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Abstract 

Background: Modeling of single cell RNA-sequencing (scRNA-seq) data remains 
challenging due to a high percentage of zeros and data heterogeneity, so improved 
modeling has strong potential to benefit many downstream data analyses. The existing 
zero-inflated or over-dispersed models are based on aggregations at either the gene or 
the cell level. However, they typically lose accuracy due to a too crude aggregation at 
those two levels.

Results: We avoid the crude approximations entailed by such aggregation through 
proposing an independent Poisson distribution (IPD) particularly at each individual 
entry in the scRNA-seq data matrix. This approach naturally and intuitively models the 
large number of zeros as matrix entries with a very small Poisson parameter. The critical 
challenge of cell clustering is approached via a novel data representation as Departures 
from a simple homogeneous IPD (DIPD) to capture the per-gene-per-cell intrinsic 
heterogeneity generated by cell clusters. Our experiments using real data and crafted 
experiments show that using DIPD as a data representation for scRNA-seq data can 
uncover novel cell subtypes that are missed or can only be found by careful parameter 
tuning using conventional methods.

Conclusions: This new method has multiple advantages, including (1) no need for 
prior feature selection or manual optimization of hyperparameters; (2) flexibility to 
combine with and improve upon other methods, such as Seurat. Another novel contri-
bution is the use of crafted experiments as part of the validation of our newly devel-
oped DIPD-based clustering pipeline. This new clustering pipeline is implemented in 
the R (CRAN) package scpoisson.
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Background
Single cell RNA-sequencing (scRNA-seq) estimates the transcriptome at the indi-
vidual cell level. ScRNA-seq can directly measure cell-to-cell heterogeneity, which is 
more challenging using bulk RNA sequencing. First applied in 2009 [1], scRNA-seq has 
become the preferred tool to identify cell sub-populations and to investigate cellular het-
erogeneity [2–7], gene regulatory networks [8, 9], stochastic fluctuations in transcription 
[10, 11], and so on. Due to the unique features of the data distribution in scRNA-seq, 
it’s essential to develop statistical methods which accurately model scRNA-seq data for 

*Correspondence:   
dirkdittmer@me.com

1 Department of Biostatistics, 
University of North Carolina 
at Chapel Hill, Chapel Hill, USA
2 Lineberger Comprehensive 
Cancer Center, University 
of North Carolina at Chapel Hill, 
Chapel Hill, USA
3 Department of Microbiology 
and Immunology, University 
of North Carolina at Chapel Hill, 
Chapel Hill, USA
4 Adam School of Dentistry, 
University of North Carolina 
at Chapel Hill, Chapel Hill, USA
5 Department of Statistics 
and Operations Research, 
University of North Carolina 
at Chapel Hill, Chapel Hill, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05349-2&domain=pdf


Page 2 of 27Pan et al. BMC Bioinformatics          (2023) 24:256 

many important downstream analyses including differential expression analysis and 
clustering of cells.

Existing methods typically model the scRNA-seq data at the gene level for differential 
expression analysis to find biomarkers, and at the sample level for clustering of cells to 
find cell subtypes; however, they may lose accuracy due to a too crude aggregation at 
those two levels. This aggregation has led to attempts to explicitly model the apparent 
resulting zero-inflation or over-dispersion. We propose more precisely addressing these 
issues by modeling the distribution of each individual entry of the data matrix.

A major challenge is that scRNA-seq data typically contain a large number of zero 
counts for gene/cell combinations (often exceeding 90%) [12]. This is due to both bio-
logical reasons that some genes are only expressed in a cluster of cells, and technical 
limitations such as low RNA capture rates, low efficiency library construction, cell disin-
tegration and RNA degradation. There also exists a severe threshold effect in the detec-
tion sensitivity of gene expression in scRNA-seq. Higher expressed genes in a cell have 
a higher probability to be detected [4, 13–15]. These characteristics can lead to large 
discrepancies among sequencing libraries for different cells, i.e. batch effects, and render 
many global normalization approaches ineffective.

Various approaches have been proposed to address barriers that limit the interpreta-
tion of scRNA-seq data [16–23]. On the “wet-bench” side, the unique molecular identi-
fier (UMI) was introduced [24]. UMI reduces biases introduced by the extreme signal 
amplification that is necessary for scRNA-seq. Some researchers have argued that if the 
UMI technology works properly, there is no need to account for zero-inflation [22, 25, 
26]. This is an encouraging perspective; however, these classical probability models are 
again only crude aggregations focusing on either cells or genes.

To improve the accuracy of statistical modeling and gain more precise inference, we 
propose a novel and principled approach to studying individual entries of the gene-by-
cell matrix. This approach is based on the independent Poisson distribution (IPD) sta-
tistical framework, where every gene in each cell follows its own Poisson distribution. 
Working with such a model is challenging because the maximum likelihood estimate of 
each Poisson parameter is simply the corresponding count, which is too noisy to be use-
ful. To solve this problem which presents for the validation of the IPD model we first 
start with several biologically homogeneous data sets derived from single clonal cell 
lines [27]. Next, we perform parameter estimation using generalized principal compo-
nent analysis (GLM-PCA) [25] as a noise reduction method. While this approach has 
clear potential to eliminate noise when keeping important biological signals, it is chal-
lenging in most applications because the critical number of GLM-PCA components is 
not known. However, a fundamental exception to this barrier nicely arises in the valida-
tion of the IPD model. If we can find (by trial and error) a number of components which 
result in a fit of the standard univariate Poisson distribution to collections of matrix 
entries having very similar parameters, then the goodness of fit of the IPD is verified. 
The fit of Poissoneity to sets of similar matrix entries is studied using Quantile-to-Quan-
tile plots (Q-Q plots), together with simulated envelopes indicating natural variation, in 
addition to over-dispersion and zero-inflation hypothesis tests.

Based on this newly proposed IPD framework which focuses on individual entries of 
the scRNA-seq data matrix, we further develop procedures based on the computation 
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of Departure from the IPD (DIPD) as a data representation to replace the scRNA-seq 
count data by the logistic transformation of probabilities of Departure to ensure mod-
eling accuracy and to effectively deal with zeros. The output will be a data matrix of the 
same dimension of scRNA-seq with continuous values.

This enables our development of other new computational approaches including clus-
tering and other downstream tasks through the novel concept of DIPD. The DIPD is ini-
tialized by a rough two-way parameter approximation of the data. Next, different cell 
types are captured by departures from the naïve two-way approximation. Then the data 
is bisected using Poisson departure as the distance measure. The clustering algorithm 
terminates when there is no significant deviation from Poissoneity for any cell group. For 
some data this approach gives results similar to those using other pipelines [28]. For oth-
ers, it shows an improvement [29]. Overall, for additional downstream tasks, the DIPD 
matrix is proposed as a new data representation (model departure).

In sum, the IPD statistical framework has the potential to capture meaningful biologi-
cal properties at a higher resolution than prior normalization methods, without the need 
for more complicated probability distributions. We demonstrate the usefulness of model 
departure DIPD as a novel data representation by conducting downstream analysis, such 
as clustering of cells. Our newly developed DIPD-based clustering pipeline is validated 
in multiple experimental data. Another important contribution of this paper is the use of 
the novel method called crafted experiments for the comparison of the DIPD with other 
methods in a principled way. While we demonstrate the value of our proposed model 
departure data representation for clustering, we anticipate it will be useful for additional 
downstream tasks, such as differential expression analysis, gene set tests and trajectory 
analysis, because it provides a useful replacement for the conventional data matrix.

