22TCGA*22*5D*7D*7D*2C*7B*22op*22*3A*22in*22*2C*22content*22*3A*7B*22field*22*3A*22files.analysis.workflow_type*22*2C*22value*22*3A*5B*22STAR*20-*20Counts*22*5D*7D*7D*2C*7B*22op*22*3A*22in*22*2C*22content*22*3A*7B*22field*22*3A*22files.data_category*22*2C*22value*22*3A*5B*22transcriptome*20profiling*22*5D*7D*7D*2C*7B*22op*22*3A*22in*22*2C*22content*22*3A*7B*22field*22*3A*22files.data_type*22*2C*22value*22*3A*5B*22Gene*20Expression*20Quantification*22*5D*7D*7D*2C*7B*22op*22*3A*22in*22*2C*22content*22*3A*7B*22field*22*3A*22files.experimental_strategy*22*2C*22value*22*3A*5B*22RNA-Seq*22*5D*7D*7D*5D*7D__;JSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJQ!!NLFGqXoFfo8MMQ!vcxfo8K6O8ded3JRlzJKMlpY6pRF4PLjf4iAe3o6-W3kv2y6Hpcx127KLhvGDq22cSdMWNtVPyUquBqTOY--IYQ$
https://urldefense.com/v3/__https:/portal.gdc.cancer.gov/repository?facetTab=cases%26filters=*7B*22op*22*3A*22and*22*2C*22content*22*3A*5B*7B*22op*22*3A*22in*22*2C*22content*22*3A*7B*22field*22*3A*22cases.disease_type*22*2C*22value*22*3A*5B*22adenomas*20and*20adenocarcinomas*22*5D*7D*7D*2C*7B*22op*22*3A*22in*22*2C*22content*22*3A*7B*22field*22*3A*22cases.project.program.name*22*2C*22value*22*3A*5B*22TCGA*22*5D*7D*7D*2C*7B*22op*22*3A*22in*22*2C*22content*22*3A*7B*22field*22*3A*22files.analysis.workflow_type*22*2C*22value*22*3A*5B*22STAR*20-*20Counts*22*5D*7D*7D*2C*7B*22op*22*3A*22in*22*2C*22content*22*3A*7B*22field*22*3A*22files.data_category*22*2C*22value*22*3A*5B*22transcriptome*20profiling*22*5D*7D*7D*2C*7B*22op*22*3A*22in*22*2C*22content*22*3A*7B*22field*22*3A*22files.data_type*22*2C*22value*22*3A*5B*22Gene*20Expression*20Quantification*22*5D*7D*7D*2C*7B*22op*22*3A*22in*22*2C*22content*22*3A*7B*22field*22*3A*22files.experimental_strategy*22*2C*22value*22*3A*5B*22RNA-Seq*22*5D*7D*7D*5D*7D__;JSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJSUlJQ!!NLFGqXoFfo8MMQ!vcxfo8K6O8ded3JRlzJKMlpY6pRF4PLjf4iAe3o6-W3kv2y6Hpcx127KLhvGDq22cSdMWNtVPyUquBqTOY--IYQ$
https://portal.gdc.cancer.gov/repository?facetTab=cases%26filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.demographic.vital_status%22%2C%22value%22%3A%5B%22alive%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-COAD%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.analysis.workflow_type%22%2C%22value%22%3A%5B%22STAR%20-%20Counts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.experimental_strategy%22%2C%22value%22%3A%5B%22RNA-Seq%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=cases%26filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.demographic.vital_status%22%2C%22value%22%3A%5B%22alive%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-COAD%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.analysis.workflow_type%22%2C%22value%22%3A%5B%22STAR%20-%20Counts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.experimental_strategy%22%2C%22value%22%3A%5B%22RNA-Seq%22%5D%7D%7D%5D%7D
https://portal.gdc.cancer.gov/repository?facetTab=cases%26filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.demographic.vital_status%22%2C%22value%22%3A%5B%22dead%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-COAD%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.analysis.workflow_type%22%2C%22value%22%3A%5B%22STAR%20-%20Counts%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_category%22%2C%22value%22%3A%5B%22transcriptome%20profiling%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.data_type%22%2C%22value%22%3A%5B%22Gene%20Expression%20Quantification%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.experimental_strategy%22%2C%22value%22%3A%5B%22RNA-Seq%22%5D%7D%7D%5D%7D
https://urldefense.com/v3/__https:/bitbucket.org/GowriSrinivasa/analysisofrna-seqdata/src/master/__;!!NLFGqXoFfo8MMQ!vcxfo8K6O8ded3JRlzJKMlpY6pRF4PLjf4iAe3o6-W3kv2y6Hpcx127KLhvGDq22cSdMWNtVPyUquBqTnn93lR4$
https://urldefense.com/v3/__https:/bitbucket.org/GowriSrinivasa/analysisofrna-seqdata/src/master/__;!!NLFGqXoFfo8MMQ!vcxfo8K6O8ded3JRlzJKMlpY6pRF4PLjf4iAe3o6-W3kv2y6Hpcx127KLhvGDq22cSdMWNtVPyUquBqTnn93lR4$