Results
Validation of Poissoneity for scRNA‑seq data

Poissoneity postulates that each matrix entry (gene by cell) comes from an independ-
ent Poisson distribution. As stated in Methods, the Poisson parameter for each matrix 
entry can be estimated using GLM-PCA [25]. The success of that estimation requires 
a good choice of the number of latent vectors L , which is generally quite challenging. 
The model validation context we consider here allows an unusual approach to that chal-
lenge. In particular, finding a value of L which gives a good fit of the resulting IPD model 
establishes its validity. That goodness of fit is quantified here using both Q-Q envelope 
visualization and formal hypothesis testing.

To study the Poissoneity of scRNA-seq data, we first explore the simplest case: cells 
picked at random from a clonal cell line processed as a single batch (Plate 3 in Landis 
et al. [27]) with L = 10 (for the reasons given in section Methods). In Fig. 1, panels a–c 
display the distribution histograms. For a given Poisson parameter � = 0.5 , � = 2 or 
� = 20 , the gold bars represent distributions based on 200 aggregated UMI entries with 
the estimated Poisson parameters closest to � . Their distributions approximately follow 
the theoretical Poisson(� ) distributions (gray bars). In contrast, the distributions from 
entries of genes whose gene averages are closest to � (blue bars), do not.

Figure  1 panels d–f show the corresponding Q-Q envelope plots (see Additional 
file 3). These provide an alternative display of the distribution of the data. For all three 
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� choices, the gold lines (based on aggregated matrix entries) are within the gray 
envelopes of variation, indicating good fits using the Poisson distributions. The gene-
level entries (blue line) do not lie within the Q-Q envelope indicating a poor Poisson 
fit. Furthermore, the manner in which the blue curves leave the envelope shows both 
the typically expected zero-inflation (departure below on the left) and over-dispersion 
(departing above on the right). This demonstrates that individual raw UMI counts 
entries follow Poisson distributions, but genes, whose averages are often used for nor-
malization, do not.

The Kolmogorov-Smirnov (KS) test  is employed to assess the deviation of the 
observed data from the theoretical distribution.  It  calculates the maximum verti-
cal distance between the empirical cumulative distribution function (CDF) of the 
observed data and the theoretical Poisson CDF, is used to quantitatively measure the 
deviation on Q-Q envelope plots. A larger KS statistic indicates a greater discrepancy 
between the two distributions. The results from gene-level entries have p-values less 
than 0.005 in all three Poisson parameters, indicating poor fits. The p-values based 
on aggregated matrix entries are all larger than 0.2, indicating a good fit. Considering 
the KS test can be conservative, we further use the over-dispersion test and the zero-
inflation test to measure the goodness-of-fit. The results from zero-inflation tests are 
all non-significant. The over-dispersion tests have non-significant p-values except 

Fig. 1 The distribution histograms (a–c) and Q-Q envelope plots (d–f) of raw UMI count distributions from 
75 biologically clonal cells (Plate 3) as defined in section Methods. The gold bars and lines represent 200 
matrix entries with estimated Poisson parameter closest to each � ; the blue represents the entries from genes 
whose gene averages are closest to each � ; and the gray represent the theoretical Poisson distributions. 
These plots indicate that the IPD statistical framework fits the individual matrix entries well, while working 
with the gene averages indicates that over-dispersion and zero-inflation may occur
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for � = 20 . These are consistent with the visual representation. When � = 20 (Fig. 1, 
panel f ), the UMI-based individual entries distribution (gold) goes outside the gray 
variation envelope at the top for high values. This is due to a sampling effect. Rela-
tively few matrix entries have parameter estimates close to � = 20 , i.e. sampled entries 
come from a mixture of Poissons due to variation in the underlying parameters. If we 
decreased the number of aggregated entries to 100, then the over-dispersion test is 
not significant ( p = 0.12 ). This result indicates a high quality of fit for the IPD statis-
tical framework and is consistent with the notion that UMI count-based scRNA-seq 
data can be modeled by independent Poisson distributions at the individual gene-cell 
entry level.

Further goodness‑of‑fit investigations

Next, we use these goodness-of-fit tools (for matrix entries with similar Poisson param-
eters) to study batch variation (Fig. 2). Each plate represents a technical replicate (batch) 
or a different biological replicate as defined in Methods. Within each plate, we took � 
ranging from 0.1 to 20, on 200 aggregated matrix entries (Poisson parameters are again 
estimated using GLM-PCA [25] with L = 10) to test for Poissoneity using Q-Q envelope 
plots and hypothesis testing. Based on this extended data we find that: first, UMI data 
fall within the variation envelope (gray lines) on Q-Q envelope plots, suggesting that the 

Fig. 2 The Q-Q envelope plots for different Poisson parameters (a–f) for the different degrees of batch 
variation. The plots indicate that the IPD statistical framework fits the data well, where most deviations were 
explained by an inappropriate choice of the number of latent vectors L . Plates 1, 3, 5A, and 5B are biological 
replicates of the same clonal cell line. Plate 6A is from a different clonal cell line. Plate 8 has two cells per 
library. The doublets in Plate 8 required a larger L = 15 (dark green) than the default L = 10 (light green). The 
mixture cell lines from Plates 5A and 6A is better modeled by L = 20 (red) than L = 10 (orange)
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Poisson distribution fits the matrix entries; second, inflated zeros are not detectable for 
UMI entries based on zero-inflation tests ( p > 0.05 ); third, no over-dispersion is detect-
able for UMI entries based on dispersion hypothesis testing ( p > 0.05 ). The exception is 
� = 20 , which can be explained as a mixture of Poisson as discussed above, and this can 
be solved by reducing the number of aggregated matrix entries.

One of the experiments deliberately violated the single cell assumption. Plate 8 (green) 
had two cells per well, i.e.  per library. It shows over-dispersion at L = 10 ( p = 0.038 
when � = 20 ). This is consistent with the experimental design. It had a stronger sig-
nal for low abundance transcripts as twice as much RNA was present per well, which 
resulted in more biological variation. This different signal-to-noise ratio is handled by 
increasing L to 15. Compare the light ( L = 10) and dark green ( L = 15) curves in Fig. 2 
panels e and f. At L = 15, the curves are within the envelopes and the over-dispersion 
tests have p-values p = 0.164 when � = 20 , indicating no over-dispersion.

Another experiment has an equal mixture of two different cell lines (Plates 5A and 
6A). In Fig. 2 panel f, the Q-Q envelope plot shows strong deviations at the bottom for 
low values at L = 10 when � = 20 (orange curve; p = 0.026 for the over-dispersion test 
even decrease the number of selected entries to 100). This is because for this more het-
erogeneous data set, L = 10 components are inadequate to capture the biological varia-
tion. The fit is improved by increasing the number of latent vectors to L = 20 (the dark 
red curve; p = 0.177 for the over-dispersion test when � = 20 ). These experiments show 
that deviations from cell homogeneity, either as a violation of the single cell assumption 
or as a result of a mixture of cells with different transcription profiles can be detected as 
departures from the IPD model. This property can be compensated for by increasing the 
number of latent variables L or it can be exploited by a clustering algorithm using Pois-
son model departure as the distance metric. This algorithm is described below. See the 
Additional file 1: Tables S1–S3 in the  for details.

Poisson departure data representation

Here, we introduce a novel data representation (DIPD) based on a departure from the 
IPD. The initial step is based on a crude two-way parameter approximation, where 
variation across cells is modeled by a cell-level parameter, and variation across genes is 
modeled by a gene-level parameter (as defined in equation (3)). This initialization step 
(without latent vectors) in itself does not appropriately account for cell heterogeneity. In 
the next step, the interesting cell structure is captured by departures from the naïve two-
way approximation in both genes and cells, and the original count matrix is replaced by 
a Poisson departure matrix.

In the departure matrix, each entry is quantified by the relative location of that orig-
inal count with respect to the tentative Poisson distribution, whose parameter comes 
from the initial two-way approximation. The departure measure is captured by a Poisson 
Cumulative Distribution Function (CDF), which leaves the unexpectedly small counts 
nearly 0 and unusually large counts close to 1. Next, the departure measure is put on 
a more statistically amenable scale using the logit function. As a result, unexpectedly 
large counts give large positive values and unexpectedly small counts give large negative 
values.
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Figure 3 shows the heatmap visualizations (two cell lines data defined in the follow-
ing section) based on DIPD (panel a) or Seurat after normalization and scaling (panel b) 
as data representations. Note the different scale ranges. The black lines in the sidebars 
depicted the top 2000 most variable genes identified by Seurat. The DIPD-based rep-
resentation kept all genes, as they may become relevant for defining sub-clusters, and 
also may be associated with important meta information. Such meta-information may 
include drug susceptibility or the availability of a clinical or histochemical assay to meas-
ure protein expression. The opportunity to identify genes of high clinical value is lost in 
approaches that select features based on statistical properties alone. In this simple case 
with two distinct cell lines, both representations perform similarly as depicting the dif-
ferentially expressed (DE) genes between the two cell lines. We will show that the DIPD-
based data matrix outperforms Seurat normalized counts as a novel data representation 
in a later section.

Cell type clustering based on Poisson departure

A major application of this data representation is cell clustering using DIPD. This can be 
used directly as input into other algorithms. It also opens the possibility for a novel clus-
tering algorithm, as illustrated in Fig. 4. This algorithm, referred to as Hclust-Departure, 
operates as follows: Starting with the UMI count matrix (UMI), a very crude two-way 
parameter approximation (more details in Methods) is used to estimate Poisson parame-
ters ( �̃ ). Cell heterogeneity is not assumed at this step. Next, each UMI count is replaced 

Fig. 3 A heatmap view of the data representations based on (a) DIPD and (b) Seurat normalized and scaled 
counts before feature selection. The orders of cells and genes for both panels are based on the hierarchical 
clustering with Euclidean distance and Ward’s linkage using model departure. The black colored lines in the 
sidebars on the right represent the top 2000 most variable genes kept by the Seurat pipeline. Visually, both 
data representations effectively demonstrate the differential expressed genes between the two cell lines. 
However, highly expressed genes within single cells, as depicted by the bright red spots, may potentially play 
a role in clustering but many are filtered out by Seurat
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by the DIPD (D) measure from the naïve model. This DIPD-based matrix serves as the 
input for the clustering step. Clustering with k = 2 is applied and the two-way approxi-
mation and DIPD-based data matrix is recalculated separately for each of the two sub-
clusters. This process is repeated until (a) the split is no longer statistically significant; 
(b) the maximum allowable number of splitting steps is reached; or (c) any current clus-
ter has less than 10 cells. Statistical significance is calculated using Sigclust2 [30]. For 
a homogeneous cluster of cells, all the departure entries (D) are similar, and therefore 
Sigclust2 should not find significant clusters.

To investigate the performance of Hclust-Departure, we compared it with a commonly 
used package, Seurat (version 3.1.1) [31].

Single clonal cell line

First, homogeneous data from a single clonal cell line (Plate 3 in Landis et  al. [27]) is 
tested. There are no known clusters. This data serves as a negative control because 
the cells have been maintained under optimal growth conditions to minimize varia-
tions within the cell population. Applying Hclust-Departure to the DIPD-based matrix 
resulted in no significant splits ( p = 0.933 ), consistent with the experimental design 
(panel a in Additional file 2: Fig. S1). Seurat also identified only one cluster (resolution 
parameter 0.8, panel b in Additional file 2: Fig. S1). The Uniform Manifold Approxima-
tion and Projection (UMAP) [32] visualizations of different data representations can be 
found in Additional file 2: Fig. S2 panels a and b.

Fig. 4 The Hclust-Departure cell clustering workflow. Hierarchical clustering is performed using Euclidean 
distance and Ward’s linkage in a recursive way
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Two cell lines, equal mixture

Combining the data from two clonal cell lines (Plates 5A and 6A) in an equal mixture 
provided a positive control, as the two cancer cell lines were from independent patients, 
but of the same lineage [27]. Figure   3 depicted two data representations in heatmap 
view based on DIPD (panel a) and Seurat normalized counts (panel b). Hclust-Departure 
resulted in two clusters, consistent with the known cell lines. Seurat clustering also iden-
tified two clusters under the default setting (resolution parameter 0.8). Additional file 2: 
Fig. S2, panels c and d show the UMAP visualizations of the DIPD and Seurat normal-
ized counts, respectively. The resolution parameter tuning process in UMAP space is 
shown in Additional file 2: Fig. S3. These plots demonstrate that DIPD is a more effective 
data representation than Seurat normalization without feature selection and dimension 
reduction.

Three cell lines, unequal mixture

Next, we applied Hclust-Departure, to data comprised of a mixture of three cell lines, at 
a ratio of 1:3:6 [33]. Additional file 2: Fig. S4 displays two heatmap representations of the 
data based on DIPD (panel a) and Seurat normalized counts (panel b). Additional file 2: 
Fig. S5 panels a and b present UMAP visualizations of both data representations. Hclust-
Departure identified three clusters. Using the default setting, Seurat identified 9 clus-
ters (Additional file 2: Fig. S6, panel c). By tuning the Seurat resolution parameter to 0.1 
(Additional file 2: Fig. S6), overfitting was resolved and both approaches identified the 
three biologically defined clusters. Notably, the clustering based on Hclust-Departure 
has the advantage of not requiring parameter tuning.

Multiple cell lineages, unequal mixture

To explore more complex data, scRNA-seq data from the lymphoid organs of a mouse 
[28] was analyzed. These represent the complex lineages and populations of the hemat-
opoietic system: T and B cells, which mediate the adaptive immune response, as well as 
dendritic cells (DCs), macrophages, mast cells, etc., which mediate the innate immune 
response as well as red blood cells (erythrocytes). Within each of these broad classes, 
multiple subclasses are recognized.

The results are visualized using t-distributed Stochastic Neighbor Embedding (t-SNE) 
[34] and UMAP in Fig. 5 panels a, c and panels b, d. Hclust-Departure (panels a and b) 
is used without dimensionality reduction or feature selection. Seurat (panels c and d) 
is applied using the top 2000 most variable features as defined by default. The cell type 
labels are manually assigned to each cluster using known lineage markers. The clusters 
discovered by Hclust-Departure are consistent with those identified by Seurat. In addi-
tion, Hclust-Departure identifies several significant subclusters within common Seurat 
labels (namely B-cells (light/dark green clusters), NK cells (light/dark gold clusters) and 
erythrocytes (light gray/black clusters)).