Page 16 of 17Padegal et al. BMC Bioinformatics          (2023) 24:241 

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 14 January 2023   Accepted: 21 May 2023

References
 1. de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a 

worldwide incidence analysis. Lancet Global Health. 2020;8(2):180–90.
 2. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F. Global cancer observatory: 

cancer today. Lyon France Int Agency Res Cancer. 2018;3(20):2019.
 3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: Globocan 

estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.
 4. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A. Colorectal 

cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145–64.
 5. Kirk S, Lee Y, Sadow C, Levine S, Roche C, Bonaccio E, Filiippini J. Radiology data from the cancer genome atlas colon 

adenocarcinoma [tcga-coad] collection. Cancer Imaging Arch. 2016;10:9.
 6. Urda D, Montes-Torres J, Moreno F, Franco L, Jerez JM. Deep learning to analyze rna-seq gene expression data. In: 

International Work-conference on Artificial Neural Networks. Springer; 2017. p. 50–59
 7. Mahin KF, Robiuddin M, Islam M, Ashraf S, Yeasmin F, Shatabda S. Panclassif: Improving pan cancer classification of 

single cell rna-seq gene expression data using machine learning. Genomics. 2022;114(2): 110264.
 8. Khan A, Lee B. Gene transformer: Transformers for the gene expression-based classification of lung cancer subtypes. 

2021. arXiv preprint arXiv: 2108. 11833.
 9. Ramirez R, Chiu Y-C, Hererra A, Mostavi M, Ramirez J, Chen Y, Huang Y, Jin Y-F. Classification of cancer types using 

graph convolutional neural networks. Front Phys. 2020;8:203.
 10. Vale-Silva LA, Rohr K. Long-term cancer survival prediction using multimodal deep learning. Sci Rep. 

2021;11(1):1–12.
 11. Xiang R, Wang W, Yang L, Wang S, Xu C, Chen X. A comparison for dimensionality reduction methods of single-cell 

rna-seq data. Front Genet. 2021;12: 646936.
 12. Sun X, Liu Y, An L. Ensemble dimensionality reduction and feature gene extraction for single-cell rna-seq data. Nat 

Commun. 2020;11(1):1–9.
 13. Song K, Tan X, Qin T, Lu J, Liu T-Y. Mpnet: Masked and permuted pre-training for language understanding. Adv 

Neural Inf Process Syst. 2020;33:16857–67.
 14. Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li W, Liu PJ, et al. Exploring the limits of transfer 

learning with a unified text-to-text transformer. J Mach Learn Res. 2020;21(140):1–67.
 15. Grill J-B, Strub F, Altché F, Tallec C, Richemond P, Buchatskaya E, Doersch C, Avila Pires B, Guo Z, Gheshlaghi Azar 

M, et al. Bootstrap your own latent-a new approach to self-supervised learning. Adv Neural Inf Process Syst. 
2020;33:21271–84.

 16. He K, Fan H, Wu Y, Xie S, Girshick R. Momentum contrast for unsupervised visual representation learning. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020. p. 9729–9738

 17. Tian Y, Krishnan D, Isola P. Contrastive multiview coding. In: European Conference on Computer Vision. Springer; 
2020. p. 776–794.

 18. Somepalli G, Goldblum M, Schwarzschild A, Bruss CB, Goldstein T. Saint: Improved neural networks for tabular data 
via row attention and contrastive pretraining. 2021. arXiv preprint arXiv: 2106. 01342.

 19. Bahri D, Jiang H, Tay Y, Metzler D. Scarf: Self-supervised contrastive learning using random feature corruption. 2021. 
arXiv preprint arXiv: 2106. 15147

 20. Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H, Chen K, et al. Xgboost: extreme gradient boosting. R package 
version 0.4-2. 2015;1(4):1–4.

 21. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y. Lightgbm: a highly efficient gradient boosting decision 
tree. Adv Neural Inf Process Syst. 2017;30.

 22. Arik SÖ, Pfister T. Tabnet: Attentive interpretable tabular learning. In: Proceedings of the AAAI Conference on Artifi-
cial Intelligence. 2021. vol. 35, p. 6679–6687.

 23. Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, Staudt LM. Toward a shared vision for cancer 
genomic data. N Engl J Med. 2016;375(12):1109–12.

 24. Wagner GP, Kin K, Lynch VJ. Measurement of mrna abundance using rna-seq data: Rpkm measure is inconsistent 
among samples. Theory Biosci. 2012;131(4):281–5.