To evaluate the biological plausibility of the additional clusters identified by Hclust-
Departure, we identified differentially transcribed genes using the t-test (cluster size 
larger or equal to 30) or the Wilcoxon rank-sum test (cluster size less than 30) (Fig. 6). 
The genes colored in red are statistically significant after FDR adjustment ( p < 0.05 ), 
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and have a large mean difference. The genes colored in orange have a significant dif-
ference but the mean difference is small. Those colored in black do not differ among 
clusters. Known cellular identity-specific differentiation markers are annotated by name. 
Their difference in departure representation is consistent with the existence of two func-
tionally distinct populations as recognized by Hclust-Departure.

Figure 6 panel a depicts two types of DCs corresponding to the coral and blue clusters 
in Fig.  5. DCs are antigen-presenting cells and are classified into two major subtypes: 
myeloid DCs (mDC) and plasmacytoid DCs (pDC) [35]. Cluster one downregulates 
the histocompatibility complex (HLA) class II molecules and Cystatin C (CST3), LYZ, 
TMSB4X; the other does not. Thus, the distribution of biologically defined lineage mark-
ers validated this unsupervised clustering result.

Fig. 5 The t-SNE (a, c) and UMAP (b, d) visualizations of the A5 sample which consists of n=1,476 cells [28]. 
The top two panels (a, b) were based on Hclust-Departure using model departure as data representation. The 
bottom two panels (c, d) were labeled by cell types from the Seurat analysis of Cheng et al. [28]. The clusters 
discovered by Hclust-Departure are consistent with those identified by Seurat. Furthermore, Hclust-Departure 
identifies several significant subclusters (namely B-cells, NK cells and erythrocytes)
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Figure 6 panel b depicts two clusters of B cells (corresponding to the light green and 
dark green clusters in Fig. 5 panels a, b). B cells are classically known for their ability to 
produce antibodies, yet they are capable of a variety of functions including antigen pres-
entation, production of several cytokines, etc [36]. Comparatively high levels of lineage 
defining plasma B cell transcripts such as MZB1 and FKBP11 and  LTB (an early B cell 
differentiating factor) differentiate the two clusters confirming that two clusters, rather 
than one, was consistent with the known biology.

Figure 6 panel c focuses on Natural Killer (NK) cells (corresponding to the light and 
dark gold clusters in Fig. 5 panels a, b). NK cells are one of the major subpopulations of 
lymphocytes and components of innate immunity. Again key lineage markers were dif-
ferentially expressed among the two NK cell clusters such as CD56 and CD16 [37]. The 
presence of ZNF90, UBA52 and FAU suggests that those cells were in an active tran-
scriptional state. The absence of TUBB indicates that these cells were in a mature state.

Fig. 6 The volcano plots based on the potential subtypes (depicted in Fig. 5) using differences of mean 
departure for each gene. Genes are colored as red if the FDR-adjusted p-value (vertical axis) is less than 
0.05 and the absolute mean departure difference (horizontal axis) is larger than 4 (DE genes); orange if the 
FDR-adjusted p-value is less than 0.05 but the mean departure difference is small; black if the mean departure 
difference is statistically not significant. Marker genes from DE genes are further triangle annotated and 
labeled with gene names. a Comparing plasmacytoid dendritic cells (pDC) and myeloid dendritic cells (mDC) 
(coral vs. blue in every panel of Fig. 5); b Comparing subclusters within B cells (dark green vs. light green in 
Fig. 5 panels a, b); c Comparing subclusters within NK cells (dark gold vs. light gold in Fig. 5 panels a, b); d 
Comparing subclusters within Erythroid cells (dark gray vs. light gray in Fig. 5 panels a, b)
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Figure 6 panel d depicts the subdivision of erythroid cells. There are two types of eryth-
roid cells: embryonic and mature. These are traditionally discerned by the downregula-
tion of several hemoglobin genes including HBB, HBA2 and HBA1 which are expressed 
during terminal erythroid differentiation [38]. The expression of YBX1, a transcriptional 
factor and SERBP1, an anti-apoptotic gene, further support the notion that the two clus-
ters depict different stages of erythroid development.

In sum, Hclust-Departure identifies biologically plausible populations from this com-
plex mixture of cells, establishing equivalent performance to existing scRNA-seq algo-
rithms. It also identifies additional subtypes. Obviously, other algorithms can be tuned to 
fit previously known subpopulations. However, the choice of correct tuning parameters 
for those methods is necessarily heuristic, specific to each data set, and not necessar-
ily reproducible or robust. By comparison, Hclust-Departure has no tunable parameters, 
other than the significance level (and neither has Sigclust2).

Hybrid Approach: model departure and Louvain clustering

A key difference between Hclust-Departure and other pipelines is the actual clustering 
algorithm. We therefore combine the DIPD data representation with the Louvain algo-
rithm as implemented in Seurat.

To validate this combination, we used a third different, very complex and very well-
studied data set with known ground truth. These are the Peripheral Blood Mononuclear 
Cells (PBMCs) data sets used by Duò et  al. [29]. The Zhengmix8eq data set contains 
3,994 cells of eight cell types in equal proportions, some of which are quite distinct and 
some are very similar (Fig.  7 panel a). Unsupervised clustering using Seurat with log-
normalized transcription using 15 PCs and resolution parameter 0.8 recapitulates the 
Fluorescence-Activated Cell Sorting (FACS) labels (Fig. 7 panel b), but misses the dis-
tinction between T helper, T regulatory, and T memory cells. Hclust-Departure without 
dimension reduction performs slightly better (Fig.  7 panel c). Table  1 shows the con-
fusion matrix. We also explored the more advanced normalization method SCTrans-
form [18] implemented in Seurat and three other clustering methods: Monocle3 [39], 
SC3 [40], TSCAN [41] (Additional file 2: Fig. S7; all applications are based on standard/
default workflow recommended by authors). None of the pipelines is completely con-
sistent with the FACS labels in identifying subtypes of T cells. This may be due to the 
limited accuracy of the algorithms or it may be due to FACS labels not correctly signify-
ing the underlying biological complexity, as T cell differentiation can be very fluid. Over-
all, DIPD-based data representation combined with Louvain clustering performs better 
than any of the pure pipelines (Fig. 7 panel d). The hybrid method correctly identifies the 
T cell subsets and subgroups of monocytes (red cluster). This result suggests that mod-
eling UMI counts by departure from Poissoneity has advantages over other normaliza-
tion/transformation methods independent of the particular clustering algorithm.

To further define the performance of the hybrid approach, different parameters were 
explored using either DIPD-based representation (D) or log-normalized data as input. 
These were (a) the number of principal components (15, 20, 25 or 30) and (b) the resolu-
tion parameter in the clustering step (0.6, 0.8, 1.0 and 1.2 for the larger eight cell-type 
data set Zhengmix8eq; and 0.05, 0.1, 0.2, 0.3, 0.5 and 0.8 for the other two four cell-type 
data sets Zhengmix4eq and Zhengmix4uneq [29]). These experiments used the full D 
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matrix or the top 2000 most variable genes. Performance is assessed using the Adjusted 
Rand Index (ARI) [42] and the purity [43] (Fig. 8). Except for Zhengmix4uneq (Fig. 8, 
panels b, e), DIPD matrix D as input outperforms Seurat using normalized counts as 
input; however, there are parameter constellations that lead to dramatic performance 
degradation independent of the data representation. In sum, DIPD-based data represen-
tation D combined with Louvain clustering outperforms other normalization steps for 
UMI data.

Further validation of the hybrid approach

Even though the experiments above point to DIPD-based data representation D and 
Louvain clustering as the optimal combination, a direct comparison between algorithms 
that use different data representations and have multiple tunable parameters is dif-
ficult using experimental data sets with possibly unknown subpopulations: overfitting 
cannot be decided on experimental data. An alternate approach is a simulation based 

Fig. 7 The UMAP plots comparing clustering performance in the Zhengmix8eq data set [29] using different 
data representations and clustering methods. Panel a displays the FACS labels we used as a benchmark to 
measure clustering performance. Both the Seurat pipeline (panel b and our Hclust-Departure pipeline (panel 
c) correctly identify the distinct cell types but fail to distinguish the subtypes within the T cells. Panel d uses 
the DIPD-based data matrix as data representation combined with Louvain clustering, which is a more direct 
comparison with panel b since 15 PCs and a resolution of 0.8 are used in both cases. It improves the original 
Seurat clustering performance by better distinguishing T memory cells from T helper/regulatory cells
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on theoretical distributions alone. This also is challenging because many aspects of the 
deep biological variation in scRNA-seq data are unknown and beyond current in silico 
modeling capabilities. These limitations motivate the use of crafted experiments. Here, 

Fig. 8 The boxplots comparing clustering performance using ARI and purity in different data 
representations. This demonstrates that DIPD-based matrix D as data representation performs better than 
the Seurat normalized counts in the Zhengmix4eq (four cell types in equal proportions (3,994 cells and 
15,568 genes), (a, d), Zhengmix4uneq (four cell types of unequal proportions as 1:2:4:6 (6,498 cells and 16,443 
genes), (b, d), and Zhengmix8eq (eight cell types in equal proportions, (c, f) data sets

Table 1 Confusion Matrix comparing clustering results with FACS labels

FACS Seurat

s0 s1 s2 s3 s4 s5 s6 s7 s8

B 0 0 0 0 418 0 0 81 0

Monocytes 1 5 1 547 2 0 0 3 41

NK 7 6 585 0 1 0 1 0 0

T helper 198 180 2 0 0 0 19 0 1

T memory 59 394 0 0 0 0 47 0 0

Naive Cytotoxic 26 4 0 0 1 367 0 0 0

T naive 472 19 1 0 1 2 3 1 0

T regulatory 120 230 0 0 0 1 147 0 0

FACS Hclust‑Departure

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14

B 417 34 48 0 0 0 0 0 0 0 0 0 0 0

Monocytes 0 0 0 0 0 1 0 7 0 0 3 1 558 30

NK 1 0 0 0 1 0 1 5 0 3 0 589 0 0

T helper 0 0 0 214 12 103 16 52 1 0 0 1 0 1

T memory 0 0 0 80 11 108 257 28 14 1 0 1 0 0

Naive Cytotoxic 1 0 0 135 240 11 7 4 0 0 0 0 0 0

T regulatory 0 0 0 164 4 175 17 127 8 0 0 3 0 0
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carefully chosen perturbations are overlaid onto real data. Crafted experiments main-
tain the complexity of the real data, but control the signal versus noise by considering a 
range of perturbations from weak to strong. We performed two different types of crafted 
experiments.

Variation in library size (total UMI counts per cell) is a driver of non-relevant variation 
in scRNA-seq. To explore this issue we artificially magnified the library size and com-
pared different data representations (Fig. 9 panels a, b). As noted above, many pipelines 
use multiplication and scaling to adjust for the library size effects. This poses a problem 
for data containing many zeros. This experiment again uses the Zhengmix4eq data. To 
model library size effects, cells with a large or small library size are perturbed to be even 
larger or smaller (see Methods for details). We compare data representations from DIPD 
(yellow), log-normalized counts (blue) and SCTransform (green), all using the Louvain 
algorithm under the same parameter setting (the number of principal components was 

Fig. 9 Comparison of clustering performances using ARI (panels a, b, c) and purity (panels d, e, f) based 
on different signal strength F (large F means stronger perturbation) in the Zhengmix4eq data set [29] (a, b, 
c, d). Panels a and b magnify the library size effects. The DIPD-based data matrix (orange) as a novel data 
representation shows an improvement over the Seurat log-normalized counts (blue) for larger values of 
F, and it performs slightly better than the SCTransform (green). Panels c and d create artificial clusters. The 
DIPD-based representation (orange) uses information from nearly the full set of genes, and performs the best 
in identifying artificial clusters for relatively small signals. Both Seurat log-normalized expression (blue) and 
the SCTransform (green) can lose information during the feature selection step, and result in poor clustering
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set to 15 and the resolution parameter to 0.2). In addition, we also explore Monocle3 
(pink), SC3 (purple)] and TSCAN (gray) as further comparison. As before, ARI and 
purity are used to quantitate performance, and both agree. At F  < 0.5 (weak signal), 
all methods but SC3 and TSCAN perform similarly. At F  > 0.5 (stronger signal), per-
formance using log-normalized data declines, whereas using DIPD, SCTransform and 
Monocle3 remain accurate. These results suggest that log normalization as the sole pre-
processing step is sensitive to library size effects. SC3 tends to overestimate the number 
of clusters. TSCAN is also sensitive to library size perturbation.

Next, we crafted artificial clusters by perturbing some large count genes from the 
homogeneous luminal epithelial cell line data set [33]. Artificial clusters were created 
by adding counts to a sub-matrix of the UMI count data matrix (top 500 genes with 
the largest total counts across cells and 250 randomly chosen cells (from 541 total)). 
For each entry of that sub-matrix, random counts from the Poisson distribution with 
parameter F × �̃gc were added to the current UMI count xgc , where �̃gc comes from the 
two-way approximation (see Methods). Small (or large) values of F  indicate weak (or 
strong) signals. These perturbed cells were regarded as an artificial cluster separated 
from the remaining cells, where an accurate identification was expected for increas-
ing values of F  . The random selection was repeated ten times. Again, we used the 
same parameter settings for all data representations (15 PCs and a Louvain resolution 
parameter of 0.2).

Figure 9 panels c and d show the mean ARI and the mean purity with standard devi-
ation. Both measures agree. For F  < 0.5, none of the methods distinguish the per-
turbed cells. For F  > 0.5, DIPD (orange) identifies more perturbed cells, compared to 
log-normalization (blue), SCTransform (green), Monocle3 (pink), SC3 (purple) and 
TSCAN (gray). The poor performance of the Seurat type of clustering may be due 
to the feature selection step limiting the sensitivity to small perturbations. For log-
normalized expression, only 27.2% to 45.6% out of the perturbed 500 genes are in the 
top 2000 selected genes. For SCTransform (green), this proportion is between 36.2% 
and 45.8%. Feature selection based clustering is not as stable as including all the genes 
across different randomly perturbed cells, as indicated by the larger standard devia-
tions. This experiment supports the contention that important, local information may 
be lost during the feature selection step. The SC3 and TSCAN methods perform the 
worst in this particular experiment, and Monocle3 has comparable performance as 
DIPD only when F is above 1.