 25. Ranstam J, Cook J. Lasso regression. J Br Surg. 2018;105(10):1348–1348.
 26. Kim TK. T test as a parametric statistic. Korean J Anesthesiol. 2015;68(6):540–6.
 27. Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev Comput Stat. 2010;2(4):433–59.
 28. Wright RE. Logistic regression. 1995.

http://arxiv.org/abs/2108.11833
http://arxiv.org/abs/2106.01342
http://arxiv.org/abs/2106.15147


Page 17 of 17Padegal et al. BMC Bioinformatics          (2023) 24:241  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 29. Li Q, Yang H, Wang P, Liu X, Lv K, Ye M. Xgboost-based and tumor-immune characterized gene signature for the 
prediction of metastatic status in breast cancer. J Transl Med. 2022;20(1):1–12.

 30. Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: A next-generation hyperparameter optimization framework. 
In: Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2019.

 31. Kingma DP, Ba J. Adam: A method for stochastic optimization. 2014. arXiv preprint arXiv: 1412. 6980.
 32. Agarap AF. Deep learning using rectified linear units (relu). 2018. arXiv preprint arXiv: 1803. 08375.
 33. Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, et al. A pathology 

atlas of the human cancer transcriptome. Science. 2017;357(6352):2507.
 34. Li Q, Tong D, Jing X, Ma P, Li F, Jiang Q, Zhang J, Wen H, Cui M, Huang C, et al. Mad2l1 is transcriptionally regulated by 

tead4 and promotes cell proliferation and migration in colorectal cancer. Cancer Gene Therapy. 2023;1–11.
 35. Venugopal A, Subramaniam D, Balmaceda J, Roy B, Dixon DA, Umar S, Weir SJ, Anant S. Rna binding protein 

rbm3 increases β-catenin signaling to increase stem cell characteristics in colorectal cancer cells. Mol Carcinog. 
2016;55(11):1503–16.

 36. Kawasaki Y, Matsumura K, Miyamoto M, Tsuji S, Okuno M, Suda S, Hiyoshi M, Kitayama J, Akiyama T. Reg4 is a tran-
scriptional target of gata6 and is essential for colorectal tumorigenesis. Sci Rep. 2015;5(1):1–10.

 37. Fang Y, Yu H, Liang X, Xu J, Cai X. Chk1-induced ccnb1 overexpression promotes cell proliferation and tumor growth 
in human colorectal cancer. Cancer Biol Therapy. 2014;15(9):1268–79.

 38. Dong L, Wang F, Yin X, Chen L, Li G, Lin F, Ni W, Wu J, Jin R, Jiang L. Overexpression of s100p promotes colorectal 
cancer metastasis and decreases chemosensitivity to 5-fu in vitro. Mol Cell Biochem. 2014;389(1):257–64.

 39. Qiao Q, Bai R, Song W, Gao H, Zhang M, Lu J, Hong M, Zhang X, Sun P, Zhang Q, et al. Human α-defensin 5 sup-
pressed colon cancer growth by targeting pi3k pathway. Exp Cell Res. 2021;407(2): 112809.

 40. Long X, Zhao L, Li G, Wang Z, Deng Z. Identification of gspt1 as prognostic biomarker and promoter of malignant 
colon cancer cell phenotypes via the gsk-3β/cyclind1 pathway. Aging (Albany NY). 2021;13(7):10354.

 41. Huvila J, Laajala TD, Edqvist P-H, Mardinoglu A, Talve L, Pontén F, Grénman S, Carpen O, Aittokallio T, Auranen A. 
Combined asrgl1 and p53 immunohistochemistry as an independent predictor of survival in endometrioid endo-
metrial carcinoma. Gynecol Oncol. 2018;149(1):173–80.

 42. Chen Z, Zhang B, Gao F, Shi R. Modulation of g2/m cell cycle arrest and apoptosis by luteolin in human colon cancer 
cells and xenografts. Oncol Lett. 2018;15(2):1559–65.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1803.08375

	Analysis of RNA-Seq data using self-supervised learning for vital status prediction of colorectal cancer patients
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Related work
	Predictive modelling and associated computational methods
	Feature reduction of high-dimensional data
	Self-supervised learning

	Methods
	Problem definition
	Pipeline for study of RNA-Seq sata (unimodal data setting)
	Procurement of RNA-Seq data
	TPM 
	FPKM and FPKM-UQ 

	Feature reduction
	Protein coding genes 
	Computational techniques 

	Supervised learning methods
	Logistic regression 
	Artificial neural network (Feedforward MLP) 
	KNN 
	Explainable boosting machines 
	XGBoost 

	Self-supervised learning methods
	Data procurement 
	TabNet 


	Pipeline for study of multimodal data
	Procurement and preprocessing
	Copy number variation 
	Clinical data 
	Submitter ID matching and early fusion 

	Self-supervised learning in the multimodal data setting


	Results
	Configuration and training details
	Results with RNA-Seq data (unimodal data setting)
	Results with multimodal data

	Discussion
	Interpretability
	Pathway enrichment analysis
	Future work
	Survival analysis


	Anchor 44
	Acknowledgements
	References