Discussion
We develop an alternative data representation, DIPD, for UMI-based scRNA-seq data 
as well as a clustering algorithm based on this data representation. DIPD is applicable 
to scRNA-seq data that incorporates experimental UMI correction. It is not intended 
for non-UMI corrected raw count scRNA-seq data. With an appropriate number of 
latent vectors in the initial GLM-PCA parameter estimation, the IPD statistical frame-
work gives reasonable fits for diverse UMI data sets. Departures from the IPD statistical 
framework (i.e. DIPD, which is independent of latent vectors) can be incorporated into 
existing scRNA-seq analysis pipelines and gives improved overall performance inde-
pendent of the particular clustering algorithm.
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Working on the scale of probabilities rather than counts offers numerous advan-
tages. First, due to the characteristics of scRNA-seq data (many zeros and low counts 
in most matrix entries), working in probability space is a more appropriate way to rep-
resent the underlying data structures. The DIPD-based data matrix provides a useful 
tool to uncover cell heterogeneity from observed counts into a model departure from 
the hypothesized Poisson parameter matrix, as input to any subsequent analyses. The 
large number of zeros in scRNA-seq data, which have been considered in row or col-
umn based analyses to be zero-inflation, is more precisely viewed as a large number of 
very small Poisson probabilities. Similarly, the previously reported over-dispersion is 
explained by variation in the set of individual Poisson parameters within the framework 
(Fig. 1).

Implementing Sigclust2 in clustering provides explicit hypothesis testing for each 
cluster, which avoids parameter tuning. A direct comparison of different data repre-
sentations demonstrated that DIPD has an improved performance over conventional 
log-normalized data (Figs. 7, 8). A hybrid approach combining DIPD with the Louvain 
clustering algorithm gives the best performance (Fig. 9). Using all the data represented 
as model departure allows for the detection of weaker signals compared to feature selec-
tion based clustering.

A limitation of this pipeline is computational speed because it uses the full feature 
set (refer to Additional file 4 for the computational time taken by the data sets used in 
this manuscript). Computational speed vs. the number of features to be included in the 
model represents a trade-off of any unsupervised learning approach. It is not specific to 
this data representation.

At this point, we have only begun to identify biological scenarios that favor this data 
representation over others. It is necessary to explore additional scenarios where the 
DIPD and Hclust-Departure show differences compared to other approaches. This may 
identify properties of scRNA-seq data beyond over-dispersion and zero inflation that 
require explicit and novel statistical considerations. While the current clustering pipe-
line is tailored for UMI-based scRNA-seq data, a preliminary analysis using our pipe-
line on raw counts of clonal cell line data without UMI correction also generated correct 
clusters (as shown in Additional file 2: Fig. S8). However, further investigation is needed 
to determine the applicability of our pipeline in other raw count settings. Nonetheless, 
the idea of departure-based data representation could be used for other data types based 
on other distributions, for example, the Assay of Transposase Accessible Chromatin 
sequencing (ATAC-seq) data based on Binomial distributions.

Conclusions
Most of the existing scRNA-seq analysis methods suffer from a too crude aggrega-
tion at either gene or cell level. We proposed shifting the focus from modeling counts 
to modeling probabilities and avoided the crude approximations by our IPD statistical 
framework. We investigated the validity of this model using some carefully designed 
experiments. As a result, we achieved improved cell clustering performance using a 
novel data representation based on departures from the estimated Poisson distributions 
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without prior feature selection or manual optimization of hyperparameters. The idea of 
our DIPD as data representation can be combined with other clustering methods, such 
as the Louvain algorithm implemented in Seurat. This novel data representation is useful 
in better understanding the mechanism of scRNA-seq.

Methods
Data description

The main performance of the Poisson independent framework for data representation is 
illustrated using multiple data sets representing different scRNA-seq categories. These 
are described in the next subsections. They are in increasing order of biological com-
plexity: (i) single cell line data, (ii) three cell line mixture data, (iii) normal human PBMC 
data, (iv) data from a mouse tissue infected with the human immunodeficiency virus 
(HIV). The data represented a variety of technical platforms.

Single clonal cell line data

To study a scRNA-seq data set which is as homogeneous (and thus Poisson) as possible, 
single cell line experiments were considered. The first data set is on the experiments of 
Landis et al. [27]. This data set uses flow cytometry to place individual cells into wells of 
a plate. This approach carefully controls the occurrence of doubletons and conversely 
allowed us to artificially create wells containing doubletons. The experiment is based on 
two cancer cell lines, which were obtained from human Primary Effusion Lymphoma, 
called JSC-1 and BCBL-1. These cell lines are clonal and have been in culture for many 
years. Based on extensive biological characterization each culture is homogeneous, and 
within a cell line each cell is identical.

The overall experimental design is nested, generating different levels of batch varia-
tion. Batch category one represents technical replicates called plates. Cells within a plate 
are from the same cell line, collected at the same time and hence are homogeneous in 
that sense. Batch category two represents data from experiments or biological replicates. 
The full data set contains 10 plates, (1,…, 4, 5A, 5B, 6A, 6B, 7,…, 10). The data were 
pre-processed as described in Landis et al. [27]. Specifically, filtering was done such that 
each cell had greater than 5,000 total UMI counts and greater than 1500 detected cel-
lular transcripts. Only protein-coding transcripts that were detected in more than 0.5% 
of all cells were retained. The data set used here had a total of 621 cells and 12,689 genes.

This carefully constructed data enabled us to validate the Poissoneity under different 
scenarios, i.e. different degrees of batch variation. The data are summarized in Table 2. 

Table 2 Summary of plates used

Plate Date Cell Line Cells Per Well Cells Per Plate

Plate01 2018-09-04 BCBL1 1 75

Plate03 2018-09-26 BCBL1 1 75

Plate05A 2018-09-26 BCBL1 1 71

Plate05B 2018-09-26 BCBL1 1 58

Plate06A 2018-09-30 JSC1 1 71

Plate08 2018-09-30 BCBL1 2 63
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For instance, Plates 1 and 2 were from the same cell line but performed on different dates 
(biological replicates); Plates 3 and 4 also used the same cell line, but were performed on 
the same date (technical replicates). They were expected to be more similar as techni-
cal variation is smaller than biological variation. Data labeled Plate 5A and 5B represent 
cells where the scRNA-seq libraries from the same cell were sequenced in two independ-
ent runs. Thus these were the most similar data sets. The only variation should be due 
to randomness from the Poisson distribution. Plates 6A and 6B were from an entirely 
different cell line JSC-1 (bold), and were expected to give a radically different expression 
signature from the BCBL-1 cell line. Plate 8 investigated the impact of doubletons by 
intentionally putting two cells (bold) per well.

Three cell lines mixture data

This data set was generated from a mixture of three cell lines by 10X Genomics [33]. 
There are three cell lines in this data set: human dermal fibroblast skin, breast cancer 
luminal epithelial cell line, and breast cancer basal-like epithelial cell line. These were 
mixed at a ratio of 1:3:6. The cell of origin label for each cell was retained. The data 
were pre-processed as discussed in Liu et al. [33]. This data set contains 2,609 cells with 
known labels and 21,247 genes.

PBMC data

This scRNA-seq data was generated using 10X Genomics originally from Zheng et al. 
[44]. Cells contained in this data are peripheral blood mononuclear cells (PBMC) from 
Homo sapiens. The cells were sorted based on cell-surface markers using Fluorescence-
Activated Cell Sorting (FACS). Randomly selected cells from this experiment were 
assembled by Duò et al. [29] as test data sets to measure the clustering performance of 
different software packages. In particular, three experimental data sets were assembled, 
each with different mixture characteristics: Zhengmix4eq (4 cell types of equal propor-
tions including 3,994 cells and 15,568 genes) Zhengmix4uneq (4 cell types of unequal 
proportions as 1:2:4:6, including 6,498 cells and 16,443 genes) and Zhengmix8eq (8 cell 
types of equal proportions including 3,994 cells and 15,716 genes).

Multiple cell lineages data

This data set was based on a study by Cheng et al. [28]. This study sampled mouse spleen 
tissue and obtained scRNA-seq data sets using the 10X Genomics platform. We used 
one of the mice (Sample A5) which is comprised of 1,476 cells and 12,822 genes. Seurat 
data cleaning and cell clustering by default parameters were used in the original report 
and provided computational cell type labels (more details in [28]).

Existing Methods

We first discuss the GLM-PCA algorithm, which is applied in parameter estimation 
for our assessment of the IPD framework. Then we give a brief review of the Seurat 
pipeline, for data pre-processing steps and cell clustering as an example for the state-
of-the-art in RNA-seq data analysis.
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GLM‑PCA algorithm

GLM-PCA is an algorithm for computing an analog of PCA in the context of general-
ized linear models (GLM) [25]. A typical organization for a scRNA-seq data set is a 
matrix of counts, where columns denote cells (indexed by c = 1, 2, . . . ,C ), and rows 
denote genes (indexed by g = 1, 2, . . . ,G ). Let xgc denote one matrix entry, and let 
nc =

g
xgc denote the total counts for the cell c . The GLM-PCA calculation using the 

Poisson distribution treats the counts as a random variable: Xgc ∼ Poisson(�gc) , i.e.

A useful model for �gc is

where αg is a gene specific parameter, where ξgl and ρcl are factor scores and loadings 
with latent dimension L . The scores and loadings have a similar interpretation as in 
Euclidean PCA, and capture the biological variability after cell and gene-specific offsets 
are removed. The relationships between the Poisson and other count models are consid-
ered in Townes et al. [45].

Seurat algorithm

Seurat (Version 3.1.1, [31]) is an R package developed for scRNA-seq data analysis. 
It enables users to study cell-to-cell heterogeneity from transcriptome data. Seurat 
also integrates diverse types of single-cell data sets [23, 31, 46]. At each step in the 
computation pipeline, there are multiple hyperparameters to consider. These provide 
the users with flexibility but are selected heuristically. Recommendations for these 
parameters are arrived at empirically and are varied depending on the input data set. 
Here we briefly review the standard workflow as described in Cheng et al. [28].

quality control: Genes with less than three positive counts overall were excluded; 
cells, where the unique gene counts (the number of detected genes) were above 2500 
or below 200, were excluded; cells with total mitochondrial gene counts greater than 
5% of the overall total were excluded.

normalization by cell: The gene expression for each cell ( xgc ) was divided by the 
cell total counts ( nc ) and this quotient was multiplied by a scale factor of 10,000 
(default).

transformation: The natural log transformation was applied.
feature selection: The standardized variance (more details in Stuart et  al. [31]) was 

calculated for each gene, and the top 2000 (default) genes with the highest cell-to-cell 
variation were retained.

(1)P(Xgc = xgc) =
e−�gc�

xgc
gc

xgc!

(2)log �gc = log nc + αg +

L
∑

l

ξglρcl ,
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scaling: The expression of each gene was scaled to have a mean of 0 and variance of 
1 across cells. A variation of standard scaling includes regularized negative binomial 
regression, which is called SCTransform [18].

linear dimension reduction: The data was represented by the first 15 principal com-
ponents obtained by Euclidian PCA.

clustering: Cell clustering was done with a graph-based clustering approach using the 
Louvain algorithm and visualized using t-SNE or UMAP methods.

Novel Methods

In the following section, we describe the approach to the assessment of the validity of 
the IPD statistical framework. We propose DIPD as a novel data representation, which 
is a measurement of the relative location of UMI counts with respect to the independent 
Poisson distribution at the individual entry level. The cell heterogeneity can be better 
reflected at the scale of continuous possibilities than in the original scale with excess 
zeros. Therefore, we further develop a departure-based cell clustering algorithms to 
identify cell subpopulations.

Independent Poisson statistical framework

We work with scRNA-seq data with individual matrix entries through an IPD statistical 
framework, where each matrix entry ( xgc ) is a UMI count indicating expression of gene 
g for cell c . In particular, we model that as a Poisson random variable Xgc , which is inde-
pendent over genes and cells. The Poisson probability function is given in equation (1).

In this framework, the maximum likelihood estimate of �gc is the UMI count xgc , which 
is not useful because of the large amount of natural Poisson variation. This motivates 
combining information and one approach is the GLM-PCA algorithm [25]. In this study, 
we focused on examining the noise in typical scRNA-seq data by investigating whether 
the residuals after removing signals using GLM-PCA can be well-modeled by an inde-
pendent Poisson distribution. Our approach examined each matrix entry individually, 
providing a more precise characterization of entries and insights into the noise distribu-
tion. The Poisson model-based departure representation as discussed in the following 
section serves as a preprocessing step for feature combination and manipulation.

The challenge to measuring the goodness-of-fit is that can not be done using only 
one data point. We approach this by aggregating matrix entries xgc which have similar 
Poisson parameters �gc , i.e. choosing a reasonable number of entries (in this paper we 
use 200, which allows assessing the “Poissoneity” without introducing too much vari-
ation in the actual underlying parameters) with estimated Poisson parameters closest 
to some given values, and regard the UMI counts from these 200 entries as independ-
ent and identically distributed random samples generated from the Poisson distribu-
tion with that parameter. Such nearly homogeneous examples are considered using both 
Q-Q plots and hypothesis tests. Specifics for measuring “Poissoneity” are described in 
the next sections.

Note that when using formula (2) to get parameter estimates, the choice of latent 
dimensions L was important. When L was too small, the model was not flexible enough 
to appropriately handle biological effects such as cell cycle. So the Poisson distribution 
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did not provide a good fit for the 200 entries. When L was too large, the model was too 
flexible and was driven by Poisson variation, resulting in overfitting and thus a different 
poor description of the data. If our underlying IPD framework assumption was correct, 
there will be a choice of L , where we get a good fit of the Poisson distribution. So the 
existence of such an L was a validation of our underlying IPD framework. We approach 
this by attempting multiple values of L and assessing if their results were a reasonable fit. 
This suitable value can be different for different data sets.

Over-dispersion test
In the case of the Poisson distribution, an insightful test was the dispersion test. An 

important property of the Poisson distribution was the mean equals the variance. How-
ever, many mixtures of Poisson, such as the Negative Binomial, have a variance that was 
larger than the mean, called over-dispersion.

Under the null hypothesis that H0 : X ∼ Poisson(�) , we have E(X) = Var(X) = � . The 
over-dispersion alternative is Var(X) = (1+ α)� , ( α > 0 ). A test statistic was derived 
(more details in Cameron et al. [47]) for measuring this, which is asymptotically normal. 
This test is conducted using the dispersion test from the R package AER (v1.2-9; [48])

Zero-inflation test
A much different departure from the Poisson that can arise in certain applications was 

zero-inflation, where the number of observed zeros was larger than the expected num-
ber of zeros. To compare the proportion of zeros among the matrix entries with that 
expected from the mixture distribution:

To understand natural variation in this proportion, note that the observed proportion of 
zeros is

where each indicator Ixgc=0 follows a Bernoulli(e− ˆ�gc ) distribution, which has variance

from which it follows that

This allows straightforward inference for � using a null Gaussian distribution

Model departure as data representation

Again, from our IPD framework, each gene expression measurement for each cell 
(i.e. each matrix entry) comes from an independent Poisson distribution with parameter 

P(X = 0) =

G
∑

g=1

C
∑

c=1

1

GC
P(xgc = 0) =

1

GC

G
∑

g=1

C
∑

c=1

e−
ˆ�gc .

� =
1

GC

G
∑

g=1

C
∑

c=1

Ixgc=0,

var(Ixgc=0) = e−
ˆ�gc (1− e−

ˆ�gc ),

var(�) =
1

(dn)2
e−

ˆ�gc (1− e−
ˆ�gc ).

� ∼ (P(X = 0), var(�)).
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�gc . A naïve starting point for the application of that framework is viewing cell and gene 
differences in a purely additive way, i.e. a two-way approximation, expressed as

where g indexes gene, c indexes cell, αg enables modeling of gene level variation and 
βc enables modeling of cell level variation. Of course, there is a much richer biological 
structure beyond this, which we will represent in terms of departures from this approxi-
mation of each matrix entry.

Fitting of a simple two-way approximation The model (3) is fit to the data using maxi-
mum likelihood. In order to make parameter estimation identifiable, restrict that 
∑

g
eαg = G and 

∑

c
eβc = C.

There is a closed solution, which is:

It’s straightforward to prove that the first derivative at parameter estimates defined 
above are all zero.

We used the above two-way approximation as an initial model, which gave a first-order 
approximation of both library effects and also gene by gene variation. Phenomena, such 
as cell clustering, were effectively captured by studying the departure from that first-
order approximation. In other words, features of interest were captured by the difference 
between the observed UMI counts and the counts expected from the two-way approxi-
mation. In particular, the matrix entries that showed significant departure played an 
important role in cell clustering. The key idea of our departure representation of scRNA-
seq data is to replace each count xgc by a number that reflects how well it is explained 
by the Poisson distribution from the simple two-way approximation. It is important to 
note that our approach operates at the individual matrix entry level, unlike the deviance 
and Pearson residuals discussed in [25]. Clustering such numbers is effective at finding 
structure beyond the two-way fit, such as discriminating cell types.

We started by representing departure in terms of where the given count xgc lay in 
the Poisson(�̃gc) distribution. A naïve approach to this would be to use the UMI count 
xgc in the CDF of the Poisson(�̃gc) distribution, i.e. F(xgc; �̃gc) = P(X ≤ xgc|�̃gc) . While 
this probability was very effective (i.e.  probabilities close to zero or close to one indi-
cate a strong departure) for large values of �̃gc , it was less effective for small values of 
�̃gc , because the probability had a lower bound of P(X = 0|�̃gc) = e−�̃gc ≈ 1 (as often 
encountered in scRNA-seq data). This problem was caused by the conventional CDF 
representation as P(X ≤ x) . While it was typically not done, CDFs could also be rep-
resented as P(X < x) , which for our purposes goes too far in the other direction 
( P(X = 0|�̃gc) = e−�̃gc ≈ 0 ). Hence, we chose to use the average form of the CDF, i.e. 

(3)�̃gc = eµ+αg+βc ,

(4)

µ̂ = log

∑

g ,c xgc

G × C

α̂g = log

(
∑

c xgc

C

)

− µ̂

β̂c = log

(
∑

g xgc

G

)

− µ̂
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By doing this, our representation of unexpectedly small UMI counts was nearly 0 and 
unexpectedly large UMI counts was close to 1.

Another consequence of the generally skewed shape of the Poisson distribution (at 
least for small values of �̃gc ) was that these probabilities tend to be quite asymmetric at 
the two ends of the distribution. A straightforward device for a more balanced treatment 
of the departures from the Poisson fit was to take the matrix entries to be the logit trans-
form of these CDF based probabilities:

Since exactly 0 and 1 were not allowed for the logit transformation, set any matrix 
entries with F̃(xgc; �̃gc) below 10−10 (as a particularly small number with respect to dou-
ble-precision floating-point arithmetic) as logit(10−10) , and F̃(xgc; �̃gc) above (1− 10−10) 
as logit(1− 10−10).

The logit transformed data takes on very negative (or positive) values if the UMI count 
is much lower (or higher) than expected from the simple two-way approximation. The 
collection of cells with such novel data representation can be plugged into a standard 
clustering algorithm (in this paper we choose hierarchical clustering with Euclidean dis-
tance and Ward’s linkage).

Cell clustering algorithm

The proposed clustering starts with the DIPD-based matrix computed for the complete 
data set. Hierarchical clustering using Euclidean distance and Ward’s linkage is recom-
mended from a top-down viewpoint. At each step, we re-calculated the two-way approx-
imation again within each subcluster, and the potential for further splitting is calculated 
using Sigclust2 [30], a method to assess statistical significance at each split based on a 
Monte Carlo simulation procedure. A non-significant result suggests cells are reason-
ably homogeneous and may come from the same cell type. In addition, to avoid over-
splitting, we further require setting a maximum allowable number of splitting steps J  
(default is 10, which leads to at most 210 = 1024 the total number of clusters) and mini-
mal allowable cluster size S (the number of cells in a cluster allowed for further splitting, 
default is 10) beforehand. Thus the process was stopped when any of the conditions were 
satisfied: (1) the split was no longer statistically significant; (2) the maximum allowable 
number of splitting steps was reached; (3) any current cluster had less than 10 cells. This 
process was done in a recursive way. Algorithm 1 and Fig. 4 outline the procedure using 
hierarchical clustering in a recursive way based on departure representation.

We do not need to set the number of clusters beforehand. Thinking of the number 
of clusters in a multi-scale way as in Liu et  al. [33], a coarser scale clustering can be 
obtained by stopping the clustering process at any stage in between.

F̃(xgc; �̃gc) =
P(X ≤ xgc|�̃gc)+ P(X < xgc|�̃gc)

2
.

D = logit(F̃(xgc; �̃gc)) = ln

(

F̃(xgc; �̃gc)

1− F̃(xgc; �̃gc)

)
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Crafted experiments

For each matrix entry UMI count xgc , we calculated the perturbed value by generating a 
random count from the Poisson distribution with parameter 

∣

∣

∣
eµ̂+α̂g+(1+F)×β̂c − �̃gc

∣

∣

∣
 as 

pgc , where µ̂ , α̂g , β̂c and �̃gc are parameters defined in the two-way approximation and 
estimated by equation (4). The value for F  controls the strength of the library size magni-
fication. Then we perturbed each matrix entry as (xgc + sign(β̂c)× pgc)+ , where the sub-
script of plus denotes the positive part. This magnified the library size effects as the cells 
with originally positive (or negative) cell effect β̂c become even larger (or smaller).
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